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We show to next-to-leading order accuracy in the strong coupling �s how the collinear factorization

properties of QCD in the generalized Bjorken regime relate exclusive amplitudes for spacelike and

timelike hadronic processes. This yields simple space-to-timelike relations linking the amplitudes for

electroproduction of a photon or meson to those for photo- or mesoproduction of a lepton pair. These

relations constitute a new test of the relevance of leading twist analyses of experimental data.
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In the traditional collinear factorization framework the
scattering amplitude for exclusive processes has been shown
[1–3] to factorize in specific kinematical regions, provided a
large scale controls the separation of short distance domi-
nated partonic subprocesses and long distance hadronic
matrix elements. This large scale may come from a space-
like momentum exchange, as in hard leptoproduction pro-
cesses, or from a timelike momentum as in electron-positron
annihilation or lepton-pair production.

The complementarity of spacelike and timelike pro-
cesses has been much used in inclusive reactions to under-
stand in detail parton distribution and parton fragmentation
functions, in particular, through deep inelastic leptopro-
duction and Drell-Yan processes in hadron reactions. In the
realm of exclusive reaction, much work has been devoted
to the electromagnetic form factors. In particular, the
spacelike and timelike meson form factors were analyzed
in great detail in Ref. [4].

Analyticity of the factorized amplitude is the basic prop-
erty that allows us to derive the new relations Eqs. (17) and
(24) at the heart of our paper. Analyticity, which is a con-
sequence of causality in relativistic field theory, and facto-
rization of short distance vs long distance properties, are
common tools in many fields of theoretical physics. Our
instance is to our knowledge the first case where they are put
together to obtain useful relations between observables.

We shall detail two instances of direct interest to near
future phenomenological studies, illustrated in Fig. 1, first
near forward deeply virtual Compton scattering (DVCS)
and timelike Compton scattering (TCS), and second near
forward deeply virtual meson leptoproduction (DVMP)
and mesoproduction of a lepton pair. The momentum trans-
fer square t in these processes is taken to be small with
respect to the large virtuality of one photon.

I. THE DVCS AND TCS AMPLITUDES

Let us begin with near forward virtual Compton scattering

�ð�ÞðqinÞNðpÞ ! �ð�ÞðqoutÞN0ðp0Þ: (1)

In its spacelike version the DVCS amplitude is accessible in
deep electroproduction of a photon, i.e., q2out ¼ 0,

eðk1ÞNðpÞ ! e0ðk2Þ�ðqoutÞN0ðp0Þ (2)

with a large spacelike virtuality q2in ¼ ðk1 � k2Þ2 ¼ �Q2

[2]. The timelike TCS amplitude is accessible in the photo-
production, i.e., q2in ¼ 0, of a lepton pair [5]:

�ðqinÞNðpÞ ! lþðkþÞl�ðk�ÞN0ðp0Þ (3)

with a large timelike virtuality q2out ¼ ðkþ þ k�Þ2 ¼ þQ2.
The other common variables, describing the processes of
interest in this generalized Bjorken limit, are the scaling
variable � and skewness �> 0:

� ¼ � q2out þ q2in
q2out � q2in

�; � ¼ q2out � q2in
ðpþ p0Þ � ðqin þ qoutÞ :

(4)
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FIG. 1. The DVCS (a) and TCS (b) processes, as well as
meson electroproduction (c) and exclusive Drell-Yan in �N
collisions (d) are linked by time reversal and analyticity. They
factorize in hard coefficients (upper blob), generalized parton
distributions (lower blob) and distribution amplitudes (c),(d).
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Hence, � ¼ þ�> 0 in DVCS and � ¼ ��< 0 in TCS
kinematics. This allows us to relate spacelike and timelike
amplitudes for equal �, t, and Q2 values by the rule

F ð� ¼ �; t;Q2Þ )SL!TL
F ð� ¼ ��; t;�Q2Þ; (5)

where the c.m. energy square s ¼ ðpþ qinÞ2 might differ.
We first study the DVCS amplitude which is usually

parameterized in terms of Compton form factors (CFFs)
[6]. After renormalization, a leading twist CFF reads as
sum over quarks (q) and gluon (g) in its factorized form:

F ð�; t;Q2Þ ¼
Z 1

�1
dx

X
i¼u;d;���;g

STiðx; �ÞFiðx; �; t; �2Þ; (6)

where we adopt for generalized parton distributions
(GPDs) Fi the common conventions [6]. The hard
coefficients STi depend on both the virtuality and factori-
zation scale and read to next-to-leading order (NLO)
accuracy in �s

STi ¼NLO SCi
0 þ

�sð�2Þ
2�

�
SCi

1 þ SCi
coll ln

Q2

�2

�
: (7)

Note that the possible distinction between factorization
scale�F and renormalization scale�R has no consequence
on our arguments and we simplify notations by equating
� ¼ �F ¼ �R. The collinear coefficients

SCi
coll are given

as convolution of the Born term SCi
0 with the GPD evolu-

tion leading order (LO) kernels. Since DVCS amplitude is
symmetric under s $ u-channel crossing, the CFFs and
SCi��� coefficients have definite symmetry properties under
� reflection. Moreover, boost invariance tells us that all
SCi��� coefficients are functions of the variable x=�, apart
from an overall scaling factor. For � (or s $ u) symmetric
coefficients we write here explicitly

Cq
0ðx; �Þ ¼ e2q

�
1

�� x
� 1

xþ �

�
; Cg

0ðx; �Þ ¼ 0: (8)

Note that gluons do not contribute in LO but at NLO:

Cg
collðx; �Þ ¼ �

1
2

P
q
e2q

ð�þ xÞ2 ln
�� x

2�
þ ðx ! �xÞ; (9)

Cg
1ðx; �Þ ¼

1
2

P
q
e2q

ð�þ xÞ2
�
3�� x

�� x
� 1

2
ln
�� x

2�

�
ln
�� x

2�

þ ðx ! �xÞ; (10)

where the remaining quark and antisymmetric coefficients
in this representation can be read off from [7]. Obviously, for
z ¼ x=� these functions are holomorphic in the complex
plane except for s-(and u)-channel poles at z ¼ 1 (z ¼ �1)
and s-(and u-)channel cuts ½1;1� (½�1;�1�) on the real
axis. Their physical value on the cuts (or poles) is governed

by causality, i.e., by the þi� prescription of propagators.
This yields the extension of the scaling variable �S ¼ ��
i� into the complex domain, which can be also read off from
� ¼ Q2=ð2sþQ2Þ, resulting from (4), and decorating s
with þi�. All hard coefficients in (7) can be then uniquely
extended:

SCi���ðx; �Þ ¼ Ci���ðx; �SÞ; (11)

consistent with the physical sheet.
For the TCS amplitude, i.e., timelike CFFs, the situation

is in general more intricate due to existence of possible
poles and cuts, caused by the timelike virtuality of the
outgoing photon. However, in our perturbative description
of TCS we require that we are away from the resonance
region and we might employ the substitution rule (5) and
causality to find the hard coefficients in the timelike region
by analytic continuation, e.g., from (8)–(10). However,

from (7) we immediately see that the factorization lnQ
2

�2

goes into ln�Q2

�2 , providing us additional �i�Ci
coll terms at

NLO. To pick up the proper sign, wemight analyze Feynman
diagrams or, equivalently, we can use a convolution repre-

sentation for DVCS coefficients, in which the lnQ
2ð��i��xÞ
2��2

appears [8]. As we show below, the rule (5) together with the
i� prescription provides then an unique answer.
Let us verify this statement and also provide us a more

usable timelike-to-spacelike relation. At Born level we
easily realize in accordance with a diagrammatic evalu-
ation a rule, conveniently written with �T ¼ �þ i�:

1

�� i�� x
)SL!TL 1

��� i�� x
¼ �1

�T � x
¼ �1

��
S � x

:

(12)

This exercise exemplifies our main result, namely,
the timelike sðuÞ-channel coefficients are given by complex
conjugation of the spacelike uðsÞ one. Utilizing
Schwarz reflection principle, we write for a generic (N)
LO coefficient:

SCðx; �SÞ )SL!TL
TCðx; �TÞ ¼ �SC�ð�x; �SÞ; (13)

where the upper sign applies for quarks and the lower for
gluons (compared to quark GPDs our gluon GPDs contain
a relative x and so quark and gluon coefficients have
different symmetry properties under � and x reflection).
From the analyticity of hard coefficients, see, e.g., (9) and
(10), and the substitution (5) we also establish the rule (13)
at NLO. As said, there is an additional imaginary part,
uniquely fixed by causality, that is associated with the
factorization logarithms (ln’s). Indeed, in a diagrammatic
NLO calculation [9] we realize that they appear in ln�ŝ�i�

�2

and ln�û�i�
�2 terms, where ŝ ¼ x��

2� Q2 and û ¼ � �þx
2� Q2

are Mandelstam variables for partonic subprocesses. In the
DVCS case the ŝ cut is contained in
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ln
�ŝS � i�

�2
¼ ln

Q2

2��2
þ lnð�� i�� xÞ; (14)

which after applying (5) goes into the TCS expression,
which can then be expressed by the spacelike u-channel
contribution and a �i� addendum:

ln
�ŝT � i�

�2
¼ ln

Q2

2��2
þ lnð��� i�� xÞ

¼
�
ln
�ûS � i�

�2

�� � i�: (15)

An analogous result holds for the û channel and, thus,
independently from the considered channel the space-to-
timelike relation (13) is accompanied by

ln
Q2

�2
)SL!TL

ln
Q2

�2
� i�: (16)

Employing the space-to-timelike relation (13) and (16)
to the net NLO coefficient (7) we find the timelike ones:

TTi ¼NLO�STi� � i�
�s

2�
SCi�

coll; (17)

upper (lower) sign applies to �-(anti)symmetric CFFs.
For the symmetric case the space-to-timelike relation

(17) has been exemplified by a diagrammatic NLO evalu-
ation [9]. As we have seen, (17) arises from general field
theoretical principles and is an example of a more general
result for hard NLO coefficients at twist-two accuracy.

II. DVMP AND EXCLUSIVE DRELL-YAN

Let us now turn to a slightly different pair of reactions
where amplitudes factorize in both GPDs and a meson
distribution amplitude (DA). Specifically, we consider
��
LN ! �N0, a subprocess in near forward leptoproduc-

tion, and �N ! ��
LN

0, appearing in the exclusive limit of
Drell-Yan process. The factorization theorem [3] states
that the ��

Lp ! �þn amplitude, written in terms of
~F �þð�; t;Q2Þ transition form factors (TFFs), factorizes
up to a constant factor as

~F / 1

Q

Z 1

0
du

Z 1

�1
dx ~Fudðx; �; tÞSTudðu; x; �Þ’�ðuÞ:

(18)

Here, ud denote the exchanged quark pair, the flavor off-
diagonal GPD ~Fud ¼ ~Fu � ~Fd is expressed by diagonal
ones via SUð2Þ symmetry, and the pion DA ’� is sym-
metric with respect to u ! 1� u. In analogy to DVCS, we
introduce Cðu; x; �Þ coefficients and write

STud ¼ ½euCðu; x; �SÞ � edCðu;�x; �SÞ�; (19)

where the physical sheet is picked up by �i� in �S. Note
that we use here and in the following u ! 1� u symmetry
and that already the LO result is proportional to �sð�2Þ:

C ¼NLO�sð�2ÞC0 þ �2
sð�2Þ
2�

�
Cdiv ln

Q2

�2
þ C1

�
; (20)

C0ðu; x; �Þ ¼ 1

uð�� xÞ ; (21)

Cdiv ¼ ��0

2
C0 þ CF

coll þ C’
coll: (22)

Here, �0 ¼ 11� 2nf=3 controls the running of �s at LO,

and the collinear coefficients CF
coll and C’

coll are given as

convolution of LO evolution kernels with the LO coeffi-
cient (21). All these coefficients can be obtained from
known pion form factor results [10]. C��� are Q2 indepen-
dent. Moreover, analytic properties, seen in DVCS coef-
ficients such as (11), hold for the coefficients in (20) as a
function of z ¼ x=�, too, which justifies the replacement
� ! �S in (19) [11].
The factorization proof [3] may be extended to the

crossed reaction �N ! ��
LN

0. The timelike TFFs T ~F �� ,
appearing in ��p ! ��

Ln, might be in full analogy to the
spacelike form factor (18) written as convolution of ~Fdu ¼
� ~Fud GPD and pion DA, where hard coefficients read to
LO accuracy as [12]

TTduðu; x; �TÞ ¼ ½euC0ðu; x; �TÞ � edC0ðu;�x; �TÞ�:
(23)

Taking the physical sheet in spacelike region, the reflec-
tion (5) implies the space-to-timelike relation (13) for NLO
coefficients. As in DVCS, from the explicit NLO result we
can read of the rule (16) for the continuation of renormal-
ization and factorization ln’s; e.g., the ln’s of the �0

proportional part can be collected in a ln�uŝ�i�
�2 or

ln�uû�i�
�2 term. Hence, both rules can be employed to the

net coefficient (19) and so we obtain with (20)–(22) the
NLO approximation for timelike coefficient (23), where

TCðu; x; �TÞ ¼NLO�
�
C� � i�

�s

2�
C�
div

�
ðu;�x; �SÞ: (24)

Note that coefficients for spacelike [timelike] TFFs ~F ��

[T ~F �þ] for�� DVMP [and exclusive Drell-Yan in�þ] off
neutron follows from (19) [(23)] by u $ d exchange.
This result generalizes the relation obtained in Ref. [4]

between the timelike and spacelike pion form factors, in
which only the first and third terms on the right-hand side
of Eq. (22) appear.

III. PHENOMENOLOGICAL PERSPECTIVES

As we have seen, the space-to-timelike relation of hard
coefficients is at NLO modified by �i� proportional
terms that are associated with factorization and renormal-
ization ln’s. Since GPDs and DA are real valued, our
findings imply a relation among CFFs or TFFs. In the

case of �-(anti)symmetric CFFs, called H ( ~H ) and E
(~E), Eq. (17) yields, e.g.,

TH ¼NLOH � � i�Q2 @

@Q2
H �; (25)
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T ~H ¼NLO� ~H � þ i�Q2 @

@Q2
~H �

: (26)

An analog relation connects (up to a conventional phase)
timelike �� with spacelike �� TFFs, see (18), (19), (23),
and (24):

T ~H �� ’NLO ~H �
�� � i�Q

@

@Q2
Q ~H �

�� : (27)

The NLO relations (25)–(27) tell us that if scaling
violations are small, the timelike CFFs (TFFs) can be
obtained from the spacelike ones by complex conjugations.
Moreover, GPD model studies indicate that in the valence
region, i.e., for �� 0:2, CFFs might only evolve mild. This
rather generic statement, which will be quantified by model
studies [13], might be tested in future (after 12 GeV up-
grade) Jefferson Lab experiments.

On the other hand it is known that the evolution of CFF
H in the small � region is driven by the ‘‘Pomeron’’ pole
in the gluon evolution kernel which also interfere with the
effective Pomeron intercepts of GPDs at the input scale.
The effective Pomeron trajectory induces then that the
imaginary part =mH dominates over the real one
<eH , which is consistent with a phenomenological
analysis of HERA data [14]. Because of the �i� propor-
tional NLO addenda in (25), the small <eH will only
mildly influence the LO prediction =mTH ¼LO�=mH .
On the other hand we expect huge NLO corrections
to <eTH ¼LO <eH , induced by =mH . Utilizing
Goloskokov-Kroll model for H GPDs [15], we illustrate
this effect in Fig. 2 for 10�4 � � � 10�2, accessible in a
suggested electron-ion collider [16], and t ¼ 0. We plot

<eH vs �, for LO DVCS or TCS (solid curve), NLO
DVCS (dashed curve) and NLO TCS (dotted curve) at the
input scale �2 ¼ Q2 ¼ 4 GeV2. In the case of NLO TCS
�<eTH is shown, since even the sign changes. We read
off that the NLO correction to <eTH is of the order of
�400% and so the real part in TCS becomes of similar
importance as the imaginary part. This NLO prediction is
testable via a lepton-pair angle asymmetry, governed by
<eTH [5]. Such a drastic effect of the timelike nature
of outgoing photon was also found in the dipole model
approach [17].

IV. CONCLUSIONS

We have shown that the factorization property of exclu-
sive amplitudes at leading twist together with analyticity
allow us to link various processes at NLO accuracy.
Thereby, we specialized to near forward processes in the
generalized Bjorken regime where collinear factorization
holds. The space-to-timelike relation (13) and (16) helps to
understand the previously published result of [9], leads to
new results written in (17) and (24), and indicates a more
general relation that might be established by a perturbative
analysis of Feynman diagrams.
The extension of q �q and gg exchange to qqq exchange

[18] in a generalized Bjorken regime, much related to the
DVCS one, generalizes the GPD concept, yielding the
definition of transition distribution amplitudes and to a
factorized formula for backward DVCS and backward
leptoproduction of a � meson [19]. For the latter �N
transition distribution amplitudes factorize from the hard
subprocess. The corresponding timelike processes occur in
meson proton scattering into a massive lepton pair and
nucleon. Here also analyticity allows us to relate NLO
corrections in both processes. We shall discuss that
elsewhere.
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