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We examine cyclic phantom models for the Universe, in which the universe is dominated sequentially

by radiation, matter, and a phantom dark energy field, followed by a standard inflationary phase.

Since this cycle repeats endlessly, the universe spends a substantial portion of its lifetime in a state for

which the matter and dark energy densities have comparable magnitudes, thus ameliorating the

coincidence problem. We calculate the fraction of time that the universe spends in such a coincidental

state and find that it is nearly the same as in the case of a phantom model with a future big rip. In the limit

where the dark energy equation of state parameter, w, is close to �1, we show that the fraction of time,

f, for which the ratio of the dark energy density to the matter density lies between r1 and r2, is

f ¼ �ð1þ wÞ ln½ð ffiffiffiffiffi
r2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p Þ=ð ffiffiffiffiffi
r1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p Þ�.
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I. INTRODUCTION

Cosmological data [1–4] indicate that approximately
70% of the energy density in the Universe is in the form
of an exotic, negative-pressure component, called dark
energy, with roughly 30% in the form of nonrelativistic
matter (including both baryons and dark matter). The dark
energy component can be parametrized by its equation of
state parameter, w, defined as the ratio of the dark energy
pressure to its density:

w ¼ pDE=�DE; (1)

where w ¼ �1 corresponds to a cosmological constant.
For constant w, the energy density of the dark energy, �DE,
scales as

�DE ¼ �DE0

�
R

R0

��3ð1þwÞ
; (2)

where R is the scale factor, and �DE0 and R0 are the
density and scale factor, respectively, at the present. (We
will use ‘‘0’’ subscripts throughout to refer to present-day
values). Observations constrain w to be very close to �1.
For example, if w is assumed to be constant, then �1:1 &
w & �0:9 [5,6]. Thus, the dark energy density varies
relatively slowly with scale factor.

The matter density, in contrast, scales as

�M ¼ �M0

�
R

R0

��3
: (3)

This leads to the well-known coincidence problem: while
the matter and dark energy densities today are nearly
within a factor of 2 of each other, at early times
�M � �DE, and in the far future we expect �DE � �M.
It would appear, then, that we live in a very special time:
this is the coincidence problem.

While it is possible that this coincidence has no deeper
explanation, numerous solutions have been proposed to
explain it. In the k-essence model of Armendariz-Picon

et al. [7], the dark energy density tracks the radiation
density during the radiation-dominated epoch but ap-
proaches a constant value during the matter-dominated
epoch. Another proposed solution is a universe which
experiences an alternation of matter domination and dark
energy domination, either through a scalar field with os-
cillatory behavior [8,9], or as a result of a variety of scalar
fields with a wide range of energy densities [10]. Another
possible solution for the coincidence problem is a coupling
of the matter and quintessence fields so that energy is
transferred between them [11,12]. Garriga and Vilenkin
[13] proposed an anthropic solution to the coincidence
problem. Scherrer [14] suggested that the coincidence
problem could be resolved in the context of phantom
dark energy models. In such models, the universe termi-
nates in a singularity at a finite time [15,16], so that the
fraction of time for which the dark energy and matter
densities are relatively close can be a significant fraction
of the universe’s (finite) lifetime. Other models in which
the coincidence problem is resolved by the universe having
a finite lifetime were examined by Barreira and Avelino
[17]. Lineweaver and Egan [18,19] have proposed that
the coincidence is related to the formation rate for habit-
able planets.
Here we examine another plausible solution to the coin-

cidence problem, in the context of cyclic phantom models,
of the type proposed by Ilie et al. [20]. In these models, the
universe goes through repeated cycles of matter/radiation
domination followed by a dark energy/inflationary phase.
Ilie et al. indicated that their model cannot address the
coincidence problem, but we show here that it provides an
elegant resolution of this problem. Within each cycle, there
is a significant period in which the dark energy and matter
densities are comparable. Since these cycles repeat end-
lessly, it is not surprising that we find ourselves in an epoch
in which the dark energy and matter densities are of the
same order of magnitude. Similar models have been pro-
posed by Creminelli et al. [21] and by Xiong et al. [22].
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We make this argument quantitative in the next section.
Rather than confining ourselves to the specific model of
Ref. [20], we use a toy model which captures the essential
features of a generic cyclic phantom model. We also derive
a useful approximation to the coincidence fraction in the
limit where w is close to�1 (as observations require). Our
results are discussed in Sec. III.

II. THE COINCIDENCE FRACTION IN THE
CYCLIC PHANTOM MODEL

In the cyclic phantom model proposed by Ilie et al. [20],
the universe contains radiation, a scalar field, and a hidden
matter sector. Inflationary expansion is followed by a
reheating phase, during which radiation becomes the domi-
nant component. Eventually the scalar field and hidden
matter densities both track the radiation density but are
subdominant. At late times, the hidden matter and scalar
field begin to behave as a phantom field with w<�1, and
the universe undergoes superaccelerated expansion. This
phase then transitions to de Sitter inflation, and the cycle
repeats itself.

Much of the complexity of the model discussed in
Ref. [20] stems from the need to have a plausible mecha-
nism for the universe to transition from one phase of the
expansion to the next. Since we are primarily interested in
the behavior of the scale factor as a function of time, we
will consider a toy model that approximates the general
behavior of a cyclic phantom model. (This is also neces-
sitated by the fact that the model introduced in Ref. [20]
does not contain a matter component). The use of such a
toy model has the additional advantage of being applicable
to more general cyclic phantom models than the specific
model in Ref. [20]. (As we have already noted, a number of
similar models have been proposed [21,22]).

In our toy model, the universe undergoes an initial
‘‘standard’’ expansion, consisting of a radiation-dominated
era, followed by a matter-dominated era. An additional
dark energy component is present, which tracks the matter
or radiation density, but which is subdominant (so that
�DE � �M in the matter-dominated era). When the dark
energy density reaches some lower energy scale m (so that
�DE �m4), the dark energy assumes a phantom behavior,
with equation of state parameter w<�1, and the universe
undergoes superaccelerated expansion. This phantom
phase terminates when the dark energy density (which is
increasing with the expansion) reaches some upper energy
scale M, so that �DE �M4. The universe then enters a de
Sitter phase, which ends with reheating and a return to the
radiation-dominated era.

The solution to the coincidence problem in this model
arises because the universe naturally spends a significant
fraction of the time in a state in which the densities of the
dark energy and the matter are of the same order of
magnitude. Conceptually, then, this solution resembles
that of Dodelson et al. [8], in which the ratio of dark energy

density to the density of the matter/radiation component
oscillates with time. Mathematically, however, it more
closely resembles the discussion in Ref. [14] for models
with a single phantom phase terminating in a big rip, and it
is this latter approach which we will follow in analyzing
the cyclic phantom model.
Our goal is to derive the fraction of the time that the

universe spends in a coincidental state, defined to be a state
for which the ratio of the density of dark energy to the
density of matter lies within some fixed range close to 1.
More specifically, let �DE be the dark energy density, and
�M be the nonrelativistic matter density, and define the
ratio r as in Ref. [14]:

r ¼ �DE

�M

: (4)

We will then define a coincidental state to be one for which
r lies in the range

r1 < r < r2; (5)

where the values for r1 and r2 that define a ‘‘coincidence’’
are, of course, somewhat arbitrary.
We assume a flat Friedman-Robertson-Walker model, so

that the evolution of the scale factor is given by

� _R

R

�
2 ¼ 8

3
�G�: (6)

At late times, the expansion of the universe is dominated
by matter and dark energy. To simplify matters, we assume
throughout thatw is constant. Then we can use Eqs. (2) and
(3) to give

� _R

R

�
2 ¼ 8

3
�G

�
�M0

�
R

R0

��3 þ �DE0

�
R

R0

��3ð1þwÞ�
: (7)

The time the universe takes in expanding from scale factor
R1 to R2 is

t12 ¼
Z R2

R1

R�1

�
8

3
�G

�
�M0

�
R

R0

��3

þ �DE0

�
R

R0

��3ð1þwÞ���ð1=2Þ
dR; (8)

and the time the universe takes to complete one cycle is

tcycle ¼
Z R¼Rmax

R¼0
R�1

�
8

3
�G

�
�M0

�
R

R0

��3

þ �DE0

�
R

R0

��3ð1þwÞ���ð1=2Þ
dR; (9)

where Rmax is the scale factor at which the dark energy
density reaches its maximum value ofM4 and the de Sitter
phase begins. Note that the integrand in Eq. (9) is valid
only after the dark energy begins to behave as a phantom,
but the error involved in extrapolating it back to R ¼ 0 is
negligible.
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The fraction of time in each cycle that the universe
spends in expanding from R1 to R2 is f ¼ t12=tcycle. As

in Ref. [14], we can rewrite t12 and tcycle in terms of r.

Taking r1 to be the value of r at the beginning of the period
of coincidence and r2 as that at the end, the fraction of time
in each cycle that the universe spends in a coincidental
state is

f ¼
R
r2
r1
r�ðð2wþ1Þ=2wÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
drRr¼M4=�Mmax

0 r�ðð2wþ1Þ=2wÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
dr

; (10)

where �Mmax is the value of the matter density at Rmax.
Since the cycles are identical and repeat indefinitely, f is
also the fraction of the entire universe’s lifetime that is
spent in a coincidental state.

This coincidence fraction is at least as large as in the
case of a future big rip singularity [14], and in principle it
can be even larger, since the upper limit in the denominator
of Eq. (10) is finite in the case considered here. This upper
limit is enormous, but the integral converges very slowly
for w near�1, so it is useful to see how smallM4 needs to
be in order for the result to diverge significantly from the
case investigated in Ref. [14]. We have

�DE0

�
Rmax

R0

��3ð1þwÞ ¼ M4: (11)

Therefore, the matter density at Rmax can be expressed as

�Mmax ¼ �M0

�
Rmax

R0

��3 ¼ �M0

�
M4

�DE0

�ð1=ð1þwÞÞ
: (12)

This allows us to express the upper limit of integration in
the denominator of Eq. (10) as

r ¼ M4

�Mmax

¼
�
�DE0

�M0

��
M4

�DE0

�ðw=ð1þwÞÞ
: (13)

At the present, we have �M0 � �DE0. Using this in Eq. (13),
we can rewrite Eq. (10) as

f ¼
R
r2
r1
r�ðð2wþ1Þ=2wÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
drRr¼ðM=EDE0Þ4w=ð1þwÞ

0 r�ðð2wþ1Þ=2wÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
dr

; (14)

where the present-day energy scale of the dark energy is
EDE0 � 10�3 eV, and �DE0 ¼ E4

DE0. The denominator in

Eq. (14) can be expressed as

Z r¼ðM=EDE0Þ4w=ð1þwÞ

0

r�ðð2wþ1Þ=2wÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p dr ¼
Z 1

0

r�ðð2wþ1Þ=2wÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p dr�
Z 1

r¼ðM=EDE0Þ4w=ð1þwÞ

r�ðð2wþ1Þ=2wÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p dr;

� �ð�1=2wÞ�ð1=2þ 1=2wÞ
�ð1=2Þ � 2w

1þ w

�
M

EDE0

��2
;

(15)

where we have used the fact that M=EDE0 � 1 to simplify
the second term on the right-hand side.

We now use the constraint that observations require w to
be close to �1. (Note that we do not take w ¼ �1, as this
would imply M4 ¼ �DE0 and invalidate the entire model.
However, a value ofw even slightly less than�1 allows for
a phantom model with M4 � �DE0). In the limit where
w ! �1, the numerator in Eq. (14) can be approximated as

Z r2

r1

r�ðð2wþ1Þ=2wÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

p dr � 2 ln

ffiffiffiffiffi
r2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
ffiffiffiffiffi
r1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p : (16)

Further, we can simplify Eq. (15) in the limit where w is
close to �1 (note that �ðzÞ � 1=z as z ! 0), to give

Z r¼ðM=EDE0Þ4w=ð1þwÞ

0

r�ðð2wþ1Þ=2wÞffiffiffiffiffiffiffiffiffiffiffi
1þ r

p dr� �2

1þw

�
1�

�
M

EDE0

��2
�
;

(17)

and our final expression for the coincidence fraction
becomes

f��ð1þwÞ ln
ffiffiffiffiffi
r2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
ffiffiffiffiffi
r1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p =½1�ðM=EDE0Þ�2�: (18)

The corresponding expression for the case of a phantom
model with a future singularity is identical to Eq. (18)
without the ðM=EDE0Þ�2 in the denominator. This differ-
ence is negligible as long as M � EDE0, as it must be in
any reasonable cyclic phantom model. This is just another
way of saying that the time needed for the universe to
expand from the energy scale M to a future singularity is
negligible compared to the time for the expansion up toM.
Thus, the value for f in the cyclic phantom models is
nearly identical to its value in models with a future singu-
larity, and both are given (for w close to �1) by

f � �ð1þ wÞ ln
ffiffiffiffiffi
r2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
ffiffiffiffiffi
r1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p : (19)

Equation (19) is our main result.
As noted in Ref. [14], the exact values of r1 and r2 are

not well defined, since the definition of a coincidence is
somewhat arbitrary. However, if we require, for example,
that the dark energy and dark matter densities be within
an order of magnitude of each other, then r1 ¼ 1=10 and
r2 ¼ 10, yielding f ¼ �1:56ð1þ wÞ. In this case, a coin-
cidence fraction as large as f ¼ 0:1 can be obtained for
w ¼ �1:06. Thus, even for w quite close to �1, the
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oscillating phantom model provides a solution to the coin-
cidence problem.

III. DISCUSSION

The cyclic phantom model provides an attractive solu-
tion to the coincidence problem, since the universe spends
an appreciable fraction, f, of each cycle in a state for which
the dark energy and matter densities are of the same order
of magnitude. For the models considered here, we have
shown that this fraction is essentially identical to the
corresponding fraction in phantom models with a big rip.
However, the cyclic phantom model provides a more cred-
ible solution to the coincidence problem, in the sense that it
does not entail a future singularity. The cyclic phantom
model has the further advantage of unifying inflation and
dark energy. (Indeed, that was the original motivation for
this model.) Although we have analyzed a generic toy
model, these results apply, for example, to the model
discussed in Ref. [20], as long as this model is modified
to include a matter component with the appropriate density.

In Ref. [20], the upper and lower energy scales were taken
to be m� 1 meV and M� 1015 GeV, but as we have
shown, the value for f is actually independent of m and
M as long as M � EDE0.
In the observationally allowed limit where j1þ wj � 1,

the coincidence fraction f is�ð1þ wÞ times a constant of
order unity. Current constraints on w allow for a non-
negligible value for f. However, if future observations
force 1þ w to be sufficiently close to zero, this scenario
for resolving the coincidence problem (along with that
outlined in Ref. [14]) will be ruled out. Of course, these
results assume a constant value for w. If one assumes a
time-varying w, then the value for f can be larger than in
constant w models [23].
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