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We develop the representation of bulk fields with spin one and spin two in anti-de Sitter space, as

nonlocal observables in the dual CFT. Working in holographic gauge in the bulk, at leading order in 1=N

bulk gauge fields are obtained by smearing boundary currents over a sphere on the complexified boundary,

while linearized metric fluctuations are obtained by smearing the boundary stress tensor over a ball. This

representation respects AdS covariance up to a compensating gauge transformation. We also consider

massive vector fields, where the bulk field is obtained by smearing a nonconserved current. We compute

bulk two-point functions and show that bulk locality is respected. We show how to include interactions of

massive vectors using 1=N perturbation theory, and we comment on the issue of general backgrounds.

DOI: 10.1103/PhysRevD.86.026004 PACS numbers: 11.25.Tq

I. INTRODUCTION

The question of locality and causality in quantum grav-
ity is an old and unresolved issue. AdS/CFT implies that
at best locality and causality are approximate notions.
However it is vital to understand in what situations and
in what way the notion of bulk locality arises. One
approach to this issue, pursued since the early days of
AdS/CFT, is to construct operators in the CFT which can
mimic the local field operators of bulk supergravity.

In [1–4] free scalar fields in the bulk were expressed as
CFT operators, and it was shown that bulk locality was
obeyed in the leading large-N limit. This approach was
refined to obtain CFT expressions that are covariant and
convenient in [5–7]. In particular it was shown that one can
represent bulk scalar fields as smeared operators in the
CFT, where the smearing has support on a ball on the
complexified boundary. In [8] it was shown that for scalar
fields this construction can be extended to include inter-
actions using 1=N perturbation theory. The construction of
bulk operators in asymptotically AdS spacetimes has been
further extended and clarified in [9].

In this paper we build upon two approaches that have
been successfully used to construct scalar fields in the bulk.

(1) Given a bulk Lagrangian one can solve the bulk
equations of motion perturbatively, to express the
Heisenberg picture field operators in terms of
boundary data. This leads to an expression for the
bulk field as a sum of smeared CFT operators. The
bulk operator constructed in this way of course

respects locality, assuming one starts from a local
Lagrangian in the bulk, but the construction seems
tied to knowing the bulk equations of motion.

(2) Alternatively, one can start in the CFT with a
candidate bulk operator, constructed by solving
free equations of motion, then demand that bulk
microcausality holds at the level of three-point func-
tions. This can be achieved order-by-order in the
1=N expansion, by modifying the definition of the
bulk field in the CFT to include a sum of
appropriately-smeared higher dimension operators.
In this construction, the guiding principle is bulk
microcausality.

The latter construction can be carried out fully inside the
CFT, without knowing the bulk Lagrangian. Hence, it may
enable one to see the limitations of bulk perturbation
theory, and understand the way in which microcausality
breaks down at the nonperturbative level. A difficulty of
extending the second approach to gauge fields is that the
correct statement of bulk microcausality is necessarily
somewhat subtle [9].
An outline of this paper is as follows. In the first part of

this paper we extend the program of [5–7] to free fields
with spin one and spin two. A closely related construction
has been carried out by Heemskerk [10]. In Sec. II we
derive the smearing function for a bulk gauge field and
show that it is covariant under conformal transformations.
We compute the bulk-to-boundary two point function and
show that, although the gauge field does not obey micro-
causality, the corresponding field strength does. In Sec. III
we obtain analogous results for gravity: we work out the
smearing function for a graviton, and show that the gravi-
ton has nonlocal correlators. In the context of gravity, it is
the Weyl tensor that obeys bulk microcausality. In Sec. IV
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we derive the smearing function for a massive vector field,
and show that a massive vector directly obeys microcau-
sality. This helps to clarify the relation between gauge
symmetry and locality.

In the second part of this paper we discuss interactions
and general backgrounds. In Sec. V we show how to extend
the definition of a massive vector field in the bulk to
include interactions, using perturbation theory in 1=N,
and we discuss the difficulty with gauge fields resulting
from the existence of conserved charges. In Sec. VI we
provide a framework for extending the construction to
general backgrounds and for going beyond the approxima-
tion of having a fixed background. We also explain the
necessary conditions for the existence of approximately
local operators in the bulk.

II. GAUGE SMEARING FUNCTIONS

In this section we develop the representation of an
Abelian bulk gauge field as a nonlocal observable in the
dual CFT. Our basic result is given in Eq. (4) below: the
bulk gauge field at a point ðx; zÞ in the bulk is obtained by
integrating the boundary current over a sphere of radius z
on the complexified boundary.

Our conventions are as follows. We work in Poincaré
coordinates in AdSdþ1 with metric

ds2 ¼ GMNdX
MdXN ¼ R2

z2
ð���dx

�dx� þ dz2Þ;
�; � ¼ 0; . . . ; d� 1:

The boundary at z ¼ 0 carries a flat Minkowski metric,
��� ¼ diagð� þ � � �þÞ. Boundary indices�, � are raised

and lowered with ���.

Our goal is to solve the source-free Maxwell equations
in the bulk, rMF

MN ¼ 0, with the boundary conditions

Fz�ðx; zÞ � ðd� 2Þzd�3j�ðxÞ as z ! 0: (1)

The factor d� 2 is inserted for later convenience.1 From
the bulk perspective this defines j�ðxÞ as the coefficient of
the leading small-z behavior of the bulk field. But in the
dual CFT, j�ðxÞ is interpreted as a conserved current. So if
we can solve for the bulk field in terms of its near-boundary
behavior, via a kernel of the form

AMðx; zÞ ¼
Z

ddx0KM
�ðx; zjx0Þj�ðx0Þ; (2)

then wewill have succeeded in representing the bulk gauge
field as a nonlocal observable in the dual CFT. We’ll refer
to KM

� as a smearing function, although as we’ll see
below, smearing distribution might be more appropriate.

A few comments are in order.

(i) The smearing function we are after should not be
confused with Witten’s bulk-to-boundary propaga-
tor, which relates a non-normalizable field in the
bulk to a source in the dual CFT [11]. Rather, we
wish to express a normalizable field in the bulk in
terms of an operator in the CFT.

(ii) The AdS boundary is timelike, so this is not a
standard Cauchy problem. Nonetheless, in all cases
of interest, it seems an explicit solution is possible.
There is some discussion of this fact in [9]. Also
note that we will construct smearing functions with
compact support on the complexified boundary,
along the lines of [7]. For a construction with sup-
port on a real section of the boundary, see [10].

Of course the CFT does not know about bulk gauge
symmetries—it only sees global conservation laws—so
in order to reconstruct a bulk gauge field we will need to
make some choice of gauge in the bulk. It’s convenient
to work in ‘‘holographic gauge’’ and set

Azðx; zÞ ¼ 0:

This allows a residual gauge freedom

A�ðx; zÞ ! A�ðx; zÞ þ @��ðxÞ;
where the gauge parameter � is independent of z. The
equation of motion from varying Az is

@zð���@�A�Þ ¼ 0:

Thus @�A
� is independent of z, and we can use a residual

gauge transformation to set @�A
� ¼ 0 everywhere.2 The

remaining Maxwell equations then simplify to

@�@
�A� þ zd�3@z

1

zd�3
@zA� ¼ 0:

Defining ��ðx; zÞ ¼ zA�ðx; zÞ, one finds that3

@�@
��� þ zd�1@z

1

zd�1
@z�� þ d� 1

z2
�� ¼ 0: (3)

This shows that each component of � obeys the usual
scalar wave equation,4 and from the mass term we can
read off m2R2 ¼ 1� d.
Although tachyonic, the scalar satisfies the BF bound

[12]. It is dual to an operator of conformal dimension

� ¼ d

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2R2

s
¼ d� 1:

1The special case d ¼ 2 will be discussed in Sec. II B 1.

2From the CFT point of view this is guaranteed by the
boundary conditions at z ¼ 0, where the bulk gauge field
approaches a conserved current in the CFT.

3This amounts to expressing the gauge field in a vielbein basis,
setting Aa ¼ ea

�A� where ea
� ¼ z

R �a
�.

4The mass term actually represents a nonminimal coupling to
curvature, ðhþ �RÞ� ¼ 0 where � ¼ � d�1

dðdþ1Þ .
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The normalizable near-boundary behavior for such a scalar field is

��ðx; zÞ � zd�1j�ðxÞ as z ! 0:

In Appendix A we show how to construct a smearing function for such a scalar field. The result, given in
Eq. (A9), can be used to represent a bulk gauge field in terms of the boundary current:

zA�ðt;x; zÞ ¼ 1

volðSd�1Þ
Z
t02þjy0j2¼z2

dt0dd�1y0j�ðtþ t0;xþ iy0Þ;

volðSd�1Þ ¼ 2�d=2

�ðd=2Þ :
(4)

Here we are splitting the boundary coordinates x� ¼ ðt;xÞ
into a time coordinate t and d� 1 spatial coordinates x.
Note that the boundary current is evaluated at complex
values of the spatial coordinates. The integral is over a
sphere of radius z on the complexified boundary, with the
center of the sphere located at ðt;xÞ.

The basic claim is that Eq. (4) gives a gauge field
that satisfies Maxwell’s equations and has the boundary
behavior

A�ðx; zÞ � zd�2j�ðxÞ as z ! 0: (5)

The fact that A� satisfies Maxwell’s equations follows

from Appendix A, while the boundary conditions are
easy to check. As z ! 0 the integration region shrinks to
a point, so we can bring the current outside the integral: the
factors of volðSd�1Þ cancel and we are left with Eq. (5).
The corresponding field strength then satisfies Eq. (1). This
is one nice feature of working on the complexified bound-
ary: it’s manifest that local fields in the bulk go over to
local operators in the CFT, in the limit that the bulk point
approaches the boundary.

Finally, note that Eq. (4) can be written in a covariant
form. The invariant distance between two points in AdS is

	ðx; zjx0; z0Þ ¼ z2 þ z02 þ ðx� x0Þ�ðx� x0Þ�
2zz0

:

The invariant distance diverges as z0 ! 0. However, we
can define a regulated bulk-boundary distance

ð	z0Þz0!0 ¼
z2 þ ðx� x0Þ�ðx� x0Þ�

2z
: (6)

In terms of 	z0, the smearing integral Eq. (4) can be
written as

zA�ðt;x;zÞ¼ 1

volðSd�1Þ
Z
dt0dd�1y0�ð	z0Þj�ðtþ t0;xþ iy0Þ:

(7)

A. AdS covariance for gauge fields

It is instructive to check that the smearing function
Eq. (7) behaves covariantly under conformal transforma-
tions. First note that it is manifestly covariant under
Poincaré transformations of the x� coordinates. Under a
dilation, which corresponds to the bulk isometry

x� ! x0� ¼ �x�; z ! z0 ¼ �z;

we have

A� ! A0
� ¼ 1

�
A�; Az ! A0

z ¼ 1

�
Az:

Thus, holographic gauge is preserved, A0
z ¼ 0, and the

quantity zA� appearing on the left-hand side of Eq. (7)

transforms like a scalar. This is consistent with the
right-hand side of Eq. (7), since under a dilation ddx has
dimension�d, �ð	z0Þ has dimension 1, and j� has dimen-

sion d� 1.
Special conformal transformations are a little more

subtle. These correspond to the bulk isometry

x� ! x0� ¼ x� � b�ðx2 þ z2Þ
1� 2b � xþ b2ðx2 þ z2Þ ; (8)

z ! z0 ¼ z

1� 2b � xþ b2ðx2 þ z2Þ : (9)

Starting from holographic gauge Az ¼ 0 and working to
first order in b�, we find

A0
z ¼ 2zb � A; (10)

A0
� ¼ A� þ 2x�b � A� 2b�x � A� 2b � xA�: (11)

So holographic gauge isn’t preserved. To restore it we
make a compensating gauge transformation A ! Aþ d�,
where

� ¼ � 1

volðSd�1Þ
Z

ddx0
ð	z0Þ2b � j:

The gauge parameter � has been chosen so that

@z� ¼ � 1

volðSd�1Þ
Z

ddx0�ð	z0Þ2b � j ¼ �2zb � A;
(12)

and

@�� ¼ � 1

volðSd�1Þ
Z

ddx0�ð	z0Þ 1
z
ðx� x0Þ�2b � j (13)

¼�2x�b �Aþ 1

volðSd�1Þ
Z
ddx0�ð	z0Þ1

z
x0�2b �j; (14)
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The gauge transformation restores holographic gauge,
A0
z ¼ 0, while combining Eqs. (11) and (13) we find

ðzA�Þ0 ¼ zA� � 2zb�x � Aþ 1

volðSd�1Þ
�
Z

ddx0�ð	z0Þx0�2b � j (15)

¼ zA� þ 1

volðSd�1Þ
Z

ddx0�ð	z0Þ2ðx0�b � j� b�x � jÞ:
(16)

Current conservation implies
R
ddx0
ð	z0Þ@�j� ¼ 0,

which after integrating by parts means

Z
ddx0�ð	z0Þðx� x0Þ�j� ¼ 0: (17)

So we can replace x with x0 in the last term of Eq. (16) to
obtain

ðzA�Þ0 ¼ zA�þ 1

volðSd�1Þ
Z
ddx0�ð	z0Þ2ðx0�b �j�b�x

0 �jÞ:
(18)

This establishes how the left hand side of Eq. (7) behaves
under a special conformal transformation. Now let’s look
at the right-hand side. Under a special conformal trans-
formation

x� ! x0� ¼ x� þ 2b � xx� � b�x2; (19)

a vector of dimension � transforms according to

j� ! j0� ¼ j� þ 2x�b � j� 2b�x � j� 2�b � xj�: (20)

The measure ddx0�ð	z0Þ has dimension 1� d and trans-
forms according to

ddx0�ð	z0Þ ! ddx0�ð	z0Þ½1� 2ð1� dÞb � x�: (21)

Combining Eqs. (20) and (21) for � ¼ d� 1 reproduces
the transformation seen in Eq. (18).

This shows explicitly that the smearing function we have
defined behaves covariantly under conformal transforma-
tions. Indeed, it seems that, aside from the freedom to
choose a different gauge in the bulk, the smearing function
is uniquely fixed by the requirement of AdS covariance, at
least if one works on the complexified boundary. This
means that, even though we derived the smearing function
by solving Maxwell’s equations, it actually has a more
general scope of validity. It can be used whenever one
seeks a linear map from a conserved current on the bound-
ary to a gauge field in the bulk.

B. Two-point functions and bulk causality
for gauge fields

In this section we use the smearing functions we have
constructed to study bulk locality and causality for gauge
fields. Since we are working at leading order in the 1=N
expansion of the CFT, we are restricted to studying bulk
physics at the level of two-point functions. We consider
two basic cases: in Sec. II B 1 we consider Chern-Simons
theory in AdS3, and in Sec. II B 2 we consider Maxwell
theory in AdS4 and higher.

1. Chern-Simons fields in AdS3

AdS3 is something of a special case, since a conserved
current in the CFT is dual to a Chern-Simons gauge field in
the bulk [13]. Fortunately we can still use our smearing
functions in this context, since they’re essentially fixed by
AdS covariance.
From the smearing function Eq. (4) we have

zA�ðt; x; zÞ ¼ 1

2�

Z 2�

0
zd
j�ðtþ z sin
; xþ iz cos
Þ:

(22)

It’s convenient to introduce light-front coordinates
x� ¼ t� x and write the AdS3 metric as

ds2 ¼ R2

z2
ð�dxþdx� þ dz2Þ:

For concreteness, consider a CFT with a right-moving
Abelian current j� ¼ j�ðx�Þ. We assume the left-moving
current vanishes, jþ ¼ 0. Then the only nontrivial smear-
ing integral is

A�ðxþ; x�; zÞ ¼
Z 2�

0

d


2�
j�ðx� � izei
Þ:

Defining � ¼ ei
 the contour integral picks up the pole at
� ¼ 0 and gives A�ðxþ; x�; zÞ ¼ j�ðx�Þ. So a right-
moving current in the CFT is dual to a bulk gauge field

Aþ ¼ 0; A�ðxþ; x�; zÞ ¼ j�ðx�Þ; Az ¼ 0:

(23)

This is the world’s simplest example of holography: the
boundary current is lifted to be z-independent, and de-
clared to be a gauge field in the bulk.
Although ‘‘reading the hologram’’ in this case is almost

trivial, there are a few things to check. First of all, Eq. (23)
defines a flat gauge field in AdS, which satisfies the
Chern-Simons equations of motion.5 Working backwards,
the boundary conditions on the gauge field are a bit differ-
ent from Eq. (1), since we have

5The smearing functions were constructed by solving
Maxwell’s equations, but they are essentially fixed by AdS
covariance and therefore hold more generally. In AdS3 the
smearing functions seem to know that a current in the CFT is
dual to a Chern-Simons gauge field in the bulk.
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A�ðx; zÞ � j�ðxÞ as z ! 0:

We can use this framework to compute 2-point functions
in the bulk. The boundary correlator is fixed by conformal
invariance. With a Wightman i� prescription

hj�ðx�Þj�ðx�0Þi ¼ � k

8�2

1

ðx� � x�0 � i�Þ2 ; (24)

where k is the level of the current algebra. This lifts to a
bulk correlator

hA�ðxþ; x�; zÞA�ðxþ0; x�0; z0Þi

¼ � k

8�2

1

ðx� � x�0 � i�Þ2 :

Note that the bulk 2-point function is independent of xþ
and z, which is perhaps not so surprising in a topological
theory.

We can also study bulk locality and causality in this
framework. The correlator Eq. (24) implies that the CFT
currents obey the standard current algebra

i½j�ðx�Þ; j�ðx�0Þ� ¼ � k

4�
�0ðx� � x�0Þ:

This lifts to a bulk commutator

i½A�ðxþ; x�; zÞ; A�ðxþ0; x�0; z0Þ� ¼ � k

4�
�0ðx� � x�0Þ:

(25)

This bulk commutator is clearly nonlocal, being indepen-
dent of both xþ and z. But causality is respected: the field
strength vanishes, so all local gauge-invariant quantities
obey causal (in fact trivial) commutation relations.

We obtained these results by applying our smearing
functions to the current algebra on the boundary. In
Appendix B we show that they can also be obtained from
the bulk point of view, by quantizing Chern-Simons theory
in holographic gauge.

2. Maxwell fields in AdS4 and higher

We now consider Maxwell fields in AdS4 and higher,
where a bulk gauge field obeying Maxwell’s equations is
dual to a conserved current on the boundary.6

Our starting point is the current-current correlator in a
d-dimensional CFT,

hj�ðxÞj�ð0Þi ¼
�
1

x2

�
d�1

�
��� �

2x�x�

x2

�
: (26)

Up to an overall normalization, this correlator is fixed by
current conservation and conformal invariance. We will be

interested in Wightman correlators, defined by the i�
prescription

x2 � �ðt� i�Þ2 þ jxj2:
Our goal is to apply the smearing function Eq. (4) to
the first operator in Eq. (26), to obtain a bulk-boundary
correlator

hA�ðt;x; zÞj�ð0Þi:
To deal with the vector indices it is useful to write the
current-current correlator in the form

hj�ðxÞj�ð0Þi ¼ d� 2

d� 1
���

�
1

x2

�
d�1

� 1

2ðd� 1Þðd� 2Þ @�@�
�
1

x2

�
d�2

:

Applying the smearing function Eq. (4) gives the bulk-
boundary correlator in terms of two scalar integrals,

hzA�ðt;x; zÞj�ð0Þi ¼ �ðd=2Þ
2�d=2

�
d� 2

d� 1
���I1

� 1

2ðd� 1Þðd� 2Þ @�@�I2
�
; (27)

where

In ¼
Z
t02þjy0j2¼z2

dt0dd�1y0
1

ð�ðtþ t0Þ2 þ jxþ iy0j2Þd�n
:

(28)

The integral is over a (d� 1)-sphere of radius z on the
boundary. We write the metric on this sphere as

ds2 ¼ z2

z2 � y2
dy2 þ ðz2 � y2Þd�2

d�2:

Here �z < y < z and d�2
d�2 is the metric on a unit Sd�2.

To take advantage of spherical symmetry on Sd�2 we work
at spacelike separation in the x1 direction, setting

x1 ¼ x t ¼ x2 ¼ � � � ¼ xd�1 ¼ 0:

Then In reduces to a one-dimensional integral,

In ¼ 2�ðd�1Þ=2

�ððd� 1Þ=2Þ
Z z

�z
dy

zðz2 � y2Þðd�3Þ=2

ðx2 � z2 þ 2ixyÞd�n
:

The prescription for defining this integral is to begin at
large spacelike separation, x � 0, where the operators are
well-separated on the boundary and the integral is well-
defined. It can be extended to smaller values of x by
analytic continuation, as described in Fig. 1. This prescrip-
tion gives In in terms of a hypergeometric function,

In ¼ 2�d=2

�ðd=2Þ
zd�1

ðx2Þd�n
F

�
d� n;

d

2
� nþ 1;

d

2
;� z2

x2

�
:

(29)

When n ¼ 1 this reduces to

6Low dimensions are special, for example, in AdS3 a bulk
Maxwell field is dual to a gauge field in the CFT [13,14].
Strictly speaking, AdS4 Maxwell is also special since the
boundary currents only capture the ‘‘electric’’ sector of the
bulk theory [15].
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I1 ¼ 2�d=2

�ðd=2Þ
zd�1

ðx2 þ z2Þd�1
: (30)

Note that I1 is only singular on the bulk lightcone, at
x2 þ z2 ¼ 0. It has an AdS-covariant form, with I1 �
1=ð	z0Þd�1. These properties could have been anticipated
since, up to an overall coefficient, I1 is the bulk-boundary
correlator for a scalar field with dimension � ¼ d� 1.

We are also interested in n ¼ 2. In any given dimension
I2 can be reduced to elementary functions, see for example
Table I; however, the expressions become unwieldy as d
increases. For our purposes a key observation is that I2 is
singular on the boundary lightcone, with

I2 � �ðdþ1Þ=2

2d�4�ððd� 1Þ=2Þ
z

xd�2
as x ! 0:

I2 is also singular on the bulk lightcone, at x2 þ z2 ¼ 0.
Bulk-boundary correlators follow from Eqs. (27) and

(29). For example, in AdS4 we find

hA�ðt;x;zÞj�ð0Þi¼���

�
zð3x2þz2Þ
4x2ðx2þz2Þ2�

i

8x3
log

xþ iz

x� iz

�

�x�x�

�
zð5x2þ3z2Þ
4x4ðx2þz2Þ2�

3i

8x5
log

xþ iz

x� iz

�
;

while in AdS5 we have

hA�ðt;x; zÞj�ð0Þi ¼ ���

z2ð6x4 þ 3x2z2 þ z4Þ
6x4ðx2 þ z2Þ3

� x�x�
2z2ð3x4 þ 3x2z2 þ z4Þ

3x6ðx2 þ z2Þ3 :

Explicit expressions in higher dimensions become rather
unwieldy. In general, the A-j correlators inherit the singu-
larity structure of I2: they are singular on the boundary
lightcone x2 ¼ 0, as well as on the bulk lightcone
x2 þ z2 ¼ 0. Correlators involving field strengths are
both simpler and better behaved. In any dimension we find

hF��ðt;x; zÞj�ð0Þi ¼ � 2ðd� 2Þzd�2

ðx2 þ z2Þd ðx���� � x����Þ;

hFz�ðt;x; zÞj�ð0Þi ¼ ðd� 2Þzd�3

ðx2 þ z2Þd ð���ðx2 � z2Þ � 2x�x�Þ:
(31)

Note that F-j correlators are only singular on the bulk
lightcone.
Finally we can use these results to discuss bulk locality

and causality. The expectation value of a commutator
h½A�ðt;x; zÞ; j�ð0Þ�i is given by the difference in the pre-

scriptions t ! t� i� and t ! tþ i�. It follows that the
commutator of a bulk gauge field with a boundary current
is nonzero at lightlike separation on the boundary.
Lightlike separation on the boundary implies spacelike
separation in the bulk, so we appear to have nonlocal or
acausal correlators. Of course there is no real violation of
causality here, since A-j correlators are gauge-dependent.
For Maxwell fields we can test causality by looking at
gauge-invariant quantities, and indeed field strengths
have causal correlators: they commute with the boundary
currents at bulk spacelike separation.

III. GRAVITON SMEARING FUNCTIONS

We now turn our attention to constructing a smearing
function that describes a fluctuation of the bulk metric. To
this end we consider a linearized perturbation of the AdS
metric,

ds2 ¼ R2

z2
ðdz2 þ g��dx

�dx�Þ; g�� ¼ ��� þ z2

R2
h��:

(32)

Here we are working in ‘‘holographic gauge’’ (or
Fefferman-Graham coordinates [16]), in which

gzz ¼ gz� ¼ 0:

The source-free Einstein equations in this coordinate sys-
tem can be found in [17].7 Working to linear order in h��

TABLE I. I2 in various dimensions.

d I2

3 � 2�iz
x logxþiz

x�iz

4 2�2z3

x2ðx2þz2Þ
5 � i�2z

2x3
logxþiz

x�iz � �2z2ðx2�z2Þ
x2ðx2þz2Þ2

6 �3z5ðz2þ3x2Þ
3x4ðx2þz2Þ3

z−z

2i(x   − z  )

2 x

2

FIG. 1. Integration contour for In. At large spacelike separa-
tion the pole is far up the imaginary axis. The pole moves down
and crosses the integration contour when x ¼ z; one can con-
tinue to smaller values of x by deforming the contour. The
integral may be singular when x ! 0þ and the pole moves to
�i1. There are singularities when x ! �iz and the pole hits an
endpoint of the integration contour.

7Ref. [17] uses � ¼ z2=R2 as a radial coordinate.
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the zz, the z�, and the trace of the �� components of the
Einstein equations read

zz:

�
@2z þ 3

z
@z

�
h ¼ 0; (33)

z�:

�
@z þ 2

z

�
ð@�h�� � @�hÞ ¼ 0; (34)

trace:

�
@2z � 2d� 5

z
@z � 4ðd� 1Þ

z2

�
h

þ 2ð@�@�h� @�@�h
��Þ ¼ 0: (35)

Here h � h��. The only solution to this system of equa-

tions compatible with normalizable behavior as z ! 0 is
to set8

h ¼ 0; @�h
�� ¼ 0: (36)

Thus h�� is traceless and conserved, which enables us to

consistently identify its boundary behavior with the stress
tensor of the CFT.

It only remains to solve the �� components of
the Einstein equations, which given Eq. (36) can be sim-
plified to�

@@
 þ @2z þ 5� d

z
@z � 2ðd� 2Þ

z2

�
h�� ¼ 0:

Following the procedure that worked for Maxwell fields,
we define ��� ¼ z2h�� and find that9�

@@
 þ zd�1@z

1

zd�1
@z

�
��� ¼ 0:

That is, each component of ��� obeys the massless scalar

wave equation. A massless scalar is dual to an operator
of dimension � ¼ d in the CFT, and has the asymptotic
falloff

���ðx; zÞ � zdT��ðxÞ as z ! 0:

We identify T�� with the stress tensor of the CFT. To

reconstruct the bulk metric perturbation from the stress
tensor we use the scalar smearing function Eq. (A2) given
in Appendix A. Setting � ¼ d, this gives

z2h��ðt;x; zÞ ¼ 1

volðBdÞ
Z
t02þjy0j2<z2

dt0dd�1y0T��ðtþ t0;xþ iy0Þ;

volume of a unit d-ball ¼ volðBdÞ ¼ 2�d=2

d�ðd=2Þ : (37)

Thus the bulk metric perturbation is obtained by smearing
the stress tensor over a ball of radius z on the complexified
boundary.

A. AdS covariance

It is instructive to check that the smearing function
Eq. (37) respects AdS covariance. We will be somewhat
brief, since the steps are very similar to those in Sec. II A.
Covariance under Poincaré transformations of x� is mani-
fest. A dilation corresponds to the bulk isometry

x� ! x0� ¼ �x�; z ! z0 ¼ �z:

Holographic gauge is preserved since h0zz ¼ h0z� ¼ 0,

while the combination z2h�� which appears on the left-

hand side of Eq. (37) transforms like a scalar. This matches
the behavior of the right-hand side: the stress tensor has
dimension d, while the measure ddx0 has dimension �d.

Special conformal transformations are a little more in-
volved. A special conformal transformation corresponds to
an infinitesimal bulk isometry

x� ! x0� ¼ x� þ 2b � xx� � b�ðx2 þ z2Þ;
z ! z0 ¼ zþ 2b � xz:

Under this isometry,

h0zz ¼ 0; h0z� ¼ 2zbh�;

h0�� ¼ h�� þ 2bðx�h� þ x�h�Þ
� 2xðb�h� þ b�h�Þ � 4b � xh��:

(38)

Holographic gauge is not preserved, so to restore it we
make a compensating diffeomorphism x�!x�þ��ðx;zÞ,
under which

�h�� ¼ R2

z2
ð@��� þ @���Þ; �hz� ¼ R2

z2
@z��;

�hzz ¼ 0:

The appropriate diffeomorphism is

�� ¼ � 1

R2volðBdÞ
Z

ddx0
ð	z0Þ	zz02bT�; (39)

for which

8To see this, note that (35) implies @�h
�� � @�h� 1=z2. To

avoid this non-normalizable behavior we must set @�h
�� �

@�h ¼ 0. The divergence of this equation means the last term
in Eq. (35) drops out. Then the difference of Eqs. (33) and (35)
gives ð@z þ 2

zÞh ¼ 0, which requires that we set h ¼ 0.
9This amounts to working in a vielbein basis, hab ¼

ea
�eb

�h��, where ea
� ¼ z

R �a
�.
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�hz� ¼ �2zbh�;

�h�� ¼ � 1

z2volðBdÞ
Z

ddx0
ð	z0Þ2bðx� x0Þ�T�

þ ð� $ �Þ: (40)

This restores holographic gauge. Combining Eqs. (38) and
(40) we find

ðz2h��Þ0 ¼ z2h�� þ 1

volðBdÞ
Z

ddx0
ð	z0Þ
� ½2bx0�T� � 2xb�T� þ ð� $ �Þ�: (41)

Current conservation in the form
R
ddx0
ð	z0Þ�

	zz0@�T�� ¼ 0 impliesZ
ddx0
ð	z0Þðx� x0Þ�T�� ¼ 0:

This means we can replace x with x0 in Eq. (41), to
obtain the transformation of the left-hand side of Eq. (37).
The result exactly matches the transformation of the right-
hand side, since under a special conformal transformation

T�� ! T0
�� ¼ T�� þ 2bðx�T� þ x�T�Þ

� 2xðb�T� þ b�T�Þ � 2db � xT��:

The last term cancels the transformation of the measure
ddx0
ð	z0Þ.

B. Two-point functions and bulk causality for gravity

We now use the smearing functions we have constructed
to compute 2-point functions for the graviton. We consider
gravity in AdS3 in Sec. III B 1, and gravity in AdS4 and
higher in Sec. III B 2.

1. Gravity in AdS3

AdS3 is special because there is no propagating graviton
[18]. Rather, the bulk curvature is completely determined
by the vacuum Einstein equations

RMN ¼ �

d� 1
GMN; (42)

where the cosmological constant� ¼ �dðd� 1Þ=R2. This
uniquely fixes the geometry. So in AdS3 we expect the
smearing function to generate a metric perturbation which
corresponds to an infinitesimal (but non-normalizable) dif-
feomorphism of the background AdS metric.

Wework in light-front coordinates x� ¼ t� x and write
the perturbed AdS metric as

ds2 ¼ R2

z2
ðdz2 � dxþdx�Þ þ h��dx

�dx�: (43)

From the smearing function Eq. (37) we have, for instance,

z2h�� ¼ 1

�

Z
t02þy02<z2

dt0dy0T��ðtþ t0; xþ iy0Þ: (44)

Since T�� only depends on x� this becomes (t0 ¼ r sin
,
y0 ¼ r cos
)

z2h�� ¼ 1

�

Z z

0
rdr

Z 2�

0
d
T��ðx� � irei
Þ: (45)

Defining � ¼ ei
 the contour integral picks up the pole at
� ¼ 0 and ends up giving h�� ¼ T��. So at the linearized
level a stress tensor in the CFT corresponds to a bulk metric
perturbation

h�� ¼ T��ðx�Þ; hþþ ¼ TþþðxþÞ; hþ� ¼ 0:

(46)

This provides a remarkably simple example of holography:
the boundary stress tensor is lifted to be z-independent and
reinterpreted as a metric perturbation in the bulk. Not
surprisingly, this is very reminiscent of the Chern-Simons
correspondence Eq. (23).
We can use this to compute the bulk 2-point function for

the graviton. For instance, the CFT 2-point function

hT��ðx�ÞT��ðx0�Þi ¼ c

8�2

1

ðx� � x0� � i�Þ4 (47)

lifts to a bulk correlator

hh��ðxþ; x�; zÞh��ðx0þ; x0�; z0Þi

¼ c

8�2

1

ðx� � x0� � i�Þ4 :

Here we have used a Wightman i� prescription and c is the
central charge of the CFT.
To study bulk locality and causality in this framework,

note that the CFT correlator Eq. (47) corresponds to a
Virasoro algebra

i½T��ðx�Þ; T��ðx0�Þ� ¼ c

24�
�000ðx� � x0�Þ:

This lifts to the bulk commutator

i½h��ðxþ; x�; zÞ; h��ðx0þ; x0�; z0Þ� ¼ c

24�
�000ðx� � x0�Þ:

Metric perturbations in the bulk have nonlocal commuta-
tors; this behavior is acceptable since metric perturbations
are coordinate-dependent. One might ask if there is a
quantity—analogous to the field strength for a gauge
field—which obeys causal commutation relations. In the
next section we will claim that, for gravity, such a quantity
is provided by the Weyl tensor. This claim becomes vacu-
ous in three dimensions since the Weyl tensor vanishes
identically.
We began this section by recalling that the source-free

Einstein equations fix the bulk geometry to be pure
AdS. So, to complete the story, one might ask for a
coordinate transformation which brings the perturbed met-

ric Eq. (43) and (46) back to the canonical form ds2 ¼
R2

z2
ðdz2 � dxþdx�Þ. The required transformation is
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�xþ ¼ � 2

R2

1

@3þ
Tþþ � z2

R2

1

@�
T��;

�x� ¼ � 2

R2

1

@3�
T�� � z2

R2

1

@þ
Tþþ;

�z ¼ � z

R2

�
1

@2þ
Tþþ þ 1

@2�
T��

�
:

(48)

Note that the transformation does not vanish at the bound-
ary, so it does not correspond to a (normalizable) gauge
symmetry of the bulk theory.

2. Gravity in AdS4 and higher

Our starting point for gravity in AdS4 and higher is the
2-point function of the stress tensor in a general CFT. Up to
an overall coefficient proportional to the central charge,
this has the form10

hT��ðxÞT�ð0Þi ¼ X���

1

ðx2Þd þ Y���

1

ðx2Þd�1

þ Z���

1

ðx2Þd�2
; (49)

where we’ve introduced

X��� ¼ �2d����� þ dðd� 1Þð����� þ �����Þ;

Y��� ¼ 1

d� 1
ð���@@� þ ��@�@�Þ � 1

2
ð��@�@� þ ���@�@ þ ��@�@� þ ���@�@Þ;

Z��� ¼ 1

2ðd� 1Þðd� 2Þ@�@�@@�:
(50)

Up to an overall normalization this correlator is uniquely
determined by requiring that the stress tensor be trace-
less and conserved with the correct scaling dimension.
Applying the smearing function Eq. (37) gives the bulk-
boundary correlator

z2hh��ðt;x; zÞT�ð0Þi ¼ X���J0 þ Y���J1 þ Z���J2;

(51)

where

Jn ¼ 1

volðBdÞ
Z
t02þjy0j2<z2

dt0dd�1y0

� 1

ð�ðtþ t0Þ2 þ jxþ iy0j2Þd�n
: (52)

Note that Jn is related to the integral Eq. (28) we encoun-
tered for gauge fields,

d

dz
Jn ¼ 1

volðBdÞ In:

Integrating Eq. (29) gives

Jn ¼ zd

ðx2Þd�n
F

�
d� n;

d

2
� nþ 1;

d

2
þ 1;� z2

x2

�
: (53)

In general, Jn has singularities on both the boundary light-
cone (where x2 ¼ 0) and the bulk lightcone (where x2 þ
z2 ¼ 0). The case n ¼ 0 is an exception to this general
rule, since

J0 ¼ zd

ðx2 þ z2Þd :

J0 is only singular on the bulk lightcone, and in fact has
an AdS-covariant form J0 � 1=ð	z0Þd. This was to be
expected since, up to an overall normalization, J0 is the
bulk-boundary correlator for a massless scalar field. Some
other cases of interest can be found in Table II.
At this stage we have an expression for the h-T correla-

tor in terms of differential operators acting on Jn’s. We will
stop here, since explicitly evaluating the derivatives in
Eq. (51) leads to lengthy expressions. But one important
observation we can make is that the h-T correlator inherits
the singularity structure of J1 and J2: it has singularities on
both the bulk and boundary lightcones. This means the
commutator ½h��ðt;x; zÞ; T�ð0Þ� will be nonzero at light-

like separation on the boundary (where x2 ¼ 0), even

TABLE II. J1 and J2 in low dimensions.

d J1 J2

3 � 3i
4x log

xþiz
x�iz � 3z

2ðx2þz2Þ � 3iðx2þz2Þ
4x logxþiz

x�iz � 3z
2

4 z4

x2ðx2þz2Þ2 �2 logx
2þz2

x2
þ 2z2

x2

5 � 5i
32x3

logxþiz
x�iz � 5zð3x4þ8x2z2�3z4Þ

48x2ðx2þz2Þ3
15i
32x3

ð3x2 � z2Þ logxþiz
x�iz þ 15zð3x2þz2Þ

16x2ðx2þz2Þ
6 z6ð4x2þz2Þ

4x4ðx2þz2Þ4
z6

x4ðx2þz2Þ2

10See for example (2.37) and (A5) in Ref. [19].
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though this corresponds to spacelike separation in the bulk
(since x2 þ z2 > 0). This shows that in holographic gauge
metric perturbations have acausal commutators. This is
acceptable because the commutator is gauge-dependent.

This raises an interesting question; whether there is a
quantity one can define in linearized gravity which obeys
causal commutation relations. That is, whether there is some-
thing analogous to the Maxwell field strength F��, which as

we saw in Eq. (31) has correlators that are only singular on
the bulk lightcone. At first one might think the gravitational
analog is provided by the Riemann tensor. However, this
can’t be right: perturbing the source-free Einstein equations
Eq. (42) shows that �R�� ¼ � d

R2 h��. Since we’ve already

shown that the metric perturbation has acausal commutators,
the same must be true for the Ricci tensor.

This suggests that we split off the Ricci part of the
curvature and work with the Weyl tensor. In fact the

Weyl tensor commutes with the boundary stress tensor at
bulk spacelike separation. We will show this in two ways:
first by an intuitive argument, then by an explicit calcula-
tion in holographic gauge.
The intuitive argument runs as follows. Imagine quantiz-

ing the bulk theory perturbatively using a covariant gauge
condition. Then locality would be manifest, and all fields
(including the metric perturbation) would obey canonical
local commutation relations. It follows that in covariant
gauge the Weyl tensor commutes with the boundary stress
tensor at spacelike separation. But since the Weyl tensor
transforms homogeneously under changes of coordinates,
if the commutator vanishes in covariant gauge it should
also vanish in holographic gauge.11

The explicit calculation proceeds as follows. Linearizing
around an AdS background, the nontrivial components of
the Weyl tensor are

z2C��� ¼ 1

2
ð@@���� � @@���� � @�@��� þ @�@���Þ � 1

2z
@zð����� � ����� � ����� þ �����Þ;

z2Cz��� ¼ 1

2
@zð@���� � @����Þ: (54)

Here �� ¼ z2h�, and we have used the fact that �� obeys the massless scalar wave equation ð@@ þ @2zÞ��� ¼
d�1
z @z���. The remaining components of the Weyl tensor Cz�z� are not independent by the trace-free condition.
In principle it is straightforward to compute C-T correlators. Consider for example z2hCz���ðxÞT�	ð0Þi. Using the �-T

correlator Eq. (51) and the operators Eq. (50), one obtains a rather long expression. However many terms drop out when
antisymmetrized on � and �. What survives has the form (‘‘stuff’’ meaning metrics and derivatives tangent to the
boundary)

z2hCz���ðxÞT�	ð0Þi ¼ @z
Z
x02<z2

ddx0
�
ðstuffÞ � 1

ðx2Þd þ ðstuffÞ � 1

ðx2Þd�1

�

¼
Z
x02¼z2

ddx0
�
ðstuffÞ � 1

ðx2Þd þ ðstuffÞ � 1

ðx2Þd�1

�
¼ ðstuffÞ � I0 þ ðstuffÞ � I1:

(55)

As we saw in Eq. (30) I1 is analytic on the boundary lightcone. It turns out that I0 is also analytic at x2 ¼ 0:

I0 ¼ 2�d=2

�ðd=2Þ
zd�1ðx2 � z2Þ
ðx2 þ z2Þdþ1

: (56)

So the correlator Eq. (55) is analytic at x2 ¼ 0, and Cz��� obeys causal commutation relations with the boundary stress
tensor.

Now consider z2hC���ðxÞT�	ð0Þi. Again one obtains a rather long expression. However, many terms drop out when

antisymmetrized on  and �, or on � and �. Also, many terms involve either J0, I0 or I1, which we know are analytic at
x2 ¼ 0. Dropping all such contributions up to an overall coefficient, we find that only two terms survive:

z2hC���ðxÞT�	ð0Þi � @½���½�@��@�@	
�Z

x02<z2
ddx0

1

ðx2Þd�1
� 1

2ðd� 2Þz
Z
x02¼z2

ddx0
1

ðx2Þd�2

�
: (57)

With the help of one of Gauss’ recursion relations for hypergeometric functions one can show that the quantity in
parenthesis is

11This argument breaks down for the Riemann tensor. In an AdS background the Riemann tensor acquires a vev, and a perturbation
�R��� transforms inhomogeneously under changes of coordinates. By contrast, the Weyl tensor has a vanishing vev and transforms
homogeneously. It follows that, at the linearized level, the Weyl tensor is gauge-invariant around an AdS background.
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volðBdÞJ1 � 1

2ðd� 2Þz I2

¼ � �d=2

ðd� 2Þ�ðd=2Þ
zd�2

ðx2 þ z2Þd�2
:

This is analytic on the boundary lightcone, so C��� obeys
causal commutation relations with the boundary stress
tensor.

IV. MASSIVE VECTOR FIELDS

In this section we derive the smearing function for a
massive vector. Our starting point is the Lagrangian for a
massive vector field in Lorentzian AdSdþ1:

S ¼
Z

dzddx
ffiffiffiffiffiffiffiffi�G

p �
� 1

4
FMNFMN � 1

2
m2AMA

M

�
: (58)

The equations of motion rMF
MN �m2AN ¼ 0 imply

rMA
M ¼ 0: (59)

Decomposing AM ¼ ðAz; A�Þ, the equations of motion for

Az are�
@2z þ @�@

� � 1

z
ðd� 1Þ@z �m2 � dþ 1

z2

�
Az ¼ 0: (60)

This is identical to the equation of motion for a scalar field
with ðmassÞ2 ¼ m2 � dþ 1. For the other components one
has (defining �� ¼ zA�)�
@2z þ @�@

� � 1

z
ðd� 1Þ@z �m2 � dþ 1

z2

�
�� ¼ 2@�Az:

(61)

Let

� ¼ d

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 2Þ2

4
þm2

s
; (62)

and define the boundary value of Az by

Az � z�A0
z as z ! 0:

The equation of motion for Az can be solved in the same
way as for a scalar field (see Appendix A):

Azðt;x; zÞ ¼
Z
t02þy02<z2

dt0dy0
�
z2 � t02 � y02

z

�
��d

� A0
zðtþ t0;xþ iy0Þ: (63)

What is the boundary value of A0
z in terms of CFT data?

Since ��ðz ! 0Þ � z� then A� � z��1j�, and inserting

this in Eq. (59) gives

A0
z ¼ 1

d� �� 1
@�j

�: (64)

So A0
z is sourced by the divergence of the boundary current.

Now let us solve Eq. (61). First note that a solution to the
homogeneous Eq. (60) can be expanded in modes as

Az ¼
Z
j!j>jkj

d!dd�1kaz!ke
�i!tþikxzd=2J�ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
Þ;

(65)

where � ¼ �� d=2 and J�ðyÞ is a Bessel function. A
similar solution would hold for Eq. (61) if the right-hand
side was zero. The complete solution to Eq. (61) can then
be written in the form [20]

��ðt;x; zÞ ¼
Z
j!j>jkj

d!dd�1kzd=2e�i!tþikxða�!kJ�ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
Þ þ az!k

izk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p J�þ1ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
ÞÞ: (66)

Now from the boundary behavior of Az one has

az!k ¼
2��ð�þ 1Þ

ð2�Þdð!2 � k2Þ�=2
Z

dt0dd�1x0ei!t0�ikx0
A0
zðt0;x0Þ; (67)

and since the term proportional to az!k in Eq. (66) is subleading as z ! 0, one also has

a�!k ¼
2��ð�þ 1Þ

ð2�Þdð!2 � k2Þ�=2
Z

dt0dd�1x0ei!t0�ikx0zj�ðt0;x0Þ: (68)

By inserting the expressions for a
�
!k and az!k into Eq. (66) one gets an expression for the bulk field in terms of boundary

data. The first term looks just like the smearing function for a scalar field of dimension �, while the second term (aside
from a factor

izk�
2ð�þ1Þ ) is just the smearing function for a scalar field of dimension�þ 1 [7]. As a result, we get the following

expression:

��ðt;x; zÞ ¼
Z

K�ðx; x0Þj�ðx0Þ þ z

2ð�þ 1Þ
Z

K�þ1ðx; x0Þ@�A0
zðx0Þ: (69)

More explicitly,
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zA�ðt;x; zÞ ¼ �ð�� d=2þ 1Þ
�d=2�ð�� dþ 1Þ

Z
t02þy02<z2

dt0dd�1y0
�
z2 � t02 � y02

z

�
��d

A0
�ðtþ t0; xþ iy0Þ

þ z�ð�� d=2þ 1Þ
2�d=2�ð�� dþ 2Þ

Z
t02þy02<z2

dt0dd�1y0
�
z2 � t02 � y02

z

�
��dþ1

@�A
0
zðtþ t0; xþ iy0Þ:

A. Two-point functions and bulk causality

In this section we compute the two-point function of a
massive vector. The CFT two-point function for a spin-1
field is

hj�ðxÞj�ð0Þi ¼
�
��� �

2x�x�

x2

�
1

ðx2Þ� : (70)

It can also be written in the form

hj�ðxÞj�ð0Þi ¼ �� 1

�
���

1

ðx2Þ�

� 1

2�ð�� 1Þ@�@�
1

ðx2Þ��1
: (71)

Since our expression for the bulk operator involves the
divergence of the current, we will also need

h@�j�ðxÞj�ð0Þi ¼ d��� 1

�
@�

1

ðx2Þ� : (72)

The correlator of a bulk field Az with a boundary current j�
is easy to read off from the smearing function for Az, which
as we showed is just the smearing function of a scalar field
of dimension �. Since AzðxÞ ¼ 1

d���1@�j
�ðxÞ we have

hAzðz; xÞj�ð0Þi ¼ 1

�
@�

�
z

x2 þ z2

�
�
: (73)

This two-point function respects bulk causality.
For the other components of the bulk field we have

hzA�ðt;x; zÞj�ð0Þi ¼
Z
t02þjy0j2<z2

dt0dd�1y0
�
�ð�� d=2þ 1Þ
�d=2�ð�� dþ 1Þ

�
z2 � t02 � jy0j2

z

�
��dhj�ðtþ t0;xþ iy0Þj�ð0Þi

þ z�ð�� d=2þ 1Þ
2�d=2�ð�� dþ 2Þ

�
z2 � t02 � jy0j2

z

�
��dþ1

@�hAzðtþ t0;xþ iy0Þj�ð0Þi
�
: (74)

Using Eqs. (71) and (73) we write this as

hzA�ðx; zÞj�ð0Þi ¼ �� 1

�
���

�
z

z2 þ x2

�
� � �ð�� d=2þ 1Þ

2��d=2�ð�� dþ 1Þ@�@�
�

1

�� 1
f�ðz; xÞ � z

�� dþ 1
f�þ1ðz; xÞ

�
;

where

f�ðz; xÞ ¼
Z
t02þjy0j2<z2

dt0dd�1y0
�
z2 � t02 � jy0j2

z

�
��d �

�
1

�ðtþ t0Þ2 þ ðx1 þ iy1Þ2 þ � � � þ ðxd�1 þ iyd�1Þ2
�
��1

:

We set t ¼ 0, x1 ¼ x, x2 ¼ � � � ¼ xd�1 ¼ 0. We will compute f� for this case, then restore the dependence on the other
coordinates using Lorentz invariance. Switching from ðt0; y0Þ to spherical coordinates we get

f� ¼ volðSd�2Þ
Z z

0
drrd�1

�
z2 � r2

z

�
��d Z �

0

sind�2


ðx2 þ 2ixr cos
� r2Þ��1
: (75)

We use the integrals

Z �

0

sin2��1


ð1þ 2a cos
þ a2Þ� ¼ �ð�Þ�ð12Þ
�ð�þ 1

2Þ
F

�
�; ���þ 1

2
; �þ 1

2
; a2

�
;

Z 1

0
ð1� xÞ��1x��1Fð;�; �; axÞ ¼ �ð�Þ�ð�Þ

�ð�þ �ÞFð;�; �þ�; aÞ;
(76)

to find

f� ¼ �d=2�ð�� dþ 1Þ
�ð�� d

2 þ 1Þ
z�

x2��2
F

�
�� 1;�� d

2
;�� d

2
þ 1;� z2

x2

�
: (77)
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Then we use the identity

�Fð;�; �; xÞ � �Fð;�þ 1; �; xÞ
þ xFðþ 1; �þ 1; �þ 1; xÞ ¼ 0; (78)

and restore Lorentz invariance to find

hzA�ðx; zÞj�ð0Þi ¼ �� 1

�
���

�
z

x2 þ z2

�
�

� z�

2�ð�� 1Þ@�@�
�

1

x2 þ z2

�
��1

:

(79)

Note that the final answer is only nonanalytic on the bulk
lightcone. This however was achieved by a cancellation of
terms that are nonanalytic on the boundary lightcone be-
tween f� and f�þ1. So the locality of a massive vector field
in the bulk is made possible by the fact that the dual
boundary current is not conserved, which allowed us to
cancel nonanalytic terms in the correlator. This mechanism

is not available for a gauge field since it is dual to a
conserved current.

V. INTERACTIONS

In this section we make some remarks on constructing
bulk operators at higher orders in 1=N. For scalar fields it
was shown in [8] that one can construct interacting local
bulk fields without any knowledge of the bulk Lagrangian.
Rather, by adopting bulk microcausality as a guiding prin-
ciple, one can construct the appropriate bulk operators just
from knowing CFT correlators. Here we show that some-
thing similar can be done for a massive vector field
in AdS3: a local bulk operator can be constructed, even in
the presence of interactions. However, for a gauge field in
AdS3 we show that the analogous procedure breaks down.
In this section, to avoid notational complexity, we denote

w ¼ xþ ¼ tþ x; �w ¼ x� ¼ t� x:

Up to an overall coefficient, the three-point function of
three primary operators in a two dimensional CFT is

hO1;h1; �h1
ðw1; �w1ÞO2;h2; �h2

ðw2; �w2ÞO3;h3; �h3
ðw3; �w3Þi ¼ 1

wh1þh2�h3
12 wh2þh3�h1

23 wh3þh1�h2
13

1

�w
�h1þ �h2� �h3
12 �w

�h2þ �h3� �h1
23 �w

�h3þ �h1� �h2
13

: (80)

Here wij ¼ wi � wj. Let us for simplicity assume that O2

and O3 are scalar operators, so h2 ¼ �h2 and h3 ¼ �h3, but
O1 has spin 1 with h1 ¼ �h1 þ 1. To explore bulk locality
we smear O2 into a bulk operator using the free field
smearing function

O2ðz; w2; �w2Þ ¼
Z z

0
rdr

�
z2 � r2

z

�
2h�2

�
Z
jj¼1

d

i
Oðw2 þ r; �w2 � r�1Þ:

(81)

We can get the CFT three-point function with h1 ! h1 þ 1
(as long as h1 � 0) by acting on a three-point correlator
with the operator

1

h3 � h2 � h1

@

@w12

� 1

h2 � h3 � h1

@

@w13

: (82)

So the result for h1 ¼ �h1 þ 1 can be gotten from the result
for h1 ¼ �h1 by acting with the operator Eq. (82). The
situation with h1 ¼ �h1 was analyzed in [8]. It was found
that for scalar operators one can add a series of appropri-
ately smeared higher dimension scalar operators that will
cancel the causality-violating terms in the three-point func-
tion. Here we see that this is still true if one of the boundary
operators has spin. Note however that for the special case
of conserved current (meaning h ¼ 0, �h ¼ 1 or h ¼ 1,
�h ¼ 0) this argument does not apply. This is not only
because acting with the operator Eq. (82) is not possible,
but also because if O1 is a conserved current then Ward

identities restrict its three-point function. For instance, for
a conserved current the three-point function will vanish
unless the two-point function hO2O3i is nonzero. So for a
conserved current, adding smeared higher dimension pri-
maries is not in general possible.
We now consider the case where O1 is smeared into the

bulk. We’ll work in terms of the operator product expan-
sion, similarly to what was done in [8]. For simplicity we
denote h1 ¼ n, �h1 ¼ n� 1 and assume that h2 ¼ �h2 ¼ 1.
We look at terms in the OPE proportional to the scalar
operator

jn;n�1ðw; �wÞO1;1ð0Þ ¼ O1;1ð0Þ
wn �wn�1

þ � � � ;

jn�1;nðw; �wÞO1;1ð0Þ ¼ O1;1ð0Þ
wn�1 �wn

þ � � � :
(83)

When n ¼ 1 the smearing function Eq. (23) for a massless
gauge field in AdS3 gives

A1;0ðz; w; �wÞO1;1ð0Þ ¼ 1

w
O1;1ð0Þ þ � � � : (84)

On the other hand, for a massive vector the smearing
function Eq. (69) leads to

An;n�1ðz; w; �wÞO1;1ð0Þ ¼
�
� 2

�

d

dw
Iðn�1Þ
1 þ z

�

d

dw
IðnÞ2

�
�O1;1ð0Þ þ � � � ; (85)

where
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Iðn�1Þ
1 ¼

Z z

0
rdr

�
z2 � r2

z

�
2n�3

�
Z
jj¼1

d

ðwþ rÞn�1ð �w� r=Þn�1
;

IðnÞ2 ¼
Z z

0
rdr

�
z2 � r2

z

�
2n�2

�
Z
jj¼1

d

ðwþ rÞnð �w� r=Þn :

(86)

Using Eq. (76) one gets

Iðn�1Þ
1 ¼ �z2n�1

ð2n�2Þðw �wÞn�1
F

�
n�1;n�1;2n�1;� z2

w �w

�
;

Iðn�1Þ
1 ¼ �z2n

ð2n�1Þðw �wÞnF
�
n;n;2n;� z2

w �w

�
; (87)

and finally, using Eq. (78) one gets

An;n�1ðz; w; �wÞO1;1ð0Þ

¼ �O1;1ð0Þ d

dw

�
z2n�1

ðn� 1Þðw �wÞn�1

� Fðn� 1; n; 2n� 1;� z2

w �w
Þ
�
: (88)

A similar result holds for An�1;n by replacing w ! �w. The
quantity in parentheses in Eq. (88) is nonanalytic due to
terms of the form

�
w �w

z2

�
m
ln
z2 þ w �w

w �w
; (89)

with n 	 m 	 1.
Suppose we have a massless gauge field in the bulk. The

singular term in Eq. (84) leads to a nonvanishing commu-
tator at bulk spacelike separation, and must be canceled if
the gauge field is to commute at spacelike separation. But
given the structure Eq. (89) there is no massive vector we
can add to our definition of a bulk gauge field that will
cancel the divergent term in Eq. (84). This means that it is
not possible to promote a boundary conserved current to a
local bulk field.12

On the other hand, starting from a nonconserved current
in the CFT, there is no obstacle to restoring bulk locality.
One can cancel nonanalytic terms of the form Eq. (89) by
adding a tower of higher dimension spin-1 fields with
appropriately chosen masses and coefficients to our

definition of a bulk vector field. This will leave a non-
analytic term of the form�

w �w

z2

�
nmax

lnðw �wÞ; (90)

where nmax is the largest n used in the sum over higher
dimension primaries. So, just as in the scalar case [8], we
can make a massive vector field in the bulk as local as we
wish.

A. A comment on gauge fields

If there is a gauge symmetry in the bulk, i.e., a conserved
current on the boundary, the issue of constructing bulk
operators become a bit more involved. Of course one could
start from the bulk equations of motion and solve them
perturbatively, to express bulk fields in terms of boundary
data. If one starts from a local bulk Lagrangian, this
procedure is guaranteed to describe a local theory in the
bulk (at least perturbatively). But if one wants to construct
bulk operators purely in terms of the CFT, without making
reference to bulk equations of motion, then having bulk
gauge symmetries complicates matters. If there is a gauge
symmetry in the bulk then the corresponding charge can be
expressed as a surface term and identified with a conserved
quantity in the CFT. The charge generates global gauge
transformations, so as discussed in [9,10], charged fields in
the bulk must have nonlocal commutators in order to
properly implement the Gauss constraint. In the context
of gravity this discussion applies to time evolution, since
the CFT Hamilton should generate time translation every-
where in the bulk. While these nonlocal commutators do
not actually violate causality, they do complicate the CFT
construction, in the sense that the guiding principle of bulk
causality must be stated more carefully. It is tempting to
speculate that the good causal properties we found for the
field strength and Weyl tensor at the linearized level can
provide a basis for constructing the interacting theory, at
least in perturbation theory.

VI. GENERAL BACKGROUNDS

In a given fixed background one can solve the bulk
equations of motion perturbatively, to write an expression
for the Heisenberg picture fields in the bulk in terms of the
boundary values of those same fields, now interpreted as
operators in the dual CFT. Correlation function of these
CFT operators then reproduce bulk correlation functions.
The computations are done from the bulk point of view in a
particular gauge Gz� ¼ 0, Gzz ¼ R2=z2. With gauge fields

one also sets Az ¼ 0. These conditions completely fix the
gauge. The resulting computations are thus physical since
all redundant degrees of freedom have been eliminated. In
a fixed gauge one can reproduce bulk calculations using
boundary data, and since the boundary data comes from a
unitary field theory, this constitutes holography. From the
CFT point of view, one corrects the naive smeared operator

12The lesson here is not that causality is violated. For example,
in AdS3 the field strength associated with Eq. (23) vanishes
identically, and in this sense microcausality is trivially satisfied
even in the presence of interactions. Rather, the lesson is that
there is an obstacle to constructing bulk gauge fields which have
local commutators. This is a feature, not a bug, since as we—
discuss in Sec. VA—gauge fields are expected to have nonlocal
commutators.
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(constructed to represent a free field in the bulk) by adding
higher dimension smeared operators to get a local bulk
operator. However, these calculations as presented are
done in a fixed background metric with a fixed causal
structure. This causal structure cannot be circumvented
or changed in perturbation theory since it is built in to
the hardware of the approach. The approach based on
microcausality and CFT correlators has the same difficulty.
One must define a smearing function which is determined
by the background metric, and this smearing function
cannot be changed in perturbation theory, aside from cor-
rections to incorporate anomalous dimensions.

Besides the question, How local can bulk operators be in
this formalism?, one can ask how this formalism could
work without an a priori notion of a background. Here we
make a few comments on these issues.

In a fixed background the equations of motion for the
bulk fields come from a radial Hamiltonian Hr. (By radial
Hamiltonian we mean the operator which generates radial
evolution of fluctuations about this particular background.)
Schematically (� stands for any perturbative field includ-
ing gravitons on this background),

@�

@z
¼ �½Hr;��: (91)

We also need to impose an initial condition, given by
normalizable falloff as z ! 0 for each field. The radial
Hamiltonian can be explicitly written down in the super-
gravity approximation. If we had a different background
metric, then the radial Hamiltonian would be some differ-
ent operator, but for each background we can think of the
radial Hamiltonian as some operator in the CFT, generating
the transformation from boundary operators to bulk opera-
tors via the map

O ðx; tÞ ! e�
R

z

0
HrOðx; tÞe

R
z

0
Hr : (92)

However the idea that we will just get a different smearing
function for each background is still problematic. The
construction of smearing functions relies on having a
classical spacetime (perhaps with a few perturbative quan-
tum fluctuations). This clearly does not have to be the case
for a generic state in the CFT.

The approximation of getting a fixed background with
a few supergravity excitations on it involves two steps.
First, one needs to integrate out all the bulk stringy modes,
which in the CFT means integrating out all high dimension
operators. Second, one must do a semiclassical approxi-
mation to get a well-defined background metric. We won’t
have much to say about the first step, other than that one
has to be careful later on when discussing high dimension
operators. For instance, in the promotion of a boundary
operator to a field in the bulk, one needs to include from the
CFT perspective a tower of high dimension operators. If
one includes high dimension operators only up to some
�max then, according to [8], a good estimate of the com-

mutator of a bulk operator with a boundary operator (taken
to be scalars in AdS3), which are spacelike separated in the
bulk but not on the boundary, is

½�ðt;x; zÞ;Oð0Þ� �
�
t2 � jxj2

z2

�
�max

: (93)

Although nonzero, the commutator is exponentially sup-
pressed away from the bulk lightcone provided �max is
large. A nice way to characterize the bulk nonlocality
associated with a finite value of �max is to ask how far
from the bulk lightcone one can go before the commutator
becomes exponentially small. This is given by

�S� R=�max; (94)

where R is the AdS radius and S is proper length in the

bulk. For �max � ðg2YMNÞ1=4—appropriate for stringy
modes—one gets �S� ls.
Even if the approximation of integrating out the stringy

modes is good it does not mean that the CFT state describes
a semiclassical spacetime. In the supergravity approxima-
tion we can write down the equations of motion for the
metric and matter fields in holographic gauge without
choosing a particular background. This is done by replac-
ing the radial Hamiltonian in Eq. (91) with the appropriate
Hamiltonian for the supergravity system, namely Hg ¼R
ddx 1

z2
HWD, where HWD is the Wheeler-de Witt operator.

The radial evolution equations are then

@O
@z

¼ �½Hg;O� @g��

@z
¼ �½Hg; g���; (95)

and similarly for the conjugate momenta. Once the con-
straints are satisfied on the initial slice (z ¼ 0), the equa-
tions of motion guarantee that they are obeyed at any z. We
assume here that

g��ðz ! 0Þ ¼ ���: (96)

So corrections to the bulk metric come from normalizable
modes, with the leading correction for small z being
proportional to T��. This together with @�T�� ¼ 0 and

T�
� ¼ 0 gives enough initial data to solve the equations.13

The equations of motion can formally be solved to give
the bulk fields as functionals of the boundary data:

�ðx; zÞ ¼ �ðx; zÞ½T��ðx0Þ;Oðx00Þ�;
g��ðx; zÞ ¼ g��ðx; zÞ½T��ðx0Þ;Oðx00Þ�:

(97)

So far this is independent of the state of the CFT. But now,
given some state of the CFT, we would like to obtain a set
of bulk operators which look like fields propagating

13We are ignoring the question of whether holographic gauge
can be extended all the way to z ¼ 1. Also, since we are
working in a Poincaré patch, we are ignoring any anomalous
trace of the stress tensor.
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on some semiclassical spacetime. To do this, to a good
approximation one needs to be able to substitute

T�� ¼ hT��i þ �T��: (98)

If this approximation is valid then we are guaranteed that
correlators of our bulk operators, calculated in the CFT,
will look like correlation function of supergravity fields on
a background which solves the Einstein equations with
asymptotics set by hT��i.

Clearly, such an approximation is valid in a CFT state if
connected correlation functions of CFT operators obey
large N factorization. Thus, CFT states with large N facto-
rization will be dual to semiclassical spacetimes, while
those which do not obey large N factorization will not
have a local spacetime interpretation.

Finally we want to speculate about a method for con-
structing bulk operators purely within the CFT. It seems
possible from the above considerations that one can define
a master set of ‘‘bulk operators’’ in the CFT, regardless of
the state of the CFT or any low-energy approximation.
These operators would not have a bulk interpretation,
except on a restricted set of states where large N factoriza-
tion holds. What are these master bulk operators? We
propose to extrapolate from the supergravity situation
Eq. (95). A natural guess is that they are defined by
replacing the radial Hamiltonian in Eq. (92) with a more
fundamental operator in the CFT, such as the exact RG
Hamiltonian or Fokker-Planck Hamiltonian (see for
instance [21,22]).

VII. CONCLUSIONS

In this paper we worked out the smearing functions
which describe linearized spin-1 and spin-2 excitations in
AdS. We showed that bulk locality is respected: although
gauge fields and metric perturbations have nonlocal com-
mutators when one works in holographic gauge, the corre-
sponding curvatures—the field strength for A�, or theWeyl

tensor in the case of gravity—are causal. We also studied
massive vector fields, where the vector field itself is causal
due to the nonconserved nature of the dual boundary
current.

These results could be extended in several directions.
For example, we computed the smearing function for a
Chern-Simons gauge field in AdS3. It would be interesting
to work out the smearing function for a Maxwell field in
AdS3, dual to a CFT with a dynamical gauge field [13,14]
(see however [23]). Our results could be used to study the
Maxwell-Chern-Simons theory recently analyzed in [24].
Since the smearing functions are basically fixed by AdS
covariance, our results should also apply if there is a
duality between AdS2 and CFT1, although the physical
interpretation in this context is not so clear.

Perhaps a more interesting direction is to extend our
results to include interactions. For massive vector fields we

showed how this works in Sec. V: in a 1=N expansion one
adds appropriately smeared higher dimension vector op-
erators, with coefficients that are fixed by the requirement
of bulk causality. It would be very interesting to extend this
to gauge fields and metric perturbations, perhaps using the
good causal properties of the field strength andWeyl tensor
as a guiding principle. Ultimately one might hope to make
contact between the ‘bottom-up’ approach of constructing
bulk observables in 1=N perturbation theory, and the
‘top-down’ approach of Sec. VI where bulk operators are
constructed from a fundamental operator of the boundary
theory.
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APPENDIX A: SCALAR SMEARING FUNCTIONS

Consider a scalar field of massm in AdSdþ1. It is dual to
an operator of dimension � in the CFT, where m2R2 ¼
�ð�� dÞ. The mode expansion is

�ðt;x; zÞ ¼
Z
j!j>jkj

d!dd�1ka!ke
�i!teik�xzd=2J�

� ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � jkj2

q
Þ; (A1)

where � ¼ �� d=2. As z ! 0 we have �ðt;x; zÞ �
z��0ðt;xÞ, where the boundary field

�0ðt;xÞ ¼ 1

2��ð�þ 1Þ
Z
j!j>jkj

d!dd�1ka!ke
�i!teik�x

� ð!2 � jkj2Þ�=2:
Our basic goal is to express the bulk field in terms of the
boundary field. A straightforward way to do this is to
express the coefficients a!k as a Fourier transform of �0,

a!k ¼ 2��ð�þ 1Þ
ð2�Þdð!2 � jkj2Þ�=2

Z
dtdd�1xei!te�ik�x�0ðt;xÞ:

Substituting this back in Eq. (A1) leads to an integral
representation of the smearing function. Generically one
obtains a smearing function with support on the entire
boundary of the Poincaré patch; however, by complexify-
ing the boundary spatial coordinates one can obtain a
smearing function with compact support. As shown in [7]
this leads to

KABAT et al. PHYSICAL REVIEW D 86, 026004 (2012)

026004-16



�ðt;x; zÞ ¼ �ð�� d
2 þ 1Þ

�d=2�ð�� dþ 1Þ
Z
t02þjy0j2<z2

dt0dd�1y0

�
�
z2 � t02 � jy0j2

z

�
��d

�0ðtþ t0;xþ iy0Þ:
(A2)

This expression is fine for �> d� 1. However when
� ¼ d� 1 it is ill-defined: the integral diverges, and the
coefficient in front goes to zero.

To construct a smearing function for � ¼ d� 1 we
return to the mode expansion Eq. (A1). As a warm-up
example take a massless field in AdS2 with � ¼ 0. The
mode expansion is �ðt; zÞ ¼ R

d!a!e
�i!t cosð!zÞ. Then

a! ¼ 1
2�

R
dtei!t�0ðtÞ and

�ðt; zÞ ¼
Z

dt0
Z d!

2�
e�i!ðt�t0Þ cosð!zÞ�0ðt0Þ

¼ 1

2
ð�0ðtþ zÞ þ�0ðt� zÞÞ:

(A3)

This clearly satisfies the wave equation ð@2t � @2xÞ� ¼ 0
and obeys the boundary condition �ðt; zÞ ! �0ðtÞ as
z ! 0. It can be written in the covariant form

�ðt; zÞ ¼ 1

2

Z
dt0�ð	z0Þ�0ðt0Þ;

where 	z0 ¼ z2�ðt�t0Þ2
2z .

We now consider the general case of a field with
� ¼ d� 1. In any dimension solving for a!k in terms of
�0 and plugging back into the mode expansion gives

�ðt;x; zÞ ¼
Z
j!j>jkj

d!dd�1k
2��ðd=2Þzd=2

ð2�Þdð!2 � jkj2Þ�=2 J�

�
�
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � jkj2

q �
e�i!teik�x�0ð!;kÞ: (A4)

Here � ¼ d
2 � 1 and �0ð!;kÞ is the Fourier transform of

the boundary field. The Bessel function has an integral
representation

J�ðaÞ ¼ 1ffiffiffiffi
�

p
�ð�þ 1

2Þ
�
a

2

�
� Z �

0
d
e�ia cos
sin2�
; (A5)

or equivalently

J�ðaÞ ¼ 1ffiffiffiffi
�

p
�ð�þ 1

2Þ
�
a

2

�
� 1

volðSd�2Þ
Z
jnj¼1

dne�ia�n:

(A6)

Here a is a d-component vector with Euclidean norm
a and n 2 Sd�1 is a unit vector. Setting a ¼
zð!;�ik1; . . . ;�ikd�1Þ and using

vol ðSd�1Þ ¼ 2�d=2

�ðd=2Þ ¼
ffiffiffiffi
�

p
�ðd�1

2 ÞvolðSd�2Þ
�ðd=2Þ ; (A7)

this becomes

2��ðd=2Þzd=2
ð!2 � jkj2Þ�=2 J�ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � jkj2

q
Þ

¼ 1

volðSd�1Þ
Z
t02þjy0j2¼z2

dt0dd�1y0e�i!t0e�k�y0 :

Using this representation in Eq. (A4) leads to14

�ðt;x; zÞ ¼ 1

volðSd�1Þ
Z
t02þjy0j2¼z2

dt0dd�1y0

�
Z d!dd�1k

ð2�Þd e�i!ðtþt0Þeik�ðxþiy0Þ�0ð!;kÞ:
(A8)

We interpret the Fourier transforms in Eq. (A8) as defining
the analytic continuation of �0ðt;xÞ to complex x. Thus
the smearing function for a scalar field with � ¼ d� 1 is

�ðt;x;zÞ¼ 1

volðSd�1Þ
Z
t02þjy0j2¼z2

dt0dd�1y0�0ðtþt0;xþiy0Þ:

(A9)

This can be written in a covariant form

�ðt;x;zÞ¼ 1

volðSd�1Þ
Z
dt0dd�1y0�ð	z0Þ�0ðtþ t0;xþ iy0Þ

(A10)

in terms of the bulk-boundary distance Eq. (6).
It is clear that Eqs. (A9) and (A10) satisfy the correct

boundary conditions. As z ! 0 the integration region on
the boundary shrinks to a point, so we can bring the
boundary field outside the integral and recover

�ðt;x; zÞ � zd�1�0ðt;xÞ as z ! 0:

One can also check that Eq. (A10) satisfies the wave
equation. Acting on a function of the AdS-invariant dis-
tance 	, the wave equation ðh�m2Þ� ¼ 0 reduces to

ð	2 � 1Þ�00 þ ðdþ 1Þ	�0 � �ð�� dÞ� ¼ 0:

With a small fixed cutoff z0, the smearing kernel appearing
in Eq. (A10) is 1

z0 �ð	Þ. We want to check that this is

annihilated by the wave operator in the limit z0 ! 0. To
do this we act with the wave operator and integrate against
a test function fð	z0Þ (the test function can be thought of as
the boundary field). For � ¼ d� 1 this gives

14The boundary field �0 only has Fourier components with
j!j> jkj, so we can integrate over ! and k without restriction.
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Z
dð	z0Þfð	z0Þ

�
ð	2 � 1Þ d2

d	2
þ ðdþ 1Þ	 d

d	
þ ðd� 1Þ

�
1

z0
�ð	Þ

¼
Z

dð	z0Þ 1
z0
�ð	Þ

�
d2

d	2
ð	2 � 1Þ � ðdþ 1Þ d

d	
	þ ðd� 1Þ

�
fð	z0Þ

¼ �z02f00ð0Þ:

This vanishes as z0 ! 0, which shows that the wave equa-
tion is satisfied when the regulator is removed.

APPENDIX B: CHERN-SIMONS IN
HOLOGRAPHIC GAUGE

Our goal in this appendix is to quantize Chern-Simons
theory in holographic gauge. We want to show that
we recover the bulk commutator Eq. (25) obtained in
Sec. II B 1 by applying our smearing functions to the
current algebra on the boundary.

We begin from the Abelian Chern-Simons action15

Sbulk ¼
Z

d3x
1

2
��ABCAA@BAC:

To obtain a right-moving current algebra on the boundary
we supplement this with a surface term [25]

Sbdy ¼
Z

d2x�AþA�:

The surface term leads to a well-defined variational prin-
ciple provided we impose the boundary condition that
A� is fixed (that is, �A� ¼ 0) on the boundary.

In light-front coordinates one can integrate by parts to
find (the surface terms cancel against Sbdy)

Sbulkþbdy¼
Z
dxþdx�dz�Az@þA�þ�Aþð@�Az�@zA�Þ:

We adopt xþ as light-front time [26] and read off the
Poisson bracket [27]

fAzðx�; zÞ; A�ðx�0; z0Þg ¼ 1

�
�ðx� � x�0Þ�ðz� z0Þ:

Aþ is a Lagrange multiplier that enforces the Chern-
Simons Gauss law. Thus we have a (primary, first-class)
constraint,

�1 ¼ @zA� � @�Az 
 0:

The constraint generates the expected gauge transformation:

�Az ¼
�Z

dx�0dz0�1�1; Azðx�; zÞ
�
¼ 1

�
@z�1;

�A� ¼
�Z

dx�0dz0�1�1; A�ðx�; zÞ
�
¼ 1

�
@��1:

To preserve the boundary condition �A�jz¼0 ¼ 0, we re-
quire that the gauge parameter satisfy �1jz¼0 ¼ 0. We wish
to work in holographic gauge, so we impose an additional
constraint (a gauge-fixing condition)

�2 ¼ Az 
 0:

The constraints obey

�ij�f�i;�jg

¼ 0 �1
��ðx��x�0Þ�0ðz�z0Þ

�1
��ðx��x�0Þ�0ðz�z0Þ 0

 !
:

Acting on functions

�1

�2

� �
;

this operator has zero modes, but as we will see the zero
modes can be eliminated by requiring

�1ðx�; z ¼ 0Þ ¼ 0 �2ðx�; z ¼ 1Þ ¼ 0:

Then � has a well-defined inverse,

��1¼ 0 ���ðx��x�0Þ
ðz�z0Þ
��ðx��x�0Þ
ðz0 �zÞ 0

 !
:

Note that ��1 is antisymmetric. One can easily check the
basic property

��1�
�1

�2

� �
¼ �1ðx�; zÞ � �1ðx�; 0Þ

�2ðx�; zÞ � �2ðx�;1Þ

 !
;

which shows that � is invertible given our boundary con-
ditions. The constraints can be eliminated by defining Dirac
brackets. The Dirac bracket of Az with anything will vanish,
while the Dirac bracket of A� with itself is

fA�ðx�; zÞ; A�ðx�0; z0Þg ¼ 0� fA�; �ig��1
ij f�j; A�g

¼ � 1

�
�0ðx� � x�0Þ:

Quantizing via f�; �g ! i½�; �� reproduces the bulk commu-
tator Eq. (25) and fixes the normalization � ¼ 4�=k.

15Conventions: light-front coordinates are x� ¼ t� x. We take
�012 ¼ þ1 and relate the bulk and boundary orientations byR
d3x@zf ¼ �R

d2xfjz¼0.
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