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This report describes a search for associated production of W and Higgs bosons based on data

corresponding to an integrated luminosity of L � 5:3 fb�1 collected with the D0 detector at the

Fermilab Tevatron p �p Collider. Events containing a W ! ‘� candidate (with ‘ corresponding to e or

�) are selected in association with two or three reconstructed jets. One or two of the jets are required to be

consistent with having evolved from a b quark. A multivariate discriminant technique is used to improve

the separation of signal and backgrounds. Expected and observed upper limits are obtained for the product

of the WH production cross section and branching ratios and reported in terms of ratios relative to the

prediction of the standard model as a function of the mass of the Higgs boson (MH). The observed and

expected 95% C.L. upper limits obtained for an assumed MH ¼ 115 GeV are, respectively, factors of 4.5

and 4.8 larger than the value predicted by the standard model.

DOI: 10.1103/PhysRevD.86.032005 PACS numbers: 14.80.Bn, 13.85.Rm

I. INTRODUCTION

In the standard model (SM) of particle physics, the
masses of the weakly interacting W and Z gauge bosons
are accommodated through the process of electroweak
symmetry breaking, and the masses of fermions through
their Yukawa couplings to the Higgs field. The search for

the Higgs boson, whose mass MH is not predicted by
the SM, is a test of this hypothesis and is a major compo-
nent of the experimental programs at particle colliders.
At the Fermilab Tevatron p �p Collider, this search is
carried out using multiple statistically independent search
samples, each sensitive to different Higgs boson produc-
tion processes and decay channels, providing increased
sensitivity in the search for direct evidence for this SM
mechanism [1,2].
This paper presents an extended description of the

previously reported search [3] for SM Higgs boson pro-
duction through the process p �p ! WH, in which a Higgs
boson is produced in association with a W boson. The
search is based on data corresponding to an integrated
luminosity L � 5:3 fb�1 collected with the D0 detector
at the Fermilab Tevatron p �p Collider with a center-of-mass
energy

ffiffiffi
s

p ¼ 1:96 TeV. The events are required to contain
a W ! e� or W ! �� candidate, thereby suppressing
background from inclusive b-jet production processes,
and enhancing sensitivity to signal by several orders of
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magnitude. The event selection is also sensitive toW ! ��
events with � decay into electrons or muons. The events
are required to contain a H ! b �b candidate because of
large branching fraction for this decay in the MH region
considered here (100<MH < 150 GeV). The experimen-
tal signature is therefore a single isolated lepton, an
imbalance in the measured transverse energy ( 6ET), and
either two or three jets, at least one of which is consistent
with having been initiated by a b quark. The three-jet
sample is included to provide additional sensitivity for
WH events containing gluon radiation from the initial or
final-state particles of the hard collision. The data are
examined in separate search samples of different sensitiv-
ity and a multivariate random forest technique [4,5] is
applied to each sample, further enhancing sensitivity to
signal.

Direct searches for the process eþe� ! ZH at the
CERN eþe� Collider (LEP) experiments set the SM
Higgs mass to MH > 114:4 GeV [6]. In addition, a fit to
electroweak precision measurements of the masses of the
W boson and the top quark from both Tevatron and
LEP experiments leads to an upper limit of MH <
161 GeV for SM Higgs production at the 95% C.L. [7].
Both the CDF and D0 Collaborations have extensively
investigated the WH associated production mechanism
[8–13], and a region at larger 156<MH < 177 GeV has
also been excluded at 95% C.L. by direct searches for
H ! WþW� decays [14]. Results from the CERN Large
Hadron Collider (LHC) Collaborations [15,16] also ex-
clude regions at higher MH > 127 GeV and indicate that
the most interesting region for the search for the SM Higgs
boson is the one where the sensitivity of the search dis-
cussed in this article is maximal. The analysis presented
here is expected to be a highly sensitive channel in the
mass range 100 & MH & 135 GeV, and complements
searches at the LHC which rely primarily on different
SM Higgs production and decay mechanisms in this
mass range.

II. THE D0 DETECTOR

The main components of the D0 detector used in this
investigation are the tracking detectors, calorimeters, muon
detectors, and the luminosity system. Protons and anti-
protons interact close to the origin of the D0 detector
coordinate system, which is at the center of the detector.
A right-handed Cartesian coordinate system is used with
the positive z axis pointing along the nominal direction of
the incoming proton beam (the positive y axis points
toward the top of the detector) and the pseudorapidity
variable, defined as � ¼ � ln tan�2 , where � is the polar

angle in the corresponding spherical polar coordinate sys-
tem. The kinematic properties of particles and jets are
measured with respect to the reconstructed p �p collision
vertex. More details on D0 construction and component
design are available in Refs. [17,18]. Upgrades to the

tracking and trigger systems were installed during the
summer of 2006 and the data samples collected prior to
and after this upgrade are referred to as pre- and post-
upgrade samples in the following.

A. Tracking detectors

The D0 tracking system surrounds the interaction point
and consists of an inner silicon microstrip tracker (SMT)
followed by an outer central scintillating fiber tracker
(CFT). Both the SMT and CFT are situated within a 2 T
magnetic field provided by a superconducting solenoidal
coil surrounding the entire tracking system.
The silicon microstrip tracker is used for tracking

charged particles and reconstructing interaction and decay
vertices. In the central region there are six barrel sections
each comprising four detector layers. The barrel sections
are interspersed and capped with disks composed of 12
double-sided silicon wedge detectors. The first and second
detector layers of each barrel contain 12 silicon modules
and 24 modules are installed in the third and fourth detec-
tor layers. An additional inner layer was added to the
silicon tracker system in 2006 [19]. In the high j�j region
on either side of the three disk-barrel assemblies there
are three further radial disk sections (F-disks), and in the
far-forward region, large-diameter disks (H-disks) provide
tracking at larger j�j. The tracks of particles with j�j< 1:7
are measured using the CFT and the barrel and F-disk
sections of the SMT, whereas tracks for particles at larger
j�j are reconstructed using the the F- and H-disks.
The CFT comprises scintillating fibers (835 �m in

diameter) mounted on eight concentric support cylinders.
The cylinders occupy the radial space from 20 to 52 cm
from the center of the beam pipe. The two innermost
cylinders are 1.66 m long whereas the outer six cylinders
are 2.52 m long. The outer cylinder provides tracking
coverage extending to j�j ¼ 1:7.

B. Calorimeters

The D0 calorimeter system is used to measure energies
as well as to identify electrons, photons, and jets. The
calorimeter also helps to identify muons and provides a
measure of the 6ET in events. The central calorimeter (CC)
and the two end calorimeters (EC) are contained within
three individual cryostats located outside of the supercon-
ducting solenoid. The central calorimeter covers detector
pseudorapidities j�j & 1:1 and the end calorimeters
extend the range to j�j ¼ 4:2. The active material in
each calorimeter section is liquid argon. Extending radially
outwards from the detector center, the calorimeters are
subdivided into electromagnetic (EM), fine hadronic, and
coarse hadronic (CH) sections. The absorber material of
the EM sections is uranium, whereas for the fine hadronic
sections a uranium-niobium alloy is used. The CH absorb-
ers are made of copper in the CC region and stainless
steel in the EC region. To improve measurements in the
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intercryostat regions, plastic-scintillator detectors and
‘‘massless gap’’ detectors are used to sample showers
between cryostats, enhancing calorimeter coverage in the
region 0:8< j�j< 1:4.

C. Muon detectors

The muon detector system [20] consists of a central
muon detector system covering the range j�j< 1 and a
forward muon system that covers the region 1< j�j< 2.
The central muon system comprises aluminum propor-
tional drift chambers whereas aluminum mini drift tubes
are used in the forward system. Scintillation counters are
included for triggering purposes, and 1.8 T toroidal mag-
nets make it possible to determine muon momenta and
perform tracking measurements based on the muon system
alone.

The proportional drift chambers are arranged in three
layers, one of which (A layer) is located within the toroid,
with the remaining two (B and C) layers located beyond
the toroid, with the C layer radially furthest from the
interaction point. In the central muon system, the B and
C layers have three planes of drift cells. The A layer has
four planes, except at the support structure at the bottom of
the detector, where the A layer has three planes of cells. In
the forward region, mini drift tubes are arranged in eight
octants with four planes in the A layer while the B and C
layers each have three planes.

D. Luminosity system

The D0 luminosity system is used to determine the
instantaneous luminosity and also to measure beam-halo
rates. The system is composed of two disks of scintillating
tile detectors that are positioned in front of the ECs on both
sides of the D0 detector at z ¼ �140 cm. Each of the disks
consists of 24 plastic scintillation counters that cover pseu-
dorapidity regions 2:7< j�j< 4:4. The total integrated
luminosity (L) is determined via the average instantaneous
number of observed inelastic collisions (Ninel), according
to fNinel=�inel, where f is the frequency of p �p Tevatron
bunch crossings, and �inel is the effective inelastic produc-
tion cross section [21] within the luminosity system accep-
tance, after taking into account beam-halo events and
multiple collisions within a single beam crossing. In prac-
tice, Ninel is calculated by inverting the Poisson probability
of observing no hits in either of the two disks [22].

III. TRIGGERING

The D0 trigger system has three levels referred to as L1,
L2, and L3. Each consecutive level receives a lower rate of
events for further examination. The L2 software-based
algorithms refine the L1 information they receive and the
L3 software-based algorithms then run simplified versions
of offline identification algorithms based on the full detec-
tor readout.

The W ! e� candidates of this search are collected
using the logical OR [23] of different triggers requiring a
candidate electromagnetic object. The L1 electron triggers
require calorimeter energy signatures consistent with those
of an electron. The logical OR also includes trigger algo-
rithms requiring an electromagnetic object together with at
least one jet, for which the L1 requirement includes a
calorimeter energy deposition expected for jets at large
transverse momenta pT . The triggers have different mini-
mum electron and jet pT thresholds, and each has a typical
efficiency of (90–100)% for the signal events satisfying the
selection requirements discussed below, depending on the
trigger type and sampled region of the detector. The trigger
efficiencies are determined using samples of Z=�� !
eþe� events and are modeled as functions of the pT and
� of the leading (largest pT) electromagnetic object in
the event. Event weights are used to apply the measured
trigger efficiencies to the simulated signal and background
samples. Since the triggers undergo periodic changes,
these efficiencies depend on specific running periods. In
particular, an improved calorimeter trigger was added
during the 2006 detector upgrade [24].
W ! �� candidates are triggered using the logical

OR of the full set of available triggers and expected to be
fully efficient for the selection criteria used. For muons, the
selected pseudorapidity range of this analysis is j�j< 1:6,
where the majority of the events are collected by triggers
that require a large-pT muon at L1 (single-muon triggers).
The efficiency of the single-muon triggered component of
the data is determined using Z=�� ! �þ�� events, again
separately for specific running periods. It is typically
� 70% and is well modeled in simulation. The remainder
of the events are collected primarily using jet triggers. The
efficiency for these triggers is determined separately by
taking the ratio of this component of the triggered data set
to Monte Carlo (MC) simulation with triggering probabil-
ities set to unity [after correcting the data for multijet (MJ)
background as described separately in Sec. VII]. The ratio
is parameterized as a function of the scalar sum (HT) of the
transverse momenta of the jets in the event, and compared
to the well-modeled single-muon triggered data set. The
simulated probability for events to pass at least one of the
single high-pT muon triggers is then scaled to the effi-
ciency of the complete set of triggers used. The most
recently collected data correspond to the highest instanta-
neous luminosities, and because different proportions of
multijet, 6ET þ jet, and muonþ jet triggered events are
observed as a function of luminosity, the additional proba-
bility factor is computed separately for events collected
before and after the 2006 D0 upgrade. The remaining
triggers provide a gain in probability of � 0:23 before
the 2006 upgrade and range from 0.23–0.33 following the
upgrade.
After additional detector status quality requirements,

applied to ensure subdetector systems are operational, the
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total integrated luminosity is L ¼ 5:32 fb�1 for the elec-
tron channel and L ¼ 5:36 fb�1 for the muon channel.
The contribution to the total integrated luminosity from the
pre-2006 upgrade part of the data set is about 1 fb�1 in
each case. The uncertainty on the experimentally measured
integrated luminosity is 6.1% [22] and is dominated by the
uncertainity in the effective inelastic production cross
section [21].

IV. IDENTIFICATION OF LEPTONS,
6ET, AND JETS

Candidate events with W bosons are selected by requir-
ing a single reconstructed lepton together with large 6ET

and the selected W ! ‘� samples are also required to
contain either two or three reconstructed jets.

Electrons of pT > 15 GeV are reconstructed in the
CC or EC calorimeters in the pseudorapidity regions
j�j< 1:1 and 1:5< j�j< 2:5, respectively. In the CC
(EC), a shower is required to deposit 97% (90%) of

its total energy [as measured in a cone of radius �R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p ¼ 0:4] within a cone of radius�R ¼ 0:2

in the electromagnetic layers. The showers must have
transverse and longitudinal distributions that are consistent
with those expected from electrons. In the CC region, a
reconstructed track, isolated from other tracks, is required
to have a trajectory that extrapolates to the EM shower.
The isolation criteria restricts the sum of the scalar pT of
tracks of pT > 0:5 GeV within a hollow cone of radius

�R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p ¼ ½0:05–0:4� surrounding the
electron candidate to <2:5 GeV. Additional information
on the number and scalar pT sum of tracks in cone of radius
�R ¼ 0:4 surrounding the candidate cluster, track to clus-
ter matching probability, the ratio of the transverse energy
of the cluster, and the transverse momentum of the track
associated with the shower, the EM fraction, and lateral
and longitudinal shower shape characteristics are used to
construct CC and EC electron likelihood discriminants.
The discriminants are trained using Z=�� ! eþe� events
and are applied to ensure that the observed particle char-
acteristics are consistent with electrons [25].

Muons of pT > 15 GeV are selected in the region
j�j< 1:6. Muons are required to have track segments in
both the A and B or C layers of the muon detectors, with a
spatial match to a corresponding track in the central
tracker. The scalar sum of the pT of tracks with �R<
0:5 around the muon candidate is required to be less than
2:5 GeV. Furthermore, transverse energy deposits in the
calorimeter in a hollow cone of�R ¼ ½0:1–0:4� around the
muon must be less than 2.5 GeV. To suppress MJ back-
ground events that originate from semileptonic decays
of hadrons, muon candidate tracks are required to be
spatially separated from jets by �Rð�; jÞ> 0:5. To sup-
press cosmic-ray muons, scintillator timing information is
used to require the hits to coincide with a beam crossing.

In addition to the selection criteria listed above, elec-
trons and muon samples are also selected using much
looser reconstruction criteria. For the electron channel,
less restrictive calorimeter isolation and EM energy frac-
tion criteria are used and the likelihood discriminants are
not applied. For the muon channel, less restrictive energy
isolation and track-momentum criteria are used. These
samples are used only for the determination of the MJ
background contributions to the final selected samples as
described in Sec. VII.
The 6ET is calculated from individual calorimeter cell

energies in the electromagnetic and fine hadronic parts of
the calorimeter and is required to be 6ET > 20 GeV for both
the electron and muon channels. It is corrected for the
presence of any muons. All energy corrections to leptons
and to jets (including energy from the coarse hadronic
layers associated with jets) are propagated to the 6ET .
Jets are reconstructed in the calorimeters in the region

j�j< 2:5 using the D0 Run II iterative midpoint cone
algorithm, from energy deposits within cones of size
�R ¼ 0:5 [26]. To minimize the possibility that jets are
caused by noise or spurious energy deposits, the fraction of
the total jet energy contained in the EM layers of the
calorimeter is required to be between 5% and 95%, and
the energy fraction in the CH sections is required to be less
than 40%. To suppress noise, different cell energy thresh-
olds are also applied to clustered and to isolated cells. The
energy of the jets is scaled by applying a correction deter-
mined from �þ jet events using the same jet finding
algorithm. This scale correction accounts for additional
energy (e.g., residual energy from previous bunch cross-
ings and energy from multiple p �p interactions) that is
sampled within the finite cone size, the calorimeter
response to particles produced within the jet cone, and
energy flowing outside the cone or moving into the cone
via detector effects (e.g. the deflection of particles by the
magnetic field). Details of the D0 jet energy scale correc-
tion can be found in Ref. [27].
In addition to the previously mentioned jet energy scale

correction, derived using �þ jet events, residual calibra-
tion differences between simulated and data-selected jets
are also studied using Zð! eþe�Þ þ jet events. An addi-
tional energy recalibration and an energy smearing are then
determined to adjust the pT imbalance between the Z
boson and the recoiling jet in simulation to that observed
in data. The correction is applied in simulation to gluon-
dominated jet production processes. Differences in recon-
struction thresholds in simulation and data are also taken
into account.
The jet identification efficiency and jet resolution are

adjusted in the simulation to match those measured in data.
Following the 2006 upgrade of the D0 detector to handle
higher instantaneous luminosity, all jets are also required to
satisfy additional criteria for originating from the primary
p �p vertex (‘‘vertex confirmation’’). The criteria are that the
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jets have at least two tracks, each of which have
pT > 0:5 GeV, at least one hit in the SMT detector, and
distances of closest approach (DCA) of<0:5 and<1:0 cm
from the primary p �p interaction vertex in the transverse
plane and along the z axis, respectively.

V. TAGGING OF b QUARK JETS

The final sample of WH candidate events is selected by
requiring that at least one of the jets produced in associa-
tion with the W boson is consistent with having been
initiated by a b quark, using the neural network (NN)
b-tagging algorithm described in detail in Ref. [28].

Jets considered by the b-tagging algorithm are required
to pass a ‘‘taggability’’ requirement that utilizes charged-
particle tracking and vertexing information. The efficiency
of this requirement accounts for variations in detector
acceptance and track reconstruction efficiencies at differ-
ent z-position values of the primary vertex (PV) through
the interaction region, prior to the application of the
b-tagging algorithm, and depends on the z position of the
PVand the � of the jet. More details on the reconstruction
and selection of the primary interaction vertex are available
in Ref. [28]. The taggability requirement is that a calo-
rimeter jet be matched to a track-jet within an angular
separation of �R< 0:5. Track-jets are formed starting
from seed tracks of pT > 1 GeV with at least one hit in
the SMT detector and DCA requirements of<0:15 cm and
<0:4 cm to the primary vertex in the transverse plane and
along the z axis, respectively. The other tracks used to form
track-jets must have pT > 0:5 GeV. To reduce the proba-
bility of misidentified secondary vertices, tracks consistent
with the decay of a long lived particle (e.g. Ks, �) or a
converted photon are also removed, before application of
the b-tagging algorithm.

The efficiency of the taggability requirement in the
selected samples is studied in data and in simulation, in
four z-vertex intervals, as a function of jet � and pT .
Correction factors are determined and applied to the MC
separately for the pre- and post-upgrade parts of the simu-
lated samples. The corrections, which are of order 1%, are
applied as a function of jet � (post-upgrade) and jet pT

(pre-upgrade). The jet taggability efficiency is largest
(80%–90%) around the center of the interaction region.
More details on jet taggability and its efficiency can be
found in Ref. [28].

The NN b-tagging algorithm uses seven input variables,
five of which make use of secondary decay vertex infor-
mation. These are the invariant masses (calculated from all
contributing tracks assuming the pion mass) of secondary
vertices, the number of tracks used to reconstruct the
secondary vertex, the 	2 of the secondary vertex fit, the
decay length significance of the secondary vertex with
respect to the primary vertex in the transverse plane, and
the number of secondary vertices reconstructed in the jet.
Two further impact-parameter-based variables are also

used. The first is a discrete signed impact parameter
significance variable, which is a combination of four quan-
tities related to the number and the quality of tracks within
a cone of radius �R ¼ 0:5 centered on the calorimeter jet.
The second is a continuous jet-lifetime variable, which is
used to assign a total probability that tracks within a jet are
consistent with the primary vertex position. The variable is
calculated using the product of individual track probabil-
ities, which indicate the likelihood that each track is
consistent with the primary vertex position. The individual
probabilities are based on the impact parameter resolution
of the tracks. The track impact parameters are given the
same sign as the scalar product of the track DCA in the
transverse plane and the jet pT . The negative signed region
is used to calibrate the impact parameter resolution
whereas tracks with positive values are used to calculate
the total lifetime probability.

VI. MONTE CARLO SIMULATION

At each step of the selection, the data are compared to
predictions obtained by combining the MC simulation of
SM backgrounds with a data-based estimation of the
instrumental background from MJ events containing
misidentified leptons (discussed separately in Sec. VII).
All generated samples are passed through a detailed,
GEANT-based simulation [29] of the D0 detector and the

same reconstruction algorithms used for data. Separate
simulations are applied for conditions prior to and after
the 2006 detector upgrade. The SM predictions are used to
set the relative normalizations for all of the generated
samples, and additional reweighting factors are then
applied to normalize samples generated using the leading
order (LO) ALPGEN [30] MC event generator to data. These
factors are determined prior to the application of b-tagging
(see Sec. V), where the signal contribution is expected to
be negligible, and these are determined simultaneously
with the MJ background, which is also obtained from
data. The impact of multiple p �p interactions and detector
noise is accounted for by adding data events recorded
during random beam crossings to the simulated events
before they are reconstructed. The instantaneous luminos-
ity profile of these events is matched, prior to the applica-
tion of b-tagging, to that observed in the selected data
samples. For all the MC samples the effects of beam
remnants and of multiple partonic interactions (underlying
event) are modeled using the PYTHIA parameters obtained
from data in Ref. [31].

(i) WH production: The WH associated production
process, with subsequent decay of the Higgs boson
to a b �b quark-antiquark pair, is modeled using the
PYTHIA [32] MC event generator, according to

the prescription of Refs. [33–37] and the LH2003
Working Group [38]. The events are generated using
the CTEQ6L LO parton distribution functions [39]

SEARCH FOR WH ASSOCIATED PRODUCTION IN . . . PHYSICAL REVIEW D 86, 032005 (2012)

032005-7



with the renormalization and factorization scales set
to the Higgs boson mass MH.
Eleven samples in total are generated, forMH values
spanning the rangeMH ¼ 100–150 GeV in intervals
of 5 GeV. Similarly, a set of 11 q �q ! ZH signal
samples is also generated with PYTHIA to model the
small contribution of signal events from ZH associ-
ated production that passes all selections. These
events are selected if one of the leptons from the
decay Z ! ‘þ‘� is either not reconstructed or is
produced outside of the detector acceptance. The
WH and ZH samples are referred to collectively as
WH in the figures and the remainder of the text.

(ii) W þ light partons: The SM background processes
Wð! ‘�Þq �q, where q represents light quarks
ðu; d; sÞ and gluons are generated using the LO MC
matrix element event generator ALPGEN according to
the parton-level cross section calculations of
Ref. [39]. Separate samples are generated for light
parton multiplicities 0, 1, 2, 3, 4, and� 5 with each
case generated for each of the final-state decay lep-
ton flavors ‘ ¼ e,�, and �. The PYTHIA generator is
used to account for the subsequent hadronization and
development of partonic showers. The MLM facto-
rization (‘‘matching’’) scheme [40] is used to avoid
the possibility of overestimating the probability of
further partonic emissions produced in PYTHIA. The
samples are then normalized to data as described
in Sec. VIA. To avoid double counting of heavy
quarks, Wb �b and Wc �c events, which are generated
separately as described below, are removed.

(iii) Z=�� þ light partons: A corresponding set of
Z=��ð! ‘‘Þq �q samples are generated for light
parton multiplicities 0, 1, 2, and � 3. These
samples also include each of the lepton flavors
‘ ¼ e, �, and �. The Z=�� contributions are gen-
erated over theZ=�� mass regionM‘‘¼15–250GeV
for ‘ ¼ e, �, andM‘‘ ¼ 75–250 GeV for � decays.
The combined Wð! ‘�Þq �q and Z=��ð! ‘‘Þq �q
samples are referred to as W þ light in the figures
and the remainder of the text.

(iv) Wb �b, Wc �c: The channel Wð! ‘�Þb �b and also the
channel Wð! ‘�Þc �c (referred to collectively as
Wb �b) are generated using ALPGEN also according
to the initial prescription of Ref. [41]. The PYTHIA

generator is again used to account for subsequent
shower development and the MLM matching
scheme is again used for the treatment of further
partonic emissions. Four separate samples are gen-
erated for 0, 1, 2, and � 3 additional light partons.
To avoid double counting, Wc �c states are removed
from the Wð! ‘�Þb �b samples, and no events are
removed from the Wð! ‘�Þc �c samples.

(v) Z=��b �b, Z=��c �c: Corresponding samples of
Z=��ð! ‘‘Þb �b and Z=��ð! ‘‘Þc �c events are

generated for each lepton flavor ‘ ¼ e, �, � and
for 0, 1, and � 2 additional light parton multiplic-
ities. The combined Wð! ‘�Þb �b, Wð! ‘�Þc �c,
Z=��ð! ‘‘Þb �b, and Z=��ð! ‘‘Þc �c samples are
referred to as Wb �b in the figures and the remainder
of the text.

(vi) t�t: The background from t�t interactions is generated
using ALPGEN, again interfaced with PYTHIA, and
using theMLMmatching scheme. The cross section
predictions contain the most important terms of the
next-to-NLO (next-to-next-to-LO) corrections [42].
The t�t ! b �bþ ‘þ�‘0� ��‘0 and t�t ! b �bþ 2jþ ‘�
final states are considered, including 0, 1, and 2
additional light parton multiplicities, and all decay
lepton flavors ‘ ¼ e, �, �.

(vii) Single top quarks: Background processes initiated
by single top quark production are generated using
COMPHEP [43,44]. The cross sections [45] are cal-

culated at NLO and PYTHIA is again used for
subsequent hadronization and partonic-shower
development, along with the MLM matching
scheme. The s-channel (t �b ! ‘�b �b) processes
and t-channel (tq �b ! ‘�bq �b) processes are gen-
erated for the three lepton flavors ‘ ¼ e, �, and �.
The single top samples are referred to collectively
as s-top in the figures and the remainder of the text.

(viii) Diboson: Backgrounds from the hadronic produc-
tion of diboson pairs (p �p ! V1V2, where V1,
V2 ¼ W�, or Z=��) are simulated using PYTHIA.
The cross sections are calculated at NLO accord-
ing to the prescription of Ref. [46], obtained using
the MCFM program, and incorporating spin corre-
lations in partonic matrix elements. The diboson
samples are generated inclusively for all boson
decay leptonic flavors ‘ ¼ e,�, � and are referred
to collectively asWZ in the figures and remainder
of the text.

A. MC Reweighting

Because of problems in the modeling of background
processes inMC simulations, we apply corrections summa-
rized in the following. Distributions of the summed W þ
light and Wb �b simulated samples are compared to data,
prior to the application of b-tagging, and corrections are
developed to reweight shape discrepancies. The correction
factors are calculated, prior to the determination of the
ALPGEN normalization factors. These corrections are moti-

vated by previous comparisons of ALPGEN with data [47]
and with other event generators [40]. The overall event
yields are preserved in the reweighting, and the sameweight
functions are applied to all the W þ jets ALPGEN back-
grounds, at reconstruction level in the MC. In this section,
we describe the applied reweighting functions in detail.
The reweighting functions are determined from the

ratio of the total W þ light and Wb �b distributions to the
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corresponding distributions obtained from the high statis-
tics selected Ndata

Wþjets component of the data. The expected

signal contribution is negligible in this sample. Ndata
Wþjets is

obtained after correcting the total selected data sample
Ndata for MJ background (NMJ) and the total expected
contributions from other SM background sources (NMC

SM ):

Ndata
Wþjets ¼ Ndata � NMJ � NMC

SM : (1)

Prior to determining the ALPGEN reweightings, calibra-
tion differences in data and MC for overlaid events in
the post-2006 upgrade samples are corrected for. Two
reweighting constants are applied which scale down the
MC, for the leading and subleading jet j�j distributions,
thereby improving detector modeling in the intercryostat
pseudorapidity region 0:8< j�j< 1:4. Separate constants
are used for the positive and negative pseudorapidity
intervals, for each of the two leading jets. The reweighting
constants reduce the simulated contribution by 1%–10%.

The overall description of the Ndata
Wþjets lepton � distribu-

tion as well as the corresponding leading and subleading jet
� distributions are then adjusted by applying a first-order
polynomial reweighting function in �2 of the simulated
lepton � and second-order reweighting functions in �2 to
the � of the leading and subleading jets. Only the two
leading jets are reweighted in the W þ 3 jet selections.
These reweighting functions have the primary effect of
improving the ALPGEN description of the � distributions
by increasing the MC component for j�j � 1:5.

Discrepancies observed in the correlation between the
jet directions �Rðj1; j2Þ and the W boson pT are corrected
through two reweighting functions in the two-dimensional
�R� pW

T plane. The functional form is a third-order poly-
nomial in �Rðj1; j2Þ, increasing the ALPGEN simulation by
� 20% at large �R, times a constant plus Gaussian error
function reweighting in W boson pT , applied to the W
boson ALPGEN samples only, and which primarily increases
the simulation by � 20% for pW

T < 20 GeV. The pT

distribution for Z=�� production is also adjusted to agree
with the observed distribution. The systematic uncertain-
ties associated with these reweightings are discussed in
Sec. X.

B. ALPGEN normalization factors

Two multiplicative scaling factors are used to normalize
and to incorporate the effects of higher-order terms in the
ALPGEN MC samples. The first factor, KWþjets, is applied to

both the W þ light parton and Wb �b generated events,
whereas the second multiplicative factor, SWb �b, is applied
only to the Wb �b samples.

To determine KWþjets, the number of selectedW þ light
parton and Wb �b events in ALPGEN (NMC

Wþjets) is scaled to

match the data (Ndata
Wþjets) contribution:

KWþjets ¼ Ndata
Wþjets

NMC
Wþjets

: (2)

The factors KWþjets are calculated separately for the
electron and muon channel samples and separately for
both the W þ 2 jet and W þ 3 jet selections. The obtained
factors are found to be consistent within their statistical and
systematic uncertainties and are shown, after accounting
for NLO corrections to the cross section [46] (already
included in the generated samples), in Table I. The values
are in the range KWþjets � 1:0–1:16 for the W þ 2 jet and
KWþjets � 1:12–1:35 for the W þ 3 jet selected samples.
The assigned systematic uncertainties are described in
Sec. X.
As indicated above, the factor SWb �b is applied addition-

ally only to the Wb �b heavy parton events:

NMC
Wþjets ¼ NMC

Wþlight þ SWb �bN
MC
Wb �b

(3)

[the same factor is used for the Wð! l�Þb �b and
Wð! l�Þc �c generated samples and for the corresponding
Z=�� heavy flavor samples]. The heavy flavor factor SWb �b

is extracted by requiring either zero, one, or two b-tags (see

Sec. V) to obtain samples containing N
tag;data
Wþjets events; how-

ever, it is dominated by the single b-tag samples that have
the smallest expected signal contribution. The number of

predicted W þ jet events, N
tag;MC
Wþjets, in the tagged samples,

after application of the scaling factor KWþjets, is given by

Ntag;data
Wþjets ¼ KWþjetsNtag;MC

Wþjets, and the heavy flavor contribu-

tion can therefore be extracted from

N
tag;data
Wþjets ¼

Ndata � NMJ � NMC
SM

NMC
Wþlight þ SWb �bN

MC
Wb �b

N
tag;MC
Wþjet : (4)

The heavy flavor scale factors, determined using
samples requiring zero b-tagged jets are also shown in
Table I. The factors are applied separately for the electron
and muon channel samples and also for data before and
after the D0 upgrade. The luminosity weighted average of
the factors is found to be consistent with the theoretically
expected value [46].

TABLE I. The experimental KWþjets factors (applied after
taking into account the theoretical factor of 1.3) and the SWb �b

heavy flavor factors in a zero b-tagged sample (after accounting
for the theoretical heavy flavor K factor of 1.47 forWþ jet). The
errors shown are statistical errors only. The systematic uncer-
tainty on the KWþjets (SWb �b) factors is 6% (20%) as described
in Sec. X.

KWþ2 jets KWþ3 jets SWb �b

Pre-2006 e 1:10� 0:01 1:21� 0:03 0:78� 0:09
� 1:16� 0:01 1:35� 0:03 0:99� 0:11

Post-2006 e 1:05� 0:01 1:12� 0:01 1:14� 0:06
� 1:10� 0:01 1:21� 0:01 1:02� 0:06
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VII. MULTIJET BACKGROUND

The total MJ background contribution entering each of
the final selected signal samples is determined from the
data, prior to the application of b-tagging, using the pre-
scription of Ref. [25]. TheMJ contributions are determined
in conjunction with the previously described ALPGEN nor-
malization factors. Multijet templates are obtained from
control samples in the data and normalized through a 	2 fit
to the W boson transverse mass distribution. For the deter-
mination of the MJ contribution, the ALPGEN normalization
factors described in Secs. VIA and VIB are varied in
conjunction with the MJ normalization, such that the total
number of predicted MC and MJ events agrees with the
total number of data events prior to the application of
b-tagging.

For both the electron and muon selected events,
additional data samples selected with the much looser
lepton-identification criteria (see Sec. IV) are used.
Events entering the looser samples (L) are a combination
of true leptonic events and MJ background in which a jet is
misidentified as a lepton. Upon application of the tighter
(T) final selection criteria the remaining contributions of
true leptonic and background events depend upon the
(relative) efficiency 
‘LT for true leptons to subsequently
pass the final selection criteria, and the probability PMJ

LT that
MJ background events in the looser sample subsequently
enter the tighter, final signal samples. A weight wi is
assigned to each event i in the looser selected samples
according to

wi ¼
PMJ
LT;i


‘LT;i � PMJ
LT;i

½
‘LT;i ��i�; (5)

where �i ¼ 1 if the event i in the loose sample passes the
tight selection requirements and is zero otherwise. The
total MJ background contributions in the final signal
samples are given by the sum of the event weights wi in
the corresponding loose samples. The efficiencies 
‘LT;i
are functions of lepton pT and are determined from
Z=�� ! lþl� events. The probabilities PMJ

LT;i are deter-

mined from the measured ratio of the number of events
in the final to loosely selected samples after correcting
each sample for the expected MC contribution from the
leptons in the specific kinematic interval. For both the final
electron and muon samples, the probability for MJ events
to enter the final selected samples is extracted in the region
5< 6ET < 15 GeV [and without applying the additional
requirement on 6ET in Eq. (7) of Sec. VIII].

A. Parameterization of the misidentified
jet probability

The measured probability for MJ events to enter the
final electron plus two-jet selection sample is shown as a
function of electron pT in Fig. 1. The MJ contribution in
the electron channel arises from jets with a high enough

fraction of energy deposited within the EM section of the
calorimeter that they satisfy the electron identification
criteria. Additional MJ backgrounds in the electron chan-
nel originate from the semileptonic decays of hadrons and
from photons that are misidentified as electrons. The
probability is measured separately in two CC regions
(j�j< 0:7 and 0:7< j�j< 1:1) and separately in the EC
region (1:5< j�j< 2:5). In each range of j�j, the mis-
identified jet probability is parameterized as a function of
electron pT in four intervals of the azimuthal separation
��ð6ET; eÞ of the electron and the 6ET vector (the four
regions are shown combined for each j�j interval in
Fig. 1). In the CC region, the probabilities are parameter-
ized as sums of exponentials and first-order polynomials in
electron pT , whereas only a first-order polynomial in elec-
tron pT is used in the smaller statistics EC region. For the
smaller statistics electron W þ 3 jet sample, the probabil-
ities are determined once for each j�j region, and are
applied to each ��ð6ET; eÞ interval separately after scaling
to the average contribution obtained in that interval.
The measured probability for MJ background events to

enter the final �þ 2 jet sample is shown as a function of
muon j�j in Fig. 2. The primary source of MJ background
in the muon channel is from semileptonic decays of
heavy quarks in which the decay muon satisfies the muon
isolation criteria. The contribution of MJ events entering
the loose sample is smaller in the muon channel than
in the electron channel. Consequently, the misidentified
jet probability is parameterized in only two regions
[j��ð6ET;�Þj<�=2 and�=2< j��ð6ET;�Þj<�] of azi-
muthal separation ��ð6ET;�Þ between the muon pT and
the 6ET vectors. In both pre-2006 and post-2006 upgrade
data, the misidentification probability is parameterized
using a third-order polynomial in muon j�j2. The same
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FIG. 1 (color online). The probability for MJ background
events to enter the final eþ 2 jet (post-2006 upgrade) sample.
The solid, dashed, and dotted curves represent the result of fitted
parameterizations in each interval.
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functions are applied to both the muon W þ 2 jet and
W þ 3 jet selected samples.

VIII. EVENT SELECTION

This section describes the selection of data samples con-
taining events with a single reconstructed lepton, 6ET , and
either two or three jets of transverse momentum pT >
20 GeV, at least one of which is required to be consistent
with having evolved from a b quark. The samples are from
data collected between 2002 and June 2009 at

ffiffiffi
s

p ¼
1:96 TeV. Candidate W bosons are selected by requiring
an electron or a muon with transverse momenta pT >
15 GeV and 6ET > 20 GeV. Electrons are required to be in
the pseudorapidity region j�j< 1:1 or 1:5 � j�j � 2:5 and
muons in the region j�j< 1:6. The selected W ! e� and
W ! �� candidate events are divided into samples con-
taining exactly two or exactly three reconstructed jets. Jets
are required to be in the region j�j< 2:5. A selection on the
HT of the jets, HT > 60 and >80 GeV, is also applied to
the W þ 2 jet and W þ 3 jet samples, respectively, and
the event PV is required to be reconstructed within
zPV ¼ �40 cm of the center of the detector. At least three
charged tracks are required to be associatedwith that vertex.

Distributions of lepton pT and 6ET are compared to the
sum of the expected SM background contributions and
data-determined MJ background for theW þ 2 jet selected
sample, which has the largest statistics of all selected
samples, in Figs. 3(a) and 3(b). The electron and muon
decay channel samples are combined in the figures, and
all corrections to the background simulations have been
applied. Details of the background estimates are given in
Secs. VI and VII.

To suppress Z=�� ! ‘þ‘� and t�t background events
and to avoid double counting events in Higgs searches

based on dilepton final states, events with additional elec-
trons or muons isolated from jets that pass pe

T > 20 GeV
and p

�
T > 15 GeV are rejected. Events containing isolated

high-pT � leptons that decay hadronically are also rejected
by requiring p�

T < 10 GeV or p�
T < 15 GeV, depending on

the � decay channel [48].
The transverse mass of the W boson candidates (MW

T ) is
reconstructed from the ð‘; 6ETÞ system using the lepton
transverse energy (E‘

T), 6ET , and the azimuthal separation
��ð‘; 6ETÞ between the isolated lepton and the 6ET vector:

MW
T ¼ ½2E‘

T 6ET½1� cos��ð‘; 6ETÞ��ð1=2Þ: (6)

The distribution ofMW
T for selectedW boson candidates is

shown in Fig. 3(c). In addition to the dominant contribution
from events with realW boson decays, there is a significant
component from MJ events that contributes mainly at
small values of MT . Consequently the lower signal-to-
background region at low 6ET is rejected by requiring

MW
T > 40 ðGeVÞ � 0:5 6ET: (7)

The pW
T distribution for the W boson candidates is

compared to the sum of the expected SM and MJ back-
ground contributions, prior to the requirement in Eq. (7), in
Fig. 3(d).
Kinematic jet properties for the selected W þ 2 jet

sample are also compared to the sum of the expected SM
background contributions, including MJ background, in
Fig. 3. The corrected electron and muon channel samples
are combined in the figure. The background prediction
provides an adequate description of the data for all the
distributions.
To increase the final sensitivity, both the W þ 2 jet and

W þ 3 jet samples are subdivided into statistically inde-
pendent samples based on whether one or two of the
leading jets in the event are consistent with having been
initiated by a b quark, as discussed in Sec. V. The first
sample requires two jets, both with NN output values larger
than a ‘‘loose’’ requirement (‘‘loose-tag’’). The second
sample, selected from events that fail the two-tag require-
ment, requires a single jet with a NN output above a larger
‘‘tight’’ value requirement (‘‘tight-tag’’). In two-b-tagged
jet events, the typical efficiency for identifying a pT ¼
50 GeV jet that contains a b hadron is ð59� 1Þ% with a
misidentification probability of 1.5% for light parton
ðu; d; s; gÞ initiated jets. In the single-b-tagged jet event
sample, the typical efficiency for identifying a pT ¼
50 GeV jet that contains a b hadron is ð48� 1Þ%, with a
lower misidentification probability of 0.5% for light parton
ðu; d; s; gÞ initiated jets. The b-tagging efficiency is treated
separately from the jet taggability efficiency. Events that
do not satisfy either of these tagging requirements are not
considered further in the analysis.
The tagging efficiencies for jets that have passed the

taggability requirements are studied in data and the effi-
ciencies are applied to the simulation via event weights.
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FIG. 2 (color online). The probability for MJ background
events to enter the final �þ 2 jet (post-2006 upgrade) sample.
The solid and dashed curves represent the result of the fitted
parameterizations in each interval.
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FIG. 3 (color online). Comparison of simulated events, including data-determined MJ background, to the W þ 2 jet selected data
(black points) for (a) isolated lepton pT , (b) missing event transverse energy ET , (c) transverse mass of the ðl; 6ETÞ system, (d) pT ofW
boson candidates, (e) leading jet pT , (f) pT of the second leading jet, (g) scalar sum of the pT of jets in the event (HT), (h) transverse
momentum of the dijet system, (i) separation �R, and (j) azimuthal separation �� for the two jets. The expectation for aWH signal at
MH ¼ 115 GeV has been scaled up by a factor of 300. The electron and muon selected samples are combined in the figures.
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These weights depend on the pT , �, and partonic flavor
of each tagged jet. In two b-tagged events, the event
weights are given by the product of the weights of the
two b-tagged jets. In single-b-tagged jet events, the final
event weight also accounts for the simulated contribution
of two-b-tagged jet events that ‘‘migrate’’ to the simulated
single-b-tagged jet samples.

Distributions of dijet invariant mass, prior to b-tagging,
after requiring two b-tags, and for single-b-tagged events,
are shown for the W þ 2 jet and W þ 3 jet selections
in Figs. 4 and 5, respectively. The sums of the expected
backgrounds are compared to the data, and the electron and
muon channel samples are again shown combined in each
figure. Comparisons of kinematic properties in W þ 2 jet
events are shown in Figs. 6 and 7 for the two- and
single-b-tagged samples, respectively. The expected signal
contribution atMH ¼ 115 GeV is shown scaled by a factor
of 10 in each figure.

The total event yields for each of the b-tagged samples,
in data and in simulation, are summarized in Table II. In
two-b-tagged jet events, the dominant backgrounds are
from Wb �b and t�t processes. In single-b-tagged jet events,
the dominant backgrounds are W boson production in
association with light or c-quark jets as well as t�t produc-
tion and MJ events. The expected number of signal events
in each sample is listed for an assumed Higgs mass

MH ¼ 115 GeV. The uncertainties quoted are the com-
bined statistical and systematic uncertainties, and the
systematic uncertainties are those prior to the application
of the fitting procedure applied when determining cross
section upper limits described in Sec. XI.

IX. MULTIVARIATE DISCRIMINANT

To separate the remaining background from the signal, a
multivariate random forest (RF) discriminant technique
[4,5] is applied independently to each of the 16 sub-
samples, defined by categorizing events by lepton flavor
(electron or muon), jet multiplicity (2 jets or 3 jets), b-tag
multiplicity (single- or two-b-tagged), and pre- and post-
upgrade data. The RF technique employs a set of decision
trees, each of which applies a series of consecutive binary
decisions trained on simulated events of known origin
until a predefined stopping configuration is reached.
Half of the simulated events are used for training and
validation, and the remaining half are used to estimate
the relative contributions of signal and background in the
data.
Each individual decision tree examines an initial input

event training sample and applies selection criteria on a list
of potentially discriminating variables to subdivide the
training sample into smaller signal or background regions
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FIG. 4 (color online). Dijet invariant mass distribution for theW þ 2 jet selected samples on linear and logarithmic scales for (a), (d)
no b-tagging, (b), (e) events that contain two b-tagged jets, and (c), (f) events that fail the two-tagged requirement but contain a single
NN b-tagged jet. The expectation for a WH signal at MH ¼ 115 GeV has been scaled up by a factor of 10.
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referred to as nodes. At each step, the selection criterion is
chosen to maximize the positive cross entropy ‘‘figure of
merit’’ value

Q ¼ �p lnp� q lnq; (8)

where p (q) is the fraction of correctly (incorrectly) clas-
sified events at each stage. The process is continued until a
pure signal or pure background node is obtained, and the
remaining node regions can no longer be further maxi-
mized and split without leaving fewer than a prespecified
minimum number of events in the other daughter samples.
The resulting output nodes are referred to as leaves.

For each of the subsamples, the decision tree algorithm
is run multiple times to create the forest, and variants of the
default training sample are used for each decision tree
within each RF. The outputs of the decision trees within
each RF are combined to yield final RF output distribu-
tions. The decision tree samples are obtained using boot-
strap aggregation (‘‘bagging’’), and a random subset of 13
of the 20 input discriminating variable distributions are
assigned within each decision tree to create the forest.
Varying the number of input variables used by�1 is found
to have a negligible effect on the RF output.

The 20 input variables used to build the RF decision are
optimized in dedicated studies of their discriminating

power and are listed, together with their definitions, in
Table III. Agreement between the data and the total MC
and data-determined background estimates are obtained for
each input variable distribution for both the two-b-tagged
and single-b-tagged samples as well as for the full sample
prior to the application of b-tagging. The same set of input
variables is used for theW þ 2 jet andW þ 3 jet samples. In
addition to the ten variables already discussed in Sec. VIII,
and displayed in Figs. 6 and 7, a further ten discriminating
variables are provided to each RF and these are shown for
the W þ 2 jet sample, after the application of two and one
b-tag requirements to the events, in Figs. 8 and 9, respec-

tively. Two input distributions are provided for
ffiffiffi
ŝ

p
and

�Rðdijet; ‘þ �Þ corresponding to each of the two solutions
for the longitudinal momentum component of the missing
energy vector (assuming the lepton and 6ET are decay prod-
ucts of an on-shell W boson). The angles �� and 	 are
included to exploit kinematic differences arising from the
expected spin-0 nature of the Higgs and non-spin-0 nature
of theWb �b background. The angle �� is the angle between
theW boson candidate and the nominal proton beam direc-
tion in the zero momentum frame, and 	 is the angle
between the charged decay lepton and rotated (production
plane) three-momentum vector of the dijet system after
boosting to the W boson rest frame [49].
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FIG. 5 (color online). Dijet invariant mass distribution for theW þ 3 jet selected samples on linear and logarithmic scales for (a), (d)
no b-tagging, (b), (e) events that contain two b-tagged jets, and (c), (f) events that fail the two-tagged requirement but contain a single
NN b-tagged jet (the two leading jets in the W þ 3 jet samples are used to form the dijet invariant mass). The expectation for a WH
signal at MH ¼ 115 GeV has been scaled up by a factor of 10.
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Each RF is trained simultaneously using all simulated
backgrounds sources (the MJ contribution is excluded) for
each simulated Higgs mass point, and the process is re-
peated for each of the 16 subsamples. The minimum

number of events in a leaf is tuned in separate studies
and the number that maximizes the sensitivity is selected.
The number of decision trees used within each forest is
also studied and tuned using the procedure of Ref. [50].
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FIG. 6 (color online). Comparison of the expected backgrounds to the two-b-tagged jet data sample inW þ 2 jet selected events. The
expectation for a WH signal at MH ¼ 115 GeV has been scaled up by a factor of 10.
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FIG. 7 (color online). Comparison of the expected backgrounds to the single-b-tagged jet data sample in W þ 2 jet selected events.
The expectation for a WH signal at MH ¼ 115 GeV has been scaled up by a factor of 10.
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The resulting RF output distributions are shown in
Figs. 10 and 11 for the two- and single-b-tagged jet re-
quirements in the final W þ 2 jet and W þ 3 jet samples,
respectively. The electron and muon channel samples have
been combined in the figures, and the preupgrade and

postupgrade samples are also combined in the figures.
The figures show the results obtained using the MH ¼
115 GeV signal samples. An improved separation of
simulated signal and background contributions is obtained
in all cases.

TABLE II. Event yields for the W þ 2 jet and W þ 3 jet samples after requiring two b-tagged
jets or a single b-tagged jet in the events. The expected contributions to the total background
from the simulated W þ light, data-derived MJ, and simulated Wb �b, t�t, single top quark, and
WZ diboson samples are also listed. The uncertainties quoted are the combined statistical and
systematic uncertainties (prior to the application of the fitting procedure applied when determin-
ing cross section upper limits). The expected signal contribution is shown for an assumed Higgs
mass MH ¼ 115 GeV.

W þ 2 jet W þ 2 jet W þ 3 jet W þ 3 jet

2 b-tag 1 b-tag 2 b-tag 1 b-tag

W þ light 57:5� 9:2 1290� 201 12:1� 1:8 210� 35
MJ 56:5� 4:2 663� 43 12:7� 1:0 186� 13
Wb �b 346� 93 1601� 383 47:8� 12:9 358� 90
t�t 177� 35 417� 54 176� 35 633� 96
s-top 58:3� 11:4 203� 33 13:0� 2:7 53:6� 9:1
WZ 22:5� 3:3 152:6� 17:6 2:6� 1:1 33:9� 4:8
Total 718� 120 4326� 501 264� 44 1474� 160
Data 709 4316 301 1463

WH 6:5� 1:0 9:7� 0:9 0:8� 0:2 2:1� 0:3

TABLE III. Description of the 20 kinematic input quantities provided to each random forest discriminant.

RF input variable Description

6ET Missing transverse energy

MT
W Lepton- 6ET transverse mass

pT (‘- 6ET system) pT of W boson candidate

pT (j1) Leading jet pT

pT (j2) Subleading jet pT

mjj Dijet invariant mass

pT (dijet system) pT of dijet system

�Rðj1; j2Þ �R between the two leading jets

��ðj1; j2Þ �� between the two leading jets

HT Scalar sum of the transverse momenta of all jets in the event

HZ Scalar sum of the longitudinal momenta of all jets in the event

��ðj1; ‘Þ �� between the leading jet and the lepton

Eðj2Þ Second leading jet energyffiffiffi
ŝ

p ¼ �Eð�1 þ ‘þ jets Center-of-mass energy of the �þ ‘þ dijet system with larger solution for the longitudinal momentum

of the � candidateffiffiffi
ŝ

p ¼ �Eð�2 þ ‘þ jetsÞ Center-of-mass energy of the �þ ‘þ dijet system with smaller solution for the longitudinal momentum

of the � candidate

�Rðdijet; ‘þ �1Þ �R between the dijet system and the ‘þ � system with larger solution for the longitudinal momentum

of the � candidate

�Rðdijet; ‘þ �2Þ �R between the dijet system and the ‘þ � system with smaller solution for the longitudinal momentum

of the � candidate

Aplanarity 3
2�3, where �3 is the smallest eigenvalue of the normalized momentum tensor: Mij ¼ ð��p

�
i p

�
j Þ

��j �p�
i j2

where �
runs over jets and the charged lepton and p

�
i is the ith 3-momentum component of the �th physics

object.

cosð��Þ Cosine of angle between the W candidate and nominal proton beam direction in the zero momentum

frame (see Ref. [49])

cosð	Þ Cosine of angle between lepton and rotated 3-momentum vector of the dijet system in the production

plane of the W boson rest frame [49]
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FIG. 8 (color online). Comparison of the total backgrounds to data for the additional variables provided as inputs to the random
forests. The distributions are compared after requiring two-b-tagged jets inW þ 2 jet events. Each variable is defined in Table III. The
expectation for a WH signal at MH ¼ 115 GeV has been scaled up by a factor of 10.
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FIG. 9 (color online). Comparison of the total backgrounds to data for the additional variables provided as inputs to the random
forests. The distributions are compared after requiring a single-b-tagged jet in W þ 2 jet events. Each variable is defined in Table III.
The expectation for a WH signal at MH ¼ 115 GeV has been scaled up by a factor of 10.
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X. SYSTEMATIC UNCERTAINTIES

The impact of each possible source of systematic uncer-
tainty is assessed separately for the signal and for all
backgrounds, for each of the 16 statistically independent
samples, and categorized according to whether it affects
the normalization and the shape (shape systematic) of the
RF discriminant output distributions or whether it only
affects the normalization of signal and backgrounds. A
full analysis is repeated after individually varying each
source by �1 standard deviation (s.d.) in the simulation,
except where noted otherwise (the uncertainty in the MJ
background modeling is determined separately from data).
After each variation, the simulated and MJ background
yields are normalized to the selected data samples prior
to the application of b-tagging.

The systematic uncertainty assigned to the data-
determined efficiency of the triggers used in the electron
channel is (3–5)%. In the muon channel, where the full list
of available triggers is used, a comparable uncertainty of
(3–4)% is assigned. In the muon channel, this uncertainty
arises from a normalization uncertainty of 2%, obtained
after comparing results using the single high-pT muon and
the full list of triggers, and a shape systematic of (1–3)% as
a function of jet pT , applied to the non-single-muon trigger
efficiency. The shape systematic is obtained by comparison

of the single high-pT muon and non-single-muon triggered
components of the data set.
The uncertainty on the identification and reconstruction

of isolated electrons, as well as their energies, affects the
shapes of the electron channel RF distributions and is
(5–6)%. In the muon channel, the uncertainty comprises
three contributing sources: an uncertainty of 0.8% applied
to the pre-upgrade muon identification efficiency (a 1.2%
uncertainty is applied to the post-upgrade samples, which
is increased for muon pT < 20 GeV by adding 2% in
quadrature), an uncertainty in the corresponding track
reconstruction of 2.3% (pre-upgrade) and 1.4% (post-
upgrade), and an uncertainty of 3.8% (pre-upgrade) and
0.9% (post-upgrade) on the scale factors used to correct the
efficiencies for muons to pass isolation criteria in the MC
to those measured in the data.
Sources of systematic uncertainty on the selection and

reconstruction of jets are the jet resolution and jet energy
scale, as well as the jet identification efficiency and vertex
confirmation requirement (applied to the post-upgrade part
of the data set). Shape uncertainties for jet resolution and jet
energy scale are determined by varying parameters in the
jet resolution function and the energy scale correction and
repeating the analysis using the kinematics of the modified
jets. The size of this effect on the RF distribution depends
on the sample and process and is in the range 15%–30%.
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FIG. 10 (color online). Output RF distributions on linear and logarithmic scales for (a), (c) single (one-b-tag) and (b), (d)
two-b-tagged W þ 2 jet events. The expectation for signal at MH ¼ 115 GeV (solid black line) is scaled by a factor of 10.
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The jet identification and vertex confirmation uncertainties
are each determined by randomly reducing the number of
jets that remain in simulation (the þ1 s.d. result is then
obtained by inverting the �1 s.d. result). The resulting RF
shape systematic uncertainty is about 5%. Because of low
statistics after b-tagging for the W þ light and WZ
samples, the jet systematic uncertainties applied for these
backgrounds are determined prior to b-tagging.

The uncertainty on the jet taggability requirement is
determined by varying the jet taggability correction fac-
tors. The taggability uncertainty affects the shapes of the
RF output distributions and is about 3%. The RF shape
uncertainty for the response of the b-tagging algorithm is
applied separately for light and heavy flavored jets and is
typically (2.5–3.0)% for single-tagged heavy flavor jets and
in the range (1–4)% for single-tagged light jets (the light-
quark jet mistag probability uncertainty is of order 10%).
The RF uncertainty is approximately doubled in the
samples requiring two b-tagged jets.

Uncertainties in the predicted t�t, single top quark, and
diboson cross sections are taken from [42,45,46] and affect
the normalizations of the backgrounds. The uncertainty on
the CTEQ6L parton density function is estimated follow-
ing the prescription of Ref. [39]. The ALPGEN-generated
samples include additional normalization factors that
change their visible cross sections, and their uncertainties
are determined separately. The uncertainty in the reweight-

ing procedure applied to the ALPGEN-generated event
samples affects the shape of the ALPGEN RF output distri-
butions and are typically of the order 2%. The uncertainty
on the ALPGEN scale factor KWþjets is 6% and the uncer-
tainty on SWb �b is 20%. The renormalization and factoriza-
tion scales used in ALPGEN are varied by adjusting each
scale simultaneously, by factors of 0.5 and 2.0. This affects
the shapes of the ALPGEN RF output distributions, and the
resulting uncertainty is of the order 2%, as is the uncer-
tainty arising from the choice of value for the strong
coupling constant 
S. The uncertainty on the MLM facto-
rization scheme used to match ALPGEN partons to cone
jets is propagated to the RF distribution and results in a
systematic uncertainty of about 2%.
The uncertainty in the MJ background modeling is

obtained from the data. It is determined by varying the
parameterization of the efficiency for loosely selected
leptons to enter the final selected sample and by also
varying the misidentified jet probabilities. The MJ uncer-
tainties are anticorrelated with the normalization of the
ALPGEN samples, and this is taken into account in the limit

setting procedure. The overall experimental systematic
uncertainty assigned to the WH distributions is about
6%. The uncertainty of the experimentally measured inte-
grated luminosity is treated separately. The uncertainty is
6.1% [22] and is fully correlated between all of the simu-
lated background samples.
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FIG. 11 (color online). Output RF distributions on linear and logarithmic scales for (a), (c) single (one-b-tag) and (b), (d)
two-b-tagged W þ 3 jet events. The expectation for signal at MH ¼ 115 GeV (solid black line) is scaled by a factor of 10.
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XI. UPPER LIMITS ON THE
WH CROSS SECTION

No excess of events is observed with respect to the
background estimation and upper limits are therefore
derived for the WH production cross section multiplied
by the corresponding H ! b �b branching ratio in units of
the SM prediction. The limits are calculated using the

modified frequentist CLs approach [51,52], and the proce-
dure is repeated for each assumed value of MH.
Two hypotheses are considered: the background-only

hypothesis (B), in which only background contributions
are present, and the signal-plus-background (Sþ B)
hypothesis in which both signal and background contribu-
tions are present.
The limits are determined using the RF output distribu-

tions, together with their associated uncertainties, as inputs
to the limit setting procedure. To preserve the stability of
the limit derivation procedure in regions of small back-
ground, the width of the bin at the largest RF output value
is adjusted by comparing the total B and Sþ B expecta-
tions until the statistical significance for B and Sþ B is,
respectively, greater than� 3:6 and 5.0 standard deviations
from zero. The remaining part of the distribution is then
divided into 23 equally sized bins. The rebinning proce-
dure is checked for potential biases in the determination of
the final limits, and no such bias is found.
The result for each hypothesis is obtained by testing the

outcome of a large number of simulated pseudoexperi-
ments. For each pseudoexperiment, pseudodata are drawn
from the RF distributions, by randomly generating the
pseudodata according to a Poisson statistical parent distri-
bution for which the mean is either taken from the
background-only or signal-plus-background hypothesis.
A negative Poisson log likelihood ratio (LLR) test statistic
is used to evaluate the statistical significance of each
experiment, with the outcomes ordered in terms of their
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RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150
Data-Bkgd

 3×100 GeV Signal 
 Pre-Fitσ 1±Bkgd
 Post-Fitσ 1±Bkgd

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150
-1(a) DØ, 5.3 fb 

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150 Data-Bkgd
 5×115 GeV Signal 

 Pre-Fitσ 1±Bkgd
 Post-Fitσ 1±Bkgd

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150 -1(b) DØ, 5.3 fb 

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150 Data-Bkgd
 7×130 GeV Signal 

 Pre-Fitσ 1±Bkgd
 Post-Fitσ 1±Bkgd

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150 -1(c) DØ, 5.3 fb 

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150 Data-Bkgd
 12×140 GeV Signal 

 Pre-Fitσ 1±Bkgd
 Post-Fitσ 1±Bkgd

RF Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

/0
.0

8

-100

-50

0

50

100

150
-1(d) DØ, 5.3 fb 

FIG. 13 (color online). The RF discriminant output distribution minus the total background expectation for (a) MH ¼ 100 GeV,
(b) MH ¼ 115 GeV, (c) MH ¼ 130 GeV, and (d) MH ¼ 140 GeV. The prefit uncertainties are shown by the shaded bands and the
post-fit uncertainties are represented by the solid lines. The signal expectation is shown scaled to the obtained observed upper limit at
each test mass point.
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statistical significance. The frequency of each outcome
defines the shapes of the resulting LLR distribution, for
both the background-only and signal-plus-background
hypotheses, at each mass point.

Systematic uncertainties are defined through nuisance
parameters that are assigned Gaussian probability distribu-
tions (priors). The signal and background predictions
are taken to be functions of the nuisance parameters and
each nuisance parameter is sampled from a Gaussian
probability distribution in each pseudoexperiment. The
correlated systematic uncertainties across channels (such
as the uncertainties on predicted SM cross sections, iden-
tification efficiencies, and energy calibration, as described
in Sec. X) are also taken into account in the limit setting
procedure [53].

The inclusion of systematic uncertainties in the genera-
tion of pseudoexperiments has the effect of broadening the
LLR distributions and, thus, reducing the ability to resolve
signal-like excesses. This degradation can be partially
reduced by performing a maximum likelihood fit to each
pseudoexperiment (and data), once each for the Sþ B and
the background-only hypotheses. The maximization is
performed over the systematic uncertainties. The LLR is
evaluated for each outcome using the ratio of maximum
likelihoods for the fit to each hypothesis. The resulting
degradation of the limits due to systematic uncertainties is
of the order of 30%.

The medians of the obtained background-only LLR
distributions for each tested mass point are summarized
in Fig. 12. The resulting medians of the signal-plus-
background hypothesis LLR distributions are also
shown. The corresponding �1� and �2� values for the
background-only hypothesis at each mass point are repre-
sented by the shaded regions in the figure. The LLR values
obtained from the data are also summarized in the figure.

The RF discriminant distributions after the background-
only profile fit are shown in Fig. 13 after subtracting the
total background expectation, for the Higgs boson mass
points MH ¼ 100, 115, 130, and 140 GeV. The signal
expectations are shown scaled to the final observed upper
limits (rounded to the nearest integer) in each case, and the
uncertainties in the background before and after the con-
strained fit are shown by the shaded bands and solid lines,
respectively.
Upper limits are calculated at 11 discrete values of the

Higgs boson mass, spanning the range 100–150 GeV and
spaced in units of 5 GeV, by scaling the expected signal
contribution to the value at which it can be excluded at
the 95% C.L. The expected limits are calculated from
the background-only LLR distribution whereas the ob-
served limits are quoted with respect to the LLR values
measured in data. The expected and observed 95% C.L.
upper limits results for theWH cross section multiplied by
the branching ratioH ! b �b are shown, as a function of the
Higgs boson mass MH, in units of the SM prediction in
Fig. 14. The values obtained for the expected and observed
limit to SM ratios at each mass point are listed in Table IV
(the uncertainty in the predicted WH cross section is
available in Ref. [38]).

XII. SUMMARY

A search for the SM associated WH production
in data corresponding to an integrated luminosity of
L � 5:3 fb�1 collected with the D0 detector at the
Fermilab Tevatron p �p Collider shows no excess beyond
the expected contributions from SM backgrounds. Statis-
tically independent data samples containing W ! e�
and W ! �� candidates with either two or three
reconstructed jets in the event and subdivided into two
b-tagged jets or a single b-tagged jet are analyzed using
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TABLE IV. The expected and observed 95% C.L. limits from
the likelihood fit, maximized over systematics, as a function of
the hypothetical Higgs mass MH . The limits are presented as
ratios of �ðp �p ! WHÞ �BRðH ! b �bÞ to the expected SM
prediction.

Combined 95% C.L. limit /�SM

Higgs Mass [GeV] Expected Observed

100 3.3 2.7

105 3.6 4.0

110 4.2 4.3

115 4.8 4.5

120 5.6 5.8

125 6.8 6.6

130 8.5 7.0

135 11.5 7.6

140 16.5 12.2

145 23.6 15.0

150 36.8 30.4
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a multivariate technique to provide separation of signal
and background. Upper limits are calculated at the
95% C.L. for the WH cross section multiplied by the
branching ratio H ! b �b for the region 100<MH <
150 GeV. The observed (expected) upper limits at
95% C.L. are a factor 4.5 (4.8) larger than the SM
expectation for a Higgs mass MH ¼ 115 GeV. These
results, combined with those of Ref. [54] and with other
searches in this mass region at the Tevatron, provide
crucial constraints on the Higgs coupling to b �b, comple-
mentary to the information obtained, for other decay
modes, by the LHC experiments.
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