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Recently we have shown by Monte Carlo simulation that an expanding (3þ 1)-dimensional universe

appears dynamically from a Lorentzian matrix model for type IIB superstring theory in (9þ 1)

dimensions. Here we study the classical equation of motion as a complementary approach. While the

Monte Carlo results represent the behavior at earlier times, the classical equation of motion is expected to

be valid at later times. In particular, we find a class of SO(3) symmetric solutions, which exhibits the time-

dependence compatible with the expanding universe, while having no spatial noncommutativity. Based on

this result, we speculate that the spatial noncommutativity, which plays a crucial role in the spontaneous

breaking of rotational symmetry, vanishes at later times due to some dynamical mechanism.
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I. INTRODUCTION

It is widely believed that the birth of our universe can be
described by superstring theory, which is a natural candi-
date for a unified theory including quantum gravity. Indeed,
a lot of insights into this issue have been obtained by string
cosmology over the last decade.1 These studies are based on
perturbative formulations incorporating nonperturbative ef-
fects through D-branes. An obvious drawback in such an
approach, however, is that one has to choose a particular
string vacuum from numerous vacua that are theoretically
allowed. On the other hand, there is also a possibility that
one can actually determine the true string vacuum uniquely
if one uses a nonperturbative formulation.

Along this line of thought, we have studied a SO(9,1)
symmetric Lorentzian matrix model, which is considered
to be a nonperturbative definition of type IIB superstring
theory in (9þ 1) dimensions [2]. Surprisingly our
Monte Carlo results provide clear evidence that three out
of nine directions start to expand at some critical time. The
observed spontaneous breaking of the SO(9) rotational
symmetry down to SO(3) has been understood intuitively
by a mechanism, which relies crucially on the noncommu-
tative nature of the space. While this is certainly intriguing,
it also poses a crucial question whether the space-time
becomes commutative at later times as we observe it now.

In this article we study the classical equations of motion
of the model as a complementary approach, which is
expected to be valid in describing the behavior at later
times. In particular, we find a class of SO(3) symmetric

solutions, which turns out to have the time dependence
compatible with the expanding universe. For this solution,
the space-space noncommutativity is exactly zero, whereas
the space-time noncommutativity becomes significant only
towards the end of the expansion.

II. LORENTZIAN MATRIX MODEL

The matrix model proposed as a nonperturbative for-
mulation of type IIB superstring theory has the action
S ¼ Sb þ Sf , where [3]

Sb ¼ � 1

4g2
trð½A�; A��½A�; A��Þ;

Sf ¼ � 1

2g2
trð��ðC��Þ��½A�;���Þ;

(1)

with A� (� ¼ 0; . . . ; 9) and �� (� ¼ 1; . . . ; 16) being

N � N traceless Hermitian matrices. The Lorentz indices
� and � are raised and lowered using the invariant
tensor � ¼ diagð�1; 1; . . . ; 1Þ. The 16� 16 matrices ��

are 10-dimensional gamma matrices after the Weyl projec-
tion, and the unitary matrix C is the charge conjugation
matrix. The action has manifest SO(9,1) symmetry, where
A� and �� transform as a vector and a Majorana-Weyl

spinor, respectively. The space-time is represented dynami-
cally by the ten bosonic matrices A� [4].

An important feature of the Lorentzian model is that the
bosonic part of the action is proportional to

tr ðF��F
��Þ ¼ �2 trðF0iÞ2 þ trðFijÞ2; (2)

whereF��¼�i½A�;A�� are Hermitian matrices, and hence

the two terms in Eq. (2) have opposite signs. A common
approach to study the nonperturbative dynamics of this
model was to make the Wick rotation A0 ¼ iA10 and to
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study the SO(10) symmetric Euclidean model, which is
proved to have finite partition function [5,6]. Recent
calculations based on the Gaussian expansion method [7]
suggest that the SO(10) symmetry is spontaneously bro-
ken down to SO(3) in the Euclidean model.2 On the other
hand, it is known that the Lorentzian signature of the
metric can play an important role in the dynamics of
quantum gravity [10,11].

In Ref. [2] we studied, for the first time, the nonpertur-
bative dynamics of the Lorentzian model defined by

Z ¼
Z

dAd�eiS ¼
Z

dAeiSbPfMðAÞ; (3)

where the Pfaffian PfMðAÞ appears from integrating out
the fermionic matrices��. We made the partition function
[Eq. (3)] finite by introducing infrared cutoffs in both the
spatial and temporal directions instead of making the Wick
rotation. It was shown by Monte Carlo simulation that one
can remove these cutoffs in the large-N limit in such a way
that physical quantities scale. This implies that the ob-
tained results are universal, and the cutoffs become irrele-
vant in the large-N limit. In fact the theory thus obtained
has no parameters other than one scale parameter.

III. THE CLASSICAL SOLUTIONS

Taking account of the infrared cutoffs introduced in the
Lorentzian model, we search for stationary points of the
bosonic action Sb for fixed 1

N trðA0Þ2 and 1
N trðAiÞ2. Then

the problem reduces to solving the classical equations of
motion

�½A0; ½A0; Ai�� þ ½Aj; ½Aj; Ai�� � �Ai ¼ 0;

�½Aj; ½Aj; A0�� � ~�A0 ¼ 0;
(4)

where � and ~� represent the Lagrange multipliers corre-
sponding to the constraints.

We look for solutions, which are given by a unitary
representation of a Lie algebra ½A�; A�� ¼ if���A�, which

guarantees automatically that the Jacobi identity is satis-
fied. (See Ref. [12] for an analogous study in the Euclidean
model.) Motivated by the Monte Carlo results mentioned
above, we restrict ourselves to solutions with AI ¼ 0
(4 � I � 9) and with SO(3) symmetry corresponding to
rotations in the i ¼ 1, 2, 3 directions. From the complete
list of real Lie algebras with four generators e� (0���3),

we pick up the one with

½e0; ei� ¼ �iei for i ¼ 1; 2; 3; (5)

whereas all the other commutators vanish. This corre-
sponds to the algebra Aab

4;5 in Table I of Ref. [13] for

a ¼ b ¼ 1, and it corresponds to the so-called
�-Minkowski space [14] with � ¼ 1. Note, however, that
our space-time interpretation based on the unitary repre-
sentation discussed below is very different from those in
previous studies on the �-Minkowski space.
The unitary irreducible representations of the above

algebra are classified into two categories. One consists
of the trivial one-dimensional representations given by
e0 ¼ a and ei ¼ 0, where a is a real parameter. The other
consists of the infinite-dimensional representations given
by the operators e0 ¼ �i d

dx and ei ¼ ai expðxÞ on the

space of functions of x with L2 integrability, where the
three real parameters ai specify a representation. As
the basis of the functional space, we use the eigenfunctions
of the Hamiltonian of a one-dimensional harmonic oscil-
lator, which are given as

fnðxÞ ¼ cnHnðxÞe�ð1=2Þx2 ; cn ¼ ð�1=4
ffiffiffiffiffi
n!

p
2n=2Þ�1:

The representation matrices of e0 and ei=ai, which

we denote as P̂ and K̂, respectively, have the following
elements:

Pnm ¼
Z

dxfnðxÞ�ð�iÞ d
dx

fmðxÞ

¼ �i
1ffiffiffi
2

p ð ffiffiffiffi
m

p
	n;m�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
	n;mþ1Þ;

Knm¼
Z
dxfnðxÞ�exfmðxÞ

¼cncme
1=4

Z
dxe�x2Hn

�
xþ1

2

�
Hm

�
xþ1

2

�

¼e1=42�jn�mj=2 ffiffiffiffiffiffiffiffiffiffiffi
n!m!

p XM
l¼0

½2ll!ðM� lÞ!ðjn�mjþ lÞ!��1;

where M ¼ minðn;mÞ. In the last equality, we have
used the property d

dxHnðxÞ ¼ 2nHn�1 of the Hermite

polynomials.
Using a direct sum of k infinite-dimensional representa-

tions, we find a set of SO(3) symmetric solutions to Eq. (4),
which are given by

A0 ¼
ffiffiffiffi
�

p
P̂ � 1k; (6)

Ai ¼ K̂ � diagðx1i; . . . ; xkiÞ: (7)

The 3k parameters xai � ðxaÞi should be chosen such that
the points xa (a ¼ 1; . . . ; k) have spherically symmetric
distribution in the three-dimensional space. One of the

Lagrange multipliers is fixed as ~� ¼ 0.
In the following analysis, the k� k matrices that appear

in Eqs. (6) and (7) are omitted since they only give an
irrelevant constant factor. Also we consider only one spa-
tial direction i ¼ 1 for simplicity since it turns out that the
number of spatial directions does not play any role.

2The mechanism of the spontaneous symmetry breaking in the
Euclidean model [8,9] is quite different from that in the
Lorentzian model. In the former, the Pfaffian that appears
from the fermion integral is complex, and it becomes real
positive for collapsed configurations.
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IV. THE SPACE-TIME STRUCTURE

In order to extract the space-time structure from the
solution, we first need to diagonalize A0 and calculate A1

in that basis. Unfortunately it seems to be impossible to do
this analytically. We therefore do it numerically by truncat-
ing the functional space to the N-dimensional space
spanned by fnðxÞ with 0 � n � N � 1. Let us define the
eigenvectors jtIi corresponding to the eigenvalues tI of A0

(I ¼ 1; . . . ; N) with the specific order t1 < � � �< tN . The
spatial matrix htIjA1jtJi in that basis is not diagonal.
However, it turns out that the off-diagonal elements decay
exponentially in the direction orthogonal to the diagonal
line. To see it explicitly, let us consider the N � N matrix

QIJ ¼ htIjðA1Þ2jtJi. In Fig. 1 we plot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQIJ=QN=2;N=2j

q
against I � J for four values of ðI þ JÞ=2 with N ¼ 128,
which shows that it decreases exponentially with jI � Jj

for sufficiently large ðIþ JÞ=2. The results for smaller N
show similar behaviors. The half width for ðI þ JÞ=
2 ¼ N=2, which we denote by n for later convenience, is
obtained as n ¼ 11, 15, 23, 33 for N ¼ 16, 32, 64, 128.
The above observation motivates us to define n� n

matrices �AðabÞ
1 ðtÞ � ht�þajA1jt�þbi with 1 � a, b � n and

t ¼ 1
n

P
n
a¼1 t�þa for � ¼ 0; . . . ; ðN � nÞ. These matrices

represent the space structure at fixed time t. Let us define
the extent of space at the time t as RðtÞ2 � 1

n tr �A1ðtÞ2. In
Fig. 2 we plot RðtÞ=Rð0Þ for N ¼ 16, 32, 64, 128. It is
symmetric under the time reflection t ! �t as one can
prove analytically even at finite N. For each N, we have
chosen the Lagrange multiplier �, which determines the
scale of t, so that RðtÞ scales around t ¼ 0. We have fixed
� ¼ 1 for N ¼ 16 without loss of generality. Then we
obtain � ¼ 0:92, 0.72, 0.59 for N ¼ 32, 64, 128, respec-
tively. As we increase N, the scaling region extends to
larger jtj. The solid line is a fit to the Gaussian function.
Thus we find that the time evolution of the space is
compatible with the expanding behavior observed in the
Monte Carlo simulation [2].
Let us next turn our attention to the space-time non-

commutativity. We define the dimensionless parameter


ðtÞ ¼ � 1
n tr½ �A0ðtÞ; �A1ðtÞ�2

1
n tr �A0ðtÞ2 � 1

n tr �A1ðtÞ2
(8)

as an estimate on the space-time noncommutativity.3 In
Fig. 3 we plot 
ðtÞ for N ¼ 16, 32, 64, 128. We find that it
is of O(1) at t ¼ 0 and decreases at large jtj. Therefore, the
space-time noncommutativity is significant only around
t	 0, and it becomes smaller as we go back in time.
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FIG. 1. The plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQIJ=QN=2;N=2

q
j against I� J for four

values of ðI þ JÞ=2 with N ¼ 128.

 0

 0.5

 1

-8 -4  0  4  8

R
(t

)/
R

(0
)

t

N=16
N=32
N=64

N=128

FIG. 2. The extent of space RðtÞ=Rð0Þ is plotted as a function
of t for four values of N. The block size n is determined from the
decay rate of the off-diagonal elements of A1 in the basis which
diagonalizes A0. The value of � is chosen for each N in such a
way that the results scale in N. The solid line represents y ¼
expð�0:034t2Þ, which is obtained by fitting the N ¼ 128 data to
the Gaussian function.
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FIG. 3. The dimensionless parameter 
ðtÞ representing the
space-time noncommutativity is plotted against t for N ¼ 16,
32, 64, 128. We have used the same set of values of n and � for
eachN as in the previous figure. The data show nice scaling inN.

3This quantity may be related to the space-time uncertainty
principle. See, for instance, Ref. [15].
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V. SUMMARYAND DISCUSSIONS

We have studied the classical equation of motion in the
Lorentzian matrix model for type IIB superstring theory.
Restricting ourselves to the class of solutions that are
written in terms of Lie algebras with four generators, we
find a simple solution with SO(3) symmetry. The space-
time structure extracted from the solution exhibits the time
dependence, which is compatible with the expanding
behavior. Note, however, that the classical equation of
motion is expected to be valid at later times, whereas our
previous Monte Carlo results represent the behavior at
earlier times. The space-time noncommutativity becomes
significant only towards the end of the expansion, whereas
the space-space noncommutativity is identically zero. The
existence of a commutative and expanding classical solu-
tion suggests a possibility for the appearance of an expand-
ing (3þ 1)-dimensional (almost commutative) space-time
from the Lorentzian matrix model at later times.

We speculate that the noncommutativity of space, which
plays a crucial role in making three directions expand at
earlier times, disappears at some point for some dynamical
reason. For instance, let us consider the model obtained
after integrating out the scale factor [2]. In that model we
have a constraint that requires the quantity (2) to vanish. If
the expansion with large space-space noncommutativity in
the earlier times continues for too long a period, the second
term of (2) will be too large to satisfy the constraint (2)¼ 0.
Such an effect may lead to an end of the noncommutative
expansion. One might speculate that this corresponds to the
end of ‘‘inflation.’’

Our classical solution is symmetric under time reflec-
tion, and the size of the space becomes maximum at
t ¼ 0, after which it has a contracting behavior. At
t ¼ 0, the dimensionless space-time noncommutativity
becomes maximum, too, and it is of the order 1. Hence
the physics there will be quite exotic. This may be taken
as a prediction on the fate of our universe from the
Lorentzian matrix model given that our classical solution
is valid around t ¼ 0.

Obviously one can generalize our solution to SOðdÞ
symmetric ones with 1 � d � 9. The time evolution of
the size of the space and that of the space-time noncom-
mutativity are essentially the same as in the SO(3) case. Let
us recall here that the space-space noncommutativity
seems to play a crucial role in the spontaneous breaking
of SO(9) rotational symmetry as the mechanism proposed
in our previous work [2] suggests. It is therefore not
surprising that the dimensionality of space is not fixed by
classical solutions without space-space noncommutativity.

Some comments on related works are in order. In
Ref. [16] the Einstein equation was derived from the
classical equations of motion of the matrix model. In this
derivation, however, the matrices A� were interpreted as

the covariant derivative on a curved space. It would be
interesting to clarify the relationship to our work.

Reference [17] reports on interesting solutions to the

classical equations of motion [Eq. (4)] with � ¼ ~� ¼ 0.
They represent a flat Minkowski space with extra dimen-
sions described by fuzzy spheres. An interesting feature of
these solutions is that there exists noncommutativity be-
tween the four extended directions and the extra dimen-
sions. This is crucial for realizing a nontrivial structure in
the extra dimensions even without the Myers-like term.
Here we emphasize that the nonzero �, which is introduced
in our work, is crucial for the expanding behavior. Let us
recall that � is the Lagrange multiplier corresponding to the
infrared cutoff, which turns out to be needed according to
our previous Monte Carlo studies.
In Ref. [18] the Matrix theory [19] has been applied to

cosmology. A classical solution with three expanding
(commutative) directions and six oscillating (noncommu-
tative) directions was discussed. (The number of expand-
ing directions does not have to be three.) In order to have
such a solution, the authors introduced a SO(9) symmetric
tachyonic mass term, which was interpreted as the cosmo-
logical term. The relationship to our solution is not clear,
though, since the time is treated in a different way. The idea
to use the matrices to avoid the big-bang singularity is also
pursued in Ref. [20].
It is tempting to imagine that the rapid growth of RðtÞ

observed in the present solution has something to do with
the accelerating expansion confirmed by recent cosmologi-
cal observations. The power-law expansion at earlier times
may be understood by considering the quantum corrections
around the classical solution. It is also expected that the
gauge interactions and the matter content in the (3þ 1)-
dimensional space-time are determined by the structure in
the extra dimensions [21,22] analogously to the case of
intersecting D-brane models. From this point of view, it
would be interesting to search for other SO(3) symmetric
solutions with more nontrivial structure.
To conclude, we consider that the result of this work

provides a prototype of what can happen at later times in
the Lorentzian matrix model, and in that sense it is comple-
mentary to our previousMonte Carlo result [2], which seems
to describe the birth of the universe.We hope that this model
opens up new perspectives on particle physics beyond the
standard model as well as on microscopic descriptions of
cosmological models for inflation and modified gravity.
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