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We explore the photoemission rate and conductivity in dense QCD by taking the AdS/CFT methods.

Specifically, we take three QCD gravity dual models to do comparative studies: D4/D6 model, noncritical

Sakai-Sugimoto model and soft-wall AdS/QCD model. We turn on the time component of flavor U(1)

gauge field in the bulk side to model the baryon density in QCD. For all three models, we numerically

solve the U(1) fluctuation equation to plot the spectral function and photoemission rate for lightlike

momenta as well as the AC conductivity. We find that the results for the former two models are very

similar to previous studies while the last one show some differences. The conductivity in the soft-wall

model seems to be similar to that of holographic superconductor constructed from five-dimensional bulk

gravity, i.e. the pseudogap structure. This should be owing to that the infrared (IR) soft-wall (an effective

cutoff near the IR of the geometry) produces a mass gap in the dual field theory, which has imprinting in

the conductivity as a pseudogap formation. However, the DC conductivity in our computations is finite

while it should be a delta peak in holographic superconductor models. Our results show the importance of

dilaton running in affecting physical quantities.

DOI: 10.1103/PhysRevD.86.026003 PACS numbers: 11.25.Tq

I. INTRODUCTION

Data from relativistic heavy ion collision experiments
seems to indicate that the QCD plasma, produced during
the relativistic heavy ion collision, is strongly coupled and
behaves like perfect liquid [1]. This brings nonperturbative
investigations of hadronic matter at high temperature and
high density, produced in relativistic heavy ion collision
experiments, into an urgent stage. The lattice method, used
to explore some properties of thermal QCD, is still con-
strained to extract static quantities of QCD at strongly
coupled regime, such as hadron mass spectrum and ther-
modynamical behavior. What is worse is that when adding
finite density or chemical potential to thermal QCD, the
lattice calculation usually confronts notorious sign prob-
lem. Therefore, improvement in theoretical understanding
of strongly coupled quark gluon plasma (sQGP) should not
only go beyond traditional perturbative QCD (pQCD)
approach but also reveal some properties out of equilib-
rium, such as transport properties, dispersion relation and
high-energy scattering.

AdS/CFT correspondence [2], which is based on string
theory or M theory, is a powerful tool in investigating
strong coupling regime of gauge field theory and has given
us insight into properties of sQGP, see Ref. [3] for an
incomplete list of recent reviews. However, it is still a
mystery why these calculations based on large N gauge
theory, mostlyN ¼ 4 supersymmetric Yang-Mills (SYM)
theory, can work so well for QCD. Actually, there are
some attempts to construct a QCD gravity dual under the

framework of gauge/gravity duality in the hope of mim-
icking behavior of realistic QCD phenomena at low energy
or QCD plasma, see Refs. [4–6] for original references.
Photon or dilepton production, which should be an

important signal of sQGP and carries some key informa-
tion of sQGP in the early stage, in N ¼ 4 SYM plasma
was discussed in detail both in the strong and weak cou-
pling regime in Ref. [7]. It was found there that the current-
current spectral functions in strongly coupled theory
exhibit hydrodynamic peaks at small frequency, but other-
wise show no peak structure which could be interpreted as
well-defined thermal resonances in the high temperature
phase. Following this pioneering work, the analysis was
soon generalized to D3/D7 and D4/D6 brane systems in
Ref. [8], high temperature version of the Sakai-Sugimoto
model in Ref. [9], soft-wall AdS/QCD model in Ref. [10],
strongly coupled anisotropic plasma in Ref. [11] and
N ¼ 4 SYM plasma at large but finite ’t Hooft coupling
in Ref. [12]. Some references[9,13,14] also studied photo-
emission rate at finite charge density. All of these works
have seen some common features of photoproduction from
QCD-like plasma, which suggests that AdS/CFT corre-
spondence can be thought of as a useful tool in describing
universal properties of strongly coupling regime of QCD
plasma. However, there are some shortcomings of above
models. The models based on black D3-brane geometry (or
AdS5 black hole) is conformal and cannot catch the run-
ning behavior of strong interaction described by QCD, the
quark mass is zero in the Sakai-Sugimoto model, the
density in Ref. [14] is from the adjoint sector and should
be different from the baryon density. The last drawback is
that the models based on 10-dimensional supergravity*yybu@itp.ac.cn
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geometry has the unwanted internal space and results in
Kaluza-Klein (KK) modes in the dual QCD (of the same
energy scale of hadron spectra), which has no correspon-
dence in QCD phenomena.

Motivated by these studies and shortcomings of these
models mentioned above, we in this work carry out a
comparative study by taking three different QCD gravity
dual models: the D4/D6 system, noncritical Sakai-
Sugimoto model and soft-wall model. We will reveal the
effect of finite baryon density from the flavor sector on the
photoproduction rate and AC conductivity of the dual
plasma. We also probe the effect of IR soft-wall, which
is essential in describing linear confinement in QCD phe-
nomena. For the photoemission, we find that all the three
models give similar results: it is increasing in the low
frequency regime when increasing the baryon density;
while in the ultraviolet (UV) regime it approaches zero
due to the statistical suppression as in blackbody radiation.
This indicates that the internal space (in the critical super-
gravity geometry) nearly has no effect on the physical
results we are concerned with here. As to the conductivity
of plasma, we find that the soft-wall model gives nontrivial
results, in the low density regime (compared to the dimen-
sionless parameter c denoting the IR cutoff) there comes
out a gap-like structure. We can understand this as the
imprinting of the mass gap formation in the dual gauge
theory due to effective IR cutoff triggered by the dilaton
suppression in the infrared.

The rest of this work is organized as follows. In Sec. II we
concisely introduce our holographic setup and then review
the computations of photon production rate and conductiv-
ity using the AdS/CFT approach, which can be found in
Ref. [7] for more details. Sections III, IV, and Vare devoted
to numerical computations of the photoproduction and
plasma conductivity in all regime of frequency for all the
three models. We summarize our work in Sec. VI.

II. HOLOGRAPHIC SETUP AND
PHOTOPRODUCTION IN THERMAL

FIELD THEORY

A. Formulae for photoproduction and
plasma conductivity

Spontaneous photoproduction frommedium that is com-
posed of electrically charged particles is a good signal to
probe its properties. The spectra of produced photons
depend on the details of the system. Moreover, it is ex-
pected that the emitted photon from quark gluon plasma
(QGP) has little to do with blackbody radiation distribution
but may give valuable information about the properties of
QGP. However, as mentioned at the beginning of Sec. II,
the produced QGP in the relativistic heavy ion collision is
perhaps strongly coupled and we therefore need a non-
perturbative treatment of calculations of the photoemission
from sQGP. This is why AdS/CFT correspondence sets in
and plays a more and more important role in studying

properties of sQGP. We here follow Ref. [7] to briefly list
basic formulae for computing the photoproduction rate and
AC conductivity associated with QCD-like plasma.
Consider a thermal system, which can be described by

finite temperature quantum field theory. We assume the
interaction between the photon and matter takes the elec-
tromagnetic current form eJ�A

�, where J� is the electro-

magnetic current and e is the electromagnetic coupling
constant. From thermal field theory [15], the photoproduc-
tion rate �� from a thermal system in equilibrium, to

leading order in e, is given by

d�� ¼ d3q

ð2�Þ32!e2nBð!Þ������ðkÞj!¼j ~qj; (1)

where nB ¼ 1=ðe!=T � 1Þ is the Bose-Einstein distribution
function, k� ¼ ð!; ~qÞ is the four-momentum vector,
��� ¼ ð�1; 0; 0; 0Þ denotes the Minkowski metric, and

��� is the spectral function, defined by the following

equations,

���ðkÞ ¼ �2 ImGR
��ðkÞ;

GR
��ðkÞ ¼

Z
d4xe�ik�xhJ�ð0ÞJ�ðxÞiT�ð�tÞ:

(2)

Here, the symbol h� � �iT denotes the expectation value
taken in the thermal equilibrium state and x� ¼ ðt; ~xÞ.
The AC conductivity can be extracted from the Kubo’s
formula,

�ð!Þ ¼ GR
iið!; ~k ¼ 0Þ

i!
; (3)

where GR
iið!; ~k ¼ 0Þ denotes spatial component of the

retarded Green’s function GR
��ð!; ~k ¼ 0Þ.

At nonzero temperature, the Lorentzian invariance of
relativistic quantuam field theory is explicitly broken.
Fortunately, the unbroken rotational symmetry and gauge
invariance allow one to decompose the retarded Green’s
functionGR

��ðkÞ into transversal and longitudinal parts [16]
as follows,

GR
��ðkÞ ¼ PT

��ðkÞ�TðkÞ þ PL
��ðkÞ�LðkÞ: (4)

The projective operators are defined as

PT
ijðkÞ ¼ 	ij �

qiqj

j ~qj2 ; PT
0� ¼ 0;

PL
��ðkÞ ¼ ��� �

k�k�

k2
� PT

��ðkÞ:
(5)

Plugging the above operators into Eq. (4) results in the
following form for the trace of the spectral function,

�
�
� ¼ �4 Im�TðkÞ � 2 Im�LðkÞ: (6)

Recall that, in this paper we focus on the real photon
production and therefore set! ¼ j ~qj. Then, only the trans-
versal part �TðkÞ contributes to the trace of spectral den-
sity (because if �LðkÞ � 0, there will be singularity in the
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retarded Green’s function due to the lightlike momenta
chosen for real photon production).

In a short summary, the goal of revealing the photo-
production and AC conductivity of sQGP is reduced to
calculations of the retarded Green’s function for electro-
magnetic current J�. Under AdS/CFT correspondence,

once weakly gauging the flavor U(1) symmetry in the
world volume of probe D-brane and treating it as an
analogue of the electromagnetic symmetry, our task is
further reduced to compute this flavor current-current cor-
relator under the prescription given in Ref. [17].

B. Holographic setup for the QCD gravity dual

The QCD gravity dual in general can be summarized
as the following geometric metric with 1 dilaton back-
ground 
,

ds2 ¼ gttdt
2 þ guudu

2 þ gijdx
idxj þ gSdS

2; (7)

where dS2 denotes the internal space for 10-dimensional
supergravity metric. The above metric and dilaton can be
sourced by the Einstein-dilaton system. To make the dual
QCD-like theory at finite temperature, one can push above
geometry to a black hole and identify the Hawking tem-
perature as that of the boundary field theory. To mimic the
baryon density, we take the probe D-brane method and turn
on background for the time component of the flavor U(1)
gauge field, AtðuÞ. The embedding profile �ðuÞ of the probe
D-brane and the gauge field configuration AtðuÞ can be
determined by minimizing the Dirac-Born-Infeld (DBI)
action for the probe D-brane. However, here we choose
the trivial profile �0ðuÞ ¼ 0 to simplify our analysis and
leave the complicated flavor embedding profile for future
publication.

With the above assumptions, the DBI action1 for the
probe Dq-brane is

S ¼ �TqNf

Z
dqþ1xe�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðgþ F0Þ

q
; (8)

where we set 2�l2s ¼ 1 for brevity, Nf denotes the number

of flavor brane, g is the induced metric in the flavor world
volume and F0 is the field strength constructed from At.
Once the background for the gauge field At is worked out,
we can fluctuate the system and compute the current-
current correlator following the prescription of Ref. [17].

III. D4/D6 MODEL

Intersecting D-brane systems have been widely used to
study flavored large N gauge theory at strong coupling,
hoping to give some physical intuition to QCD in the
strong coupling regime, since the seminal paper [18] and
also have produced fruitful results. In this section we also

take the intersecting D-brane system as our starting point.
To be specific, we choose the D4/D6 model as the QCD
gravity dual. This model was first studied in Ref. [4]
and revealed many interesting properties for hadron
physics in QCD. It is based on D4-brane geometry in
type IIA supergravity,

ds2 ¼
�
u0
R

�
3=2

u�3=2ð�fðuÞdt2 þ d~x2 þ dx24Þ

þ R3=2u1=20 u�5=2 du
2

fðuÞ þ R3=2u1=20 u�1=2d�2
4; (9)

with internal space �4 parameterized as

d�2
4 ¼ d�2 þ cos2�d�2

2 þ sin2�d�2; (10)

where the black factor is fðuÞ ¼ 1� u3. There is also a

background for the dilaton field e
 ¼ gsðu0=RÞ3=4u�3=4. In
our convention for the metric, the black hole horizon is
located at u ¼ 1 and u ¼ 0 denotes the conformal bound-
ary where the dual field theory lives. To avoid a conical
singularity in ðt; uÞ plane, the time direction should be
periodically identified, i.e., t� tþ � with Hawking tem-

perature T ¼ 1=� ¼ 3
4� u

1=2
0 =R3=2.

The flavor D6-brane extends along ðt; ~x; u;�2Þ and its
embedding profile is specified by �ðuÞ. As mentioned in
Sec. II, here we choose the trivial profile for the flavor
sector, i.e., �ðuÞ ¼ 0 and the induced metric on the flavor
world volume takes following form,

ds2ind¼
�
u0
R

�
3=2

u�3=2ð�fðuÞdt2þd~x2Þ

þR3=2u1=20 u�5=2 du
2

fðuÞþR3=2u1=20 u�1=2d�2
2: (11)

Plugging the induced metric (11) into Eq. (8) determines
the gauge field configuration,

@uA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�d2gttguu
g3xxg

2
�e

�2
 þ d2

vuut ; (12)

where the integration constant d can be identified as the
baryon charge density.
To study the photoproduction, we need perturb the sys-

tem by including fluctuation of gauge field, AM ! AM þ
aM where M denotes all the indices in Eq. (11). To qua-
dratic order in gauge field fluctuation aM, the DBI action
can be expanded to the following form [we here omit the
background part as in Eq. (8)],

Sfl¼�NfT6

4

Z
d4xdud�2e

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðgindþF0Þ

q
fMNf

MN

��N 0

4

Z
dx4du

ffiffiffiffiffiffiffiffiffi
�G

q
f��f

��: (13)

In the second equality of above equation, we have assumed
that the fluctuation a is singlet with respect to internal
space �2 and also chosen the components of a along

1Here we focus on the U(1) part of the DBI action and there is
no Chern-Simons term in our case.
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�2 to zero and absorbed the integration over �2 to the
prefactorN 0. With the SO(3) rotational symmetry, we can
take the Fourier ansatz for a� of the form

a�ðt; ~x;uÞ¼
Z d4k

ð2�Þ4a�ðk;u;dÞe
�i!tþ ~k� ~x; with ~k¼ðq;0;0Þ;

(14)

where, without loss of generality, the spatial momentum
has been chosen to be along x direction. The contraction of
indices �, � uses the symmetric part G of ðgind þ F0Þ�1

defined as follows,

ðgind þ F0Þ�1 ¼ Gþ J (15)

with the diagonal part G given by

G��¼diag

�
guu

gttguuþð@uA0Þ2
;

gtt
gttguuþð@uA0Þ2

;gxx;gyy;gzz
�
:

(16)

The equation of motion for the transverse modes, say ay, is

easily worked out by the variational method,

@2uayðk;u;dÞþ@u lnð
ffiffiffiffiffiffiffiffiffi
�G

q
GuuGyyÞ@uayðk;u;dÞ

�
�
Gtt

Guu!
2þGxx

Guuq
2

�
ayðk;u;dÞ¼0: (17)

In deriving this equation, we choose the radial gauge,
au ¼ 0. Substitute Eqs. (12) and (16) into Eq. (17) and
simplify by some algebraic manipulations, we obtain the
following equation

@2uayðk; u; dÞ þ
�
f0ðuÞ
fðuÞ þ

g0ðuÞ
2gðuÞ

�
@uayðk; u; dÞ

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞgðuÞ
�
ayðk; u; dÞ ¼ 0; (18)

with dimensionless frequency and momentum defined as

~! ¼ 3

4�T
!; ~q ¼ 3

4�T
q; (19)

and function gðuÞ given by

gðuÞ ¼ 1þ ~d2u4; ~d ¼
�

3

4�T

�
2
d: (20)

In order to compute the retarded Green’s function for
operator dual to ay mode, we use the equation of motion as

in Eq. (17) to change the action in Eq. (13) to the following
form by integrating by parts,

Sfl¼�N 0

2

Z d4k

ð2�Þ4

�
� ffiffiffiffiffiffiffiffiffi

�G
q

GuuGyyayð�k;u;dÞ@uayðk;u;dÞ
���������u¼1

u¼0
: (21)

Then, following the prescription of Ref. [17], the retarded
Green’s function for the mode ay is given by

GR
yyðkÞ¼N 0

ffiffiffiffiffiffiffiffiffi�G
p

GuuGyyayð�k;u;dÞ@uayðk;u;dÞ
ayð�k;0;dÞayðk;0;dÞ

��������u¼0
;

(22)

with ayðk; u; dÞ taking ingoing wave boundary condition at
the horizon u ¼ 1.
Generically, one cannot get analytical solution to

Eq. (18) in the whole regime of parameters f ~!; ~q; ~dg, we
then turn to a numerical method to solve it. We begin by
presenting the asymptotic behaviors for ayðk; u; dÞ near the
conformal boundary u ¼ 0 and horizon u ¼ 1. Frobenius
analysis reveals that, near the horizon,

ayðk;u�1;dÞ’ ð1�uÞ�i ~!=3½1það1Þy ð1�uÞ
það2Þy ð1�uÞ2það3Þy ð1�uÞ3þ����; (23)

where we have set the scale of ayðk; u; dÞ to one given the

linearity of Eq. (18) and the minus index �i ~!=3 is chosen
for ingoing wave boundary condition at the horizon for the
purpose of retarded Green’s function; near u ¼ 0,

ayðk; u� 0; dÞ ’ ayðk; 0; dÞ þ ua1yðk; 0; dÞ þ � � � : (24)

In Eq. (23), these expansion coefficients are uniquely

determined in terms of three parameters f ~!; ~q; ~dg. We
will use the expansion near the horizon as the initial con-
ditions and call the Mathematica NDSolve to solve
Eq. (18) numerically. The retarded Green’s function can
be easily read off from the expansion in Eq. (24) and the
formula in Eq. (22),

GRðkÞ ¼ N
a1yðk; 0; dÞ
ayðk; 0; dÞ : (25)

Roughly speaking, the factor N counts the degree of
freedom for flavor sector, N � NfNc. The explicit form

of the normalization factor N will be given in the end of
Sec. V. In what follows we list our numerical results as well
as some general comments.
In Fig. 1 we plot the trace of the spectral function for real

photon production, �
�
�ðq ¼ !Þ=!, weighted by factorN .

From different curves, we conclude that the baryon density
significantly enlarges the spectral function at low !=T
regime, which is consistent with physical intuition.

Concentrating on the ~d ¼ 0 curve, we find that for a quite
large regime of frequency, the trace of the spectral function
�
�
�ðq ¼ !Þ=! has linear behavior. Analytical computation

of spectral function at low/high frequency have been car-
ried out in Refs. [7,9], which is consistent with our nu-
merical result. Once turning on the baryon density, the
linear regime in the trace spectral function narrows, which
can also be read off from Fig. 2 for the photoemission rate
below.
Fig. 2 is for the profile of the photoemission rate d�=d!

fromQCD-like plasma dual toD4/D6model at finite baryon
density. Explicitly, the photoproduction is enhanced when
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increasing the baryon charge density. Moreover, there is a
redshift for the peak frequency !p, which maximizes the

photoproduction rate, as increasing the baryon charge den-
sity. What is consistent with Fig. 1 is that before increasing
! to !p, the rate is approximately linearly increasing. The

large ! behavior is dominated by the suppression of
Bose-Einstein factor. However, the profile for the photo-
production rate is quite different from that of the blackbody
radiation spectrum, especially in the intermediate regime of
the frequency space. This can also be seen explicitly from
plots later in this paper (Figs. 5, 8, 11, and 14). This proves
the claim in Ref. [7] that the photoproduction rate from
QCD plasma has nothing to do with that of blackbody
radiation and is not only due to thermal effect.
In Fig. 3 we plot the AC conductivity of dense holo-

graphic plasma dual to D4/D6 model at different baryon
density. We first consider the DC conductivity, correspond-
ing to �ð! ¼ 0Þ. On physical grounds, large baryon den-
sity will enhance electrical conduction ability of QCD
plasma. This is explicit in our plots in Fig. 3. From the
conductivity profiles, we can obtain much information on
dense holographic plasma. When the baryon density is
very small, corresponding to the red and green curves in
Fig. 3, real part of the conductivity is monotonically in-
creasing when walking towards higher frequency regime.
However, as the baryon density is large enough, the results
are more complicated. In the infrared regime of !, real
part of the conductivity first decreases and then rapidly
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FIG. 1 (color online). D4/D6 model: trace of the spectral function for lightlike momenta divided by frequency, ������ðq ¼ !Þ=!,
in units of N ; different curves correspond to different dimensionless baryon density: ~d ¼ 0 (red), 2.0 (green), 4.0 (blue), 6.0 (black).
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FIG. 2 (color online). D4/D6 model: photoproduction rate
d�=d!, weighted in units of N e2

4� , at different baryon density

corresponding to Fig. 1.
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increases to some approximate plateaux. For all of these
curves, they have common asymptotic behavior at large
!=T, linear behavior, which is a universal behavior for
4þ 1-dimensional bulk theory, dual to 4-dimensional
strongly coupled field theory. This universal behavior has
also been revealed in holographic superconductor models
in Ref. [19].

In Sec. V, we will consider soft-wall AdS/QCD model
and carry out parallel computations as in this section.
When the soft-wall cutoff c ¼ 0, it reproduces part results
of Ref. [7]. Comparing the figures of subsection VA with
above ones, we find that they are qualitatively the same.
Together with results being stated in Sec. IV, we may
conclude that the nonconformal characteristic of super-
gravity has no significant effect on the physical results
like photoproduction rate and plasma conductivity.
However, this is not the whole story. Note that the dilaton
background in D4/D6 or noncritical Sakai-Sugimoto
model is of the type e
 � u with  some model-
dependent constant. This type of dilaton background has
no effect in the infrared regime compared to the soft-wall
AdS/QCD model. The discussion here also indicates that
well-studied top-down approach to QCD-like theory from
critical/noncritical supergravity cannot catch some key
feature of gauge coupling running in QCD. Therefore, a
more realistic QCD gravity dual should be constructed. We
will come to this point in later sections.

IV. NONCRITICAL SAKAI-SUGIMOTO MODEL

The other intersecting D-brane system considered in
this work is based on AdS6 black hole solution for
supergravity in six-dimensions under the framework of
noncritical string theory. One main motivation for
introducing noncritical supergravity background into
AdS/CFT correspondence is to get rid of the unwanted
KK states [20–22], which are always present in critical

supergravity and have the same energy scale with QCD
hadron spectra. The QCD-like chiral phase transition, fla-
vor quark transport and parton structure function have been
discussed in Refs. [23–27] under this framework. The
findings in these references indicate that the thermal phase
transition and flavor quark transport under noncritical
background is nearly the same as those of the Sakai-
Sugimoto model. However, the structure function for
sQGP has different scaling dependence, as revealed in
Ref. [27], on temperature when expressed in terms of the
Bjoken variable. Another main difference from the Sakai-
Sugimoto model is on the scalar meson spectrum found in
Ref. [28]. In what follows we will briefly review the model
and follow the conventions of Ref. [26]. The supergravity
solution for AdS6 black hole is

ds2¼
�
r0
R

�
2 1

u2
ð�fðuÞdt2þd~x2þdx24Þþ

�
R

u

�
2 du2

fðuÞ ; (26)

with the dilaton background and black factor given by

e
 ¼ 2
ffiffiffi
2

p
ffiffiffi
3

p
Nc

; fðuÞ ¼ 1� u5: (27)

The quark sector can be introduced in the quenched ap-

proximation by adding probe D4=D4 branes into above
supergravity geometry. Here we consider the chiral sym-
metry restoring phase and the induced metric on the flavor
world volume is

ds2ind ¼
�
r0
R

�
2 1

u2
ð�fðuÞdt2 þ d~x2Þ þ

�
R

u

�
2 du2

fðuÞ : (28)

To make the holographic plasma to be dense medium, as
in D4/D6 model we consider the time component of flavor
U(1) gauge field A0ðuÞ. Its configuration is of the form

@uA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d2gttguu
g3xx þ d2

s
; (29)

where d is the baryon charge density. For photoproduction
and conductivity, we study perturbation of the system and
compute the current-current correlator. Following similar
procedure as in D4/D6 model, the equation of motion for
the fluctuation mode ayðk; u; dÞ is given by

@2uayðk;u;dÞþ
�
f0ðuÞ
fðuÞ �

1

u
þ g0ðuÞ
2gðuÞ

�
@uayðk;u;dÞ

þ
�

~!2

fðuÞ2�
~q2

fðuÞgðuÞ
�
ayðk;u;dÞ¼0; (30)

with dimensionless frequency and momentum defined as

~! ¼ 5

4�T
!; ~q ¼ 5

4�T
q; (31)

and function gðuÞ given by

0 5 10 15 20
0

5

10

15

FIG. 3 (color online). D4/D6 model: real part of the AC
conductivity corresponding to different baryon density ~d ¼ 0:0
(red), 1.0 (green), 2.0 (blue), 3.0 (black), 4.0 (yellow).
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gðuÞ ¼ 1þ ~d2u6; ~d ¼
�

5

4�T

�
3
d: (32)

It is clear that this equation is basically the same as Eq. (18).
It is therefore expected that the associated results in this
noncritical supergravity are also similar to those of Sec. III
and this is actually what we find in our work. Through
Frobenius analysis, we can obtain similar asymptotic be-
havior for the fluctuation mode ayðk; u;dÞ as in Eqs. (23)

and (24).
Our numerical results are stated in the following

several figures. In Fig. 4, we plot the trace of the spectral
function for lightlike momenta, ��

�ðq ¼ !Þ=!. Figure 5 is
for the plot of the photoemission rate d�=d! from
QCD-like plasma and Fig. 6 is real part of the AC con-
ductivity of dense holographic plasma described by

noncritical Sakai-Sugimoto model. As mentioned at the
end of Sec. III, the associated results presented here are
basically the same as those of D4/D6 model. However,
there is also one small difference from D4/D6 model on the
conductivity. Clearly, there is no plateaux here, which
is not present in Fig. 7 for conductivity of SYM
plasma, either. This should be thought of as the effect
of nonconformality of the supergravity background for
D4-brane.

V. SOFT-WALL ADS/QCD MODEL

The last model investigated in our work is the so-called
soft-wall AdS/QCD model, which is popular in producing
some interesting properties in hadron physics. This model
takes the AdS5 metric as the dual geometry and introduces
the flavor matter into this background [5],

0 5 10 15 20 25 30
0

1

2

3

4

5

6

FIG. 4 (color online). Noncritical Sakai-Sugimoto model:
trace of the spectral function for lightlike momenta divided by
frequency, �

�
�ðq ¼ !Þ=!; different curves correspond to differ-

ent dimensionless baryon density: ~d ¼ 0 (red), 2.0 (green), 4.0
(blue), 6.0 (black).
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1.0
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1.4

FIG. 5 (color online). Noncritical Sakai-Sugimoto model: pho-
toproduction rate d�=d! at different dimensionless baryon
density corresponding to plots in Fig. 4.
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0
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15

FIG. 6 (color online). Noncritical Sakai-Sugimoto model: real
part of the AC conductivity corresponding to different baryon
density: ~d ¼ 0:0 (red), 1.0 (green), 2.0 (blue), 3.0 (black), 4.0
(orange).
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FIG. 7 (color online). Super-Yang-Mills plasma: real part of
the AC conductivity corresponding to different baryon density:
~d ¼ 0:0 (red), 1.0 (green), 2.0 (blue), 3.0 (black), 4.0 (orange).
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S�
Z

d5xe�
 ffiffiffiffiffiffiffi�g
p �

�jDXj2 þ 3jXj2 � 1

4g25
ðF2

L þ F2
RÞ
�
;

(33)

where the meaning of different fields in above action can
be found in Ref. [5]. The dilaton profile is 
 ¼ cu with
dimensionless parameter c given by

c ¼ �2
IR

ð�TÞ2 ; (34)

where �IR is the infrared scale below which our physics is
cut off. Roughly speaking, �IR can be thought of as the
energy scale of hadron spectra. We straightforwardly
extend this model to black hole case,

ds2 ¼ ð�TRÞ2
u

ð�fðuÞdt2 þ d~x2Þ þ R2

4u2fðuÞdu
2; (35)

where T is the Hawking temperature of AdS5 black hole
and the black factor fðuÞ ¼ 1� u2.

To model the baryon density in this model, we follow
Secs. III and IV to study Abelian DBI action as in Eq. (8)
with metric in Eq. (35) and turn on the time component of
the flavor gauge field. The gauge field configuration is
solution to the following equation

@uA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d2gttguu

g3xxe
�2
 þ d2

s
; (36)

with d the baryon charge density. Following the same
procedure as in previous two sections, we can easily
work out equation of motion for the fluctuation mode
ayðk; u; dÞ,

@2uayðk; u; dÞ þ
�
f0ðuÞ
fðuÞ � cþ g0ðuÞ

2gðuÞ
�
@uayðk; u;dÞ

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞgðuÞ
�
ayðk; u; dÞ ¼ 0; (37)

with dimensionless frequency and momentum defined as

~! ¼ 1

2�T
!; ~q ¼ 1

2�T
q; (38)

and function gðuÞ given by

gðuÞ ¼ 1þ ~d2e2cuu3; ~d ¼
�
d

�T

�
3
: (39)

To produce the photoproduction and conductivity, one
has to numerically solve Eq. (37) for generic frequency
~! ¼ ~q. The method is same as that of Sec. III and we
directly present our results in the subsequent two
subsections.

A. Reproducing associated results in SYM plasm: c¼0

In this subsection we consider the c ¼ 0 case, which
is same as SYM plasma well-studied in Ref. [7]. However,

in this work we include the baryon charge density.2 In
Fig. 8 we plot the trace of the spectral function for lightlike
momenta, ��

�ðq ¼ !Þ=!, at different baryon densities.
Figure 9 is for the photoemission rate d�=d! at baryon
density corresponding to that of Fig. 8. The AC conduc-
tivity of SYM plasma at different baryon density is plotted
in Fig. 7. Comparing to the corresponding figures shown in
Sec. IV, we find that the results under these two models are
basically the same. In actual fact, this should be the
case as the supergravity background for these two models
are similar. Concentrating on the profile of the AC con-
ductivity, we once again see that there is no plateaux in
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FIG. 8 (color online). Super-Yang-Mills plasma: trace of the
spectral function for lightlike momenta divided by frequency,
�
�
�ðq ¼ !Þ=!; different curves correspond to different dimen-

sionless baryon density: ~d ¼ 0 (red), 2.0 (green), 4.0 (blue), 6.0
(black).
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FIG. 9 (color online). Super-Yang-Mills plasma: photoproduc-
tion rate d�=d! at different dimensionless baryon density ~d ¼
0:0 (red), 2.0 (green), 4.0 (blue), 6.0 (black).

2Note in this work we introduce the baryon charge density
using nonlinear DBI action and therefore takes into account of
nonlinear effect, which is different from R-charge AdS black
hole studied in Ref, [14].
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intermediate regime of frequency, compared to that of the
D4/D6 model. This should be attributed to effect of the
dilaton running characteristic of supergravity background.
Our results are quite different from those of Ref. [14]
which takes the RN-AdS black hole geometry as the grav-
ity dual of QCD and embeds the baryon charge density in
the black hole charge.

B. Soft-wall as an effective infrared cutoff: c�0

The results in this subsection compose another main part
of our work. Our numerical results are listed in Figs. 10–12
for the trace of the spectral function at lightlike momenta
�
�
�ðq ¼ !Þ=!, photoproduction rate d�=d! and real part

of the AC conductivity Re�ð!Þ, respectively. We choose
the cutoff parameter c ¼ 3 in these plots and the dimen-

sionless baryon charge density ~d is same as that of previous
plots. Before some discussions, we should note that here

we scan over the frequency parameter ~! during numerical
computations and did not probe the effect of very large
baryon density on physical results, which has been simply
discussed in Ref. [9]. Therefore, we can expect to find
some striking features only in the small frequency regime
(infrared regime) of our plots and the asymptotic behavior
(ultraviolet regime of frequency) should be similar to
previous conclusions, which have been investigated in de-
tail using analytical approximation. Therefore, our discus-
sions will be concentrated on the small frequency regime.

Note that in Figs. 10–12 the density ~d is chosen to be quite
large compared to the cutoff parameter c ¼ 3. Given this
fact, some essential effect will be hidden due to density
effect. Therefore in Figs. 13–15 we plot the same quantities

but for quite small ~d variable.
In what follows we will give some comments on these

figures. First, consider Fig. 10 for the trace of the spectral
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FIG. 10 (color online). Soft-wall model (c ¼ 3): trace of the
spectral function for lightlike momenta divided by frequency,
�
�
�ðq ¼ !Þ=!; different curves correspond to different dimen-

sionless baryon density: ~d ¼ 0:0 (red), 2.0 (green), 4.0 (blue), 6.0
(black).
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FIG. 11 (color online). Soft-wall model (c ¼ 3): photoproduc-
tion rate d�=d! at different dimensionless baryon density
corresponding to plots in Fig. 10.
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FIG. 12 (color online). Soft-wall model (c ¼ 3): real part of
the AC conductivity corresponding to different baryon density:
~d ¼ 0:0 (red), 1.0 (green), 2.0 (blue), 3.0 (black), 4.0 (orange).
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FIG. 13 (color online). Soft-wall model (c ¼ 3): trace of the
spectral function for lightlike momenta divided by frequency,
��
�ðq ¼ !Þ=!; different curves correspond to different dimen-

sionless baryon density: ~d ¼ 0:0 (red), 0.1 (green), 0.2 (blue), 0.4
(black), 0.6 (orange).
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function at lightlike momenta. We find that the presence of
an IR cutoff greatly changes the final results. When dimen-

sionless charge density ~d is quite small (corresponding to
the red curve in Fig. 10, red and green curves in Fig. 13),
the spectral function first raises to some value and then
decreases very slowly. When the baryon density is large
enough, the effect of IR cutoff has been weakened, even
erased, and the profile for the trace of the spectral function
goes back to those of previous sections. The figures for the
photoemission rate are basically same as previous results
except that peak value of first curve (the red curve) exceeds
the second one (the green curve) as seen in Fig. 13. As in
the case of the trace of the spectral function, once the
baryon charge density is large enough, see Fig. 11, these
curves go back to those of previous sections.

Real part of the AC conductivity shown in Fig. 15
is quite different from previous results. Surprisingly, it

looks like that of holographic superconductor model in
four-dimensional boundary theory [19], especially when

the charge density ~d is quite small compared to the cutoff
parameter c, which can be easily seen in Fig. 15. The most
bright feature in our plot is the pseudogap formation in the
infrared regime of frequency space. However, we should
keep in mind that the gap-like formation here is quite
different than that of holographic superconductor model.
More specifically, in our work there is no spontaneous
symmetry, which does happen in holographic supercon-
ductor models and is directly responsible for the gap
structure formation in the superconducting conductivity.
Another main difference between them is that our result for
the DC conductivity is finite while it is a delta peak in
holographic superconductor model. The appearance of
pseudogap in the infrared can be seen as the imprinting
of dilaton soft-wall. Because of the effective cutoff in the
infrared of field theory, the approximate plateaux in inter-
mediate regime of frequency are now replaced by meta-
stable valleys which appear at ~! ¼ 15–20 in Fig. 15.
Combining these results with those of previous sections,
we conclude that the dilaton running can have important
effect on physical results uncovered here, like the photo-
emission and conductivity.
Before concluding this work, we give the expression

for the normalization factor N , which has been ignored
in previous representations. As claimed in Sec. III, this
factor counts the flavor degree of freedom and is therefore
proportional to NfNc. Moreover, it also has temperature

dependence T2,

N ¼ �NfNcT
2; (40)

with � a model dependent constant

�¼

8>>><
>>>:

1
9�2 ; D4=D6model;

3
10

ffiffi
5

p ; Noncritical Sakai� Sugimoto model;

1
2� ; Soft�wall model:

(41)

VI. SUMMARYAND DISCUSSIONS

In this work we took three holographic QCD models to
study one important signal of sQGP, i.e., the photoemission
rate from QCD-like plasma at finite baryon density. Via
computations and plots of these physical quantities, we
found that the dilaton running can have some effect on this
signal especially in the infrared regime of photon fre-
quency. In particular, the more realistic soft-wall AdS/
QCD model predicts a pseudogap formation in the profile
of AC conductivity. However, the gap-like structure found
here should be distinguished from that of holographic
superconductor model. These results indicate that running
of the gauge coupling constant of QCD-like theory, even at
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FIG. 15 (color online). Soft-wall model (c ¼ 3): real part of
the AC conductivity corresponding to different baryon density:
~d ¼ 0:1 (red), 0.2 (green), 0.4 (blue), 0.6 (black), 0.8 (orange).
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FIG. 14 (color online). Soft-wall model (c ¼ 3): photoproduc-
tion rate d�=d! at different dimensionless baryon density
corresponding to plots in Fig. 13.
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the infrared regime, can be neglected and may have im-
printing in the final results for photoproduction and con-
ductivity. Actually, one realistic AdS/QCD model, which
mainly takes into account gauge coupling running, from
Einstein-Dilaton system has been established and explored
for the purpose of hadron physics in Ref. [6]. We expect to
carry out similar computations in this model to reveal some
universal characteristics of more realistic AdS/QCD mod-
els in the near future.
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