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We study a nonrelativistic fermionic retarded Green’s function by making use of a fermion on the

Lifshitz geometry with critical exponent z ¼ 2. With a natural boundary condition, respecting the

symmetries of the model, the resultant retarded Green’s function exhibits a number of interesting features

including a flat band. We also study the finite temperature and finite chemical potential cases where the

geometry is replaced by Lifshitz black hole solutions.
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I. INTRODUCTION

At critical points, physics is usually described by a
scale-invariant model. Typically, the scale invariance arises
in the relativistic conformal group where we have

t ! �t; xi ! �xi: (1.1)

Here t is time and xi’s are spatial directions of the space-time.
We note, however, that in many physical systems the

critical points are governed by dynamical scalings in which
space and time scale differently. In fact spatially isotropic
scale invariance is characterized by the dynamical expo-
nent, z, as follows [1]

t ! �zt; xi ! �xi: (1.2)

The corresponding critical points are known as Lifshitz
fixed points.

In light of AdS/CFT correspondence, [2] it is natural to
seek for gravity duals of Lifshitz fixed points. Indeed
gravity descriptions of Lifshitz fixed points have been
considered in [3] (see also [4] for an earlier work on a
geometry with the Lifshitz scaling.), where a metric in-
variant under the scaling (1.2) was introduced. The corre-
sponding metric is1

ds2 ¼ L2

�
� dt2

r2z
þ d~x2

r2
þ dr2

r2

�
; (1.3)

where L is the radius of curvature.2 The action of the scale
transformation (1.2) on the metric is given by

t ! �zt; xi ! �xi; r ! ��1r: (1.4)

As a physical application, the Lifshitz geometry has been
used to provide a possible holographic description for

strange metals [5].3 In this setup the Lifshitz background
is probed by D-branes with nonzero gauge fields in their
world volume. By appropriately choosing the dynamical
critical exponent, z, the authors of [5] have been able to
match the non-Fermi liquid scalings, such as linear resistiv-
ity, observed in strange metal regimes. Having found the
non-Fermi liquid scalings, it is natural to study the fermionic
properties of the system to explore, for example, a possi-
bility of having a Fermi surface in the model. To do so, one
needs to consider a fermion on the Lifshitz geometry to find
the retarded Green’s function of the corresponding dual
fermionic operator via AdS/CFT correspondence.
Indeed, utilizing fermions on asymptotically AdS ge-

ometries, it was shown that the AdS/CFT correspondence
can holographically describe Fermi surfaces [7–13].
Actually to see a Fermi surface, one should look for a
sharp behavior in the fermionic retarded Green’s function
at finite momentum and small frequencies (for a review
see, e.g., [14]). Moreover the spectrum of quasiparticle
excitations near the Fermi surface is governed by an emer-
gent CFT corresponding to the AdS2 near-horizon geome-
try of the black hole [10].
The aim of this article is to study fermions on the Lifshitz

geometry, which in turn can be used to study the fermionic
retarded Green’s function of the corresponding nonrelativ-
istic dual theory.4 Fermions on the Lifshitz geometry and
also on a geometry with Lifshitz IR fixed point have been
studied in [17,18], respectively. In these papers, with a
Lorentz-symmetry-preserving boundary term, the Green’s
function of the fermion has been obtained. It was shown that
the resultant Green’s function has no imaginary part.
On the other hand, in order to find the retarded Green’s

functionwe consider the Lorentz-symmetry-breaking bound-
ary condition introduced in [19].5 Since the corresponding
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1As has been mentioned in [3], although the metric is non-

singular, it is not geodesically complete and, in particular, an
infalling object into r ¼ 1 feels a large tidal force.

2In what follows we set L ¼ 1.

3See also [6] for drag force computations in Lifshitz
geometries.

4Fermions on Schrodinger space-time has also been studied in
[15,16].

5Throughout this paper we refer to this boundary condition as
nonstandard boundary condition, while we refer to that intro-
duced in [20,21] as standard boundary condition.
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boundary condition preserves rotational and scale invari-
ances, but breaks the boost, it is more natural to impose such
a boundary condition on the geometries with Lifshitz
isometry. Of course it also breaks the parity which is pre-
served by the Lifshitz symmetry.6 Note that in this paper we
consider the fermion as a probe. It would be interesting to
extend this work to the case where the back reaction of the
fermions is taken into account.

The paper is organized as follows. In the next section,
we study fermions on the Lifshitz geometry, where we find
a solution for the equation of motion with a proper bound-
ary condition. Then, using the solution, we calculate the
corresponding retarded Green’s function, where we see
that the model exhibits a flat band. In Sec. III we extend
our study to the finite-temperature case, where we show
that, although the system has excited zero-energy fermi-
onic modes at low momenta, at high momenta still it has a
flat band. In Sec. IV, we consider charged fermions probing
a charged Lifshitz black hole, where we show that, while
with the standard boundary condition the system exhibits a
Fermi surface, in the nonstandard case it still has flat band.
The last section is devoted to discussions.

II. ZERO TEMPERATURE

The aim of this section is to study fermions on the
Lifshitz background which will be used to find the retarded
Green’s function for the corresponding fermionic dual
operator in the dual nonrelativistic field theory. Before
going into computations, it is worthwhile to note that the
Lifshitz geometry is not a solution of the pure Einstein
gravity with or without cosmological constant.

In general, to get the Lifshitz geometry one needs to
couple the Einstein gravity to other fields. In particular, the
Lifshitz geometry may be obtained from gravity coupled to
massive gauge fields. In the minimal case where we have
only one massive gauge field, the corresponding action is
given as follows

I¼ 1

16�Gdþ1

Z
ddþ1x

ffiffiffi
g

p �
Rþ��1

4
F2�1

4
m2A2

�
; (2.1)

where F�� ¼ @�A� � @�A�. It is easy to see that, with a

suitable choice of the parameters m and �, the model
admits the Lifshitz solution (1.3) with a nonzero gauge
field given by [24]

At ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz� 1Þ

z

s
1

rz
: (2.2)

For this solution the parameters m and � are m2 ¼ 4z,
� ¼ z2 þ ðd� 2Þzþ ðd� 1Þ2.

Alternatively, the Lifshitz metric may also be obtained
as a solution of the pure gravity modified by curvature
squared terms [25]. As the simplest case consider a dþ
1-dimensional gravitational action as follows

I ¼ 1

2�2

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p ðR��þ �R2Þ: (2.3)

Using the equations of motion derived from the above
action one can show that the Lifshitz geometry (1.3) is a
solution of the equations of motion for a suitable choice
of the cosmological constant � and the coupling constant
� that are given by

� ¼ � 2z2 þ ðd� 1Þð2zþ dÞ
2

; � ¼ � 1

4�
: (2.4)

Although we could have Lifshitz metric in arbitrary
dimensions, in what follows we will consider the four-
dimensional Lifshitz geometry which could provide a
holographic description for a three-dimensional nonrela-
tivistic field theory.

A. Fermions on Lifshitz geometry

Let us consider a four-dimensional Dirac fermion on the
Lifshitz background whose action is

Sbulk ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
i ��

�
1

2
ð�a ~Da �DQ a�

aÞ �m

�
�; (2.5)

where 6D ¼ ðe�Þa��½@a þ 1
4 ð!��Þa����, with ��� ¼ 1

2 �½��;���. In our notation the space-time indices are
denoted by a; b . . . , though the tangent space indices are
labeled by �; � . . . .
Since the Lifshitz metric may be obtained from a gravity

coupled to a massive gauge field, in general, the solution
may also support a nonzero gauge field. Therefore, one
could consider a fermion that is charged under the back-
ground gauge field. Nevertheless, in what follows we will
consider a neutral fermion. We will come back to charged
fermions, later, in the discussion section.
To write the equation of motion one should use the

variational principle, which typically comes with a proper
boundary condition. It is important to note that the bound-
ary term is not unique and indeed there are several ways to
make the variational principle well-defined using different
boundary terms [19]. For the moment, we assume that
there is a suitable boundary condition such that the varia-
tional principle will be well-defined. With this assumption.
the equation of motion is�

ðe�Þa��

�
@a þ 1

4
ð!��Þa���

�
�m

�
� ¼ 0; (2.6)

where the nonzero components of vierbeins and spin con-
nections for the Lifshitz metric (1.3) are

ðetÞa ¼ rz	ta; ðeiÞa ¼ r	ia; ðerÞa ¼ r	ra;

and

6The Lorentz-symmetry-breaking boundary condition has also
been imposed for fermions with dipole coupling in [22] and, on
the charged dilatonic black hole in [23].
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ð!trÞa¼�ð!rtÞa¼ z

rz
	ta; ð!irÞa¼�ð!riÞa¼�1

r
	ia:

Using these expressions, the equation of motion reduces to�
�trz@t�

�
z

2
þ1

�
�rþr�i@iþr�r@r�m

�
�¼0: (2.7)

To proceed, it is useful to work in the momentum space
where we may set � ¼ ei!tþik:xc ðrÞ. In this notation the
equation of motion reads

irðk:�Þc ¼
�
�i!rz�tþ

�
z

2
þ1

�
�r�r�r@rþm

�
c : (2.8)

It is also useful to act by ð 6DþmÞ on the first-order
equation of motion to find a second-order differential
equation which typically is easier to solve. Doing so, and
using Eq. (2.8), one arrives at

ð 6D 6D�m2Þc ¼
�
r2@2r�ðzþ2Þr@rþ!2r2z

þ
�
z

2
þ1

��
z

2
þ2

�
�r2 ~k2þiðz�1Þ!rz�r�t

þm�r�m2

�
c ¼0: (2.9)

In general, this equation may not have analytic solutions.
We note, however, that for a particular case of m ¼ 0 and
z ¼ 2 the equation has, indeed, an analytic solution. This is
the case we will consider in this paper. In this case defining
c� ¼ 1

2 ð1� �r�tÞc , one gets

½r2@2r�4r@rþ!2r4�r2ð ~k2� i!Þþ6�c�¼0: (2.10)

To solve the above equation, we make the following
change of variable

c�ðrÞ ¼ r3=2eði!=2Þr2f�ði!r2Þ (2.11)

by which Eq. (2.10) reduces to a well-known differential
equation for f�ð
Þ

d2f�ð
Þ
d
2

þdf�ð
Þ
d


þ
�
��



þ
1
4��2�

2

�
f�ð
Þ¼0; (2.12)

where

�� ¼ � k2

4i!
� 1

4
; �� ¼ 1

4
: (2.13)

We recognize the above equation as the hypergeometric
differential equation whose solution is

f�ð
Þ ¼ c�1 
ð1=2Þ���e�
Fð��;�2�� þ 1; 
Þ
þ c�2 
ð1=2Þþ��e�
Fð��; 2�� þ 1; 
Þ; (2.14)

where Fða; b; 
Þ is the confluent hypergeometric function,
c�1;2 are two constant spinors and

�� ¼ 1

2
��� � ��; �� ¼ 1

2
þ�� � ��: (2.15)

Therefore, altogether we find

c�ðrÞ ¼ e�ði!=2Þr2r2
�
D�

1 F

�
��;

1

2
; i!r2

�

þD�
2 rF

�
��;

3

2
; i!r2

��
; (2.16)

with D�
1 ¼ ði!Þ1=4c�1 , D�

2 ¼ ði!Þ3=4c�2 .
It is important to note that so far we have solved the

second-order differential equation and thus the constant
spinors c�1;2 are not independent and, indeed, restricting the
above solution to be a solution of the first-order equation of
motion (2.8) leads to certain relations among them. More
precisely, one finds

cþ2 ¼ �iffiffiffiffiffiffi
i!

p �rðk:�Þc�1 ; c�2 ¼ �iffiffiffiffiffiffi
i!

p �rðk:�Þcþ1 : (2.17)

We note, also, that the solution has not been uniquely
fixed yet. In fact in the context of AdS/CFT correspon-
dence one usually imposes a boundary condition at IR. In
the Euclidean case the proper boundary condition is to
assume that the wave function is finite at IR. When we
are dealing with the real-time AdS/CFT correspondence,
the proper boundary condition is to impose an ingoing
boundary condition on the wave function at the horizon
[26]. In our case using the asymptotic behavior of the
hypergeometric function,

Fða;b;
Þ� �ðbÞ
�ðb�aÞð�
Þ�aþ�ðbÞ

�ðaÞe


a�b; for largej
j;

(2.18)

the wave function is ingoing at ‘‘Lifshitz horizon,’’ r ¼ 1,
if the parameters cþ1 and cþ2 satisfy the following relation

cþ2 ¼ �2
�ð�þ þ 1

2Þ
�ð�þÞ cþ1 ; (2.19)

by which the ingoing wave function near the Lifshitz
horizon behaves as follows7

c � r2ei!ðt�ðr2=2Þþðk2=2!2Þ lnrÞ: (2.20)

One may wonder what ‘‘Lifshitz horizon’’ means!
Actually, the situation could be compared with that of
fermions on the pure AdS case studied in, e.g., [27], where
the ingoing boundary condition has been imposed at the
AdS horizon at r ¼ 1. In order to understand it better, one
may think of this boundary condition as a limiting procedure
starting from a black hole solution and then approaching the
zero-temperature limit, as we will do in the next section.
Alternatively, to obtain the relation (2.19) and then the

corresponding retarded Green’s function8 one may use the

7Since in what follows we are interested in the lowenergy limit
of the retarded Green’s function, we will consider the case where
the momentum is spacelike, i.e., k2 � !.

8The prescription for calculating retarded Green’s function in
the context of AdS/CFT correspondence has been first consid-
ered in [26] and further studied in the literature in, e.g., [28–33].
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prescription explored in [27] where the authors presented a
derivation of the real-time AdS/CFT prescription as an
analytic continuation of the corresponding problem in the
Euclidean signature. Indeed, in our case, we have checked
that, using this prescription, we will arrive at the same
results as those in this and the next subsections.9

B. Retarded Green’s function

In this subsection, we compute the retarded Green’s
function of a fermionic operator in the dual nonrelativistic
three-dimensional field theory by making use of the solu-
tion we obtained in the previous section. One should note
that, in the context of the AdS/CFT correspondence, in
order to find the corresponding retarded Green’s function it
is crucial to appropriately identify the source and response
of the dual operator.

On the other hand, the identification of the source and
response depends on the boundary conditions which one
imposes to get a well-defined variational principle. Thus it
is important to study the possible boundary terms one may
add to the action to make the variational principle well-
defined. Therefore, in what follows we will first find a
proper boundary action for our model. To do so it is useful
to explicitly fix our notation.

Since we have been working in a basis in which �r�t is
diagonal, we use the following representation for four-
dimensional gamma matrices

�r ¼ ��2 0

0 �2

 !
; �t ¼ i�1 0

0 i�1

 !
;

�1 ¼ ��3 0

0 ��3

 !
; �2 ¼ 0 �i�2

i�2 0

 !
: (2.21)

In this notation, one has

�þ ¼ 1

2
ð1þ �r�tÞ� ¼ diagð0; 1; 1; 0Þ

�1

�2

�3

�4

0
BBBBB@

1
CCCCCA ¼

0

�2

�3

0

0
BBBBB@

1
CCCCCA;

(2.22)

�� ¼ 1

2
ð1� �r�tÞ� ¼ diagð1; 0; 0; 1Þ

�1

�2

�3

�4

0
BBBBB@

1
CCCCCA ¼

�1

0

0

�4

0
BBBBB@

1
CCCCCA:

(2.23)

Therefore the boundary terms coming from the variation of
the bulk action,

	Sbulk ¼ i

2

Z
d3x

ffiffiffiffiffiffiffi�h
p ð ���r	�� 	 ���r�Þ; (2.24)

reads

	Sbulk¼ i

2

Z
d3x

ffiffiffiffiffiffiffi�h
p ½�y

1	�1��y
2	�2

��y
3	�3þ�y

4	�4�	�y
1�1þ	�y

2�2

þ	�y
3�3�	�y

4�4�: (2.25)

Since the Dirac equation is a first-order differential
equation, we are not allowed to impose the boundary
condition on all components of the spinors. Thus the aim
is to add a proper boundary term such that half of the
degrees of freedom do not appear on the boundary. So
we will have to fix only half of the spinors.
We note, however, that the boundary terms may not be

unique [19]. Of course, different boundary terms lead to
different physics. In our case, since the dual theory is a
nonrelativistic field theory, one may relax the condition to
have Lorentz-symmetric boundary terms.
Following the suggestion of [19], it is natural to consider

the following boundary term10

Sbdy ¼ 1

2

Z
d3x

ffiffiffiffiffiffiffi�h
p

���1�2�; (2.26)

which in our notation reads

Sbdy ¼ i

2

Z
d3x

ffiffiffiffiffiffiffi�h
p ð�y

1�3 þ�y
2�4 ��y

3�1 ��y
4�2Þ:
(2.27)

This boundary term is invariant under rotation and scaling
but breaks the boost symmetry. Of course in our model,
being Lifshitz geometry, the boost symmetry has already
been broken by the geometry at first place.
Adding this boundary term to the bulk action and vary-

ing the total action, we arrive at

9Euclidean Green’s function for fermions on the Lifshitz
geometry has recently been studied in [17].

10Note that this boundary term is different from that considered
in [17].
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	Sbulk þ 	Sbdy ¼ i

2

Z ffiffiffiffiffiffiffi�h
p ½	ð�y

1 þ�y
3 Þð�3 ��1Þ þ 	ð�y

2 ��y
4 Þð�2 þ�4Þ

þ ð�y
1 ��y

3 Þ	ð�1 þ�3Þ þ ð�y
2 þ�y

4 Þ	ð�4 ��2Þ�
¼ i

Z ffiffiffiffiffiffiffi�h
p ½�	�y

1�2 þ 	y2 1 þ �y
2	�1 � y1 	2�;

where

ð�1; �2Þ ¼ 1ffiffiffi
2

p ð�1 þ�3;�1 ��3Þ ð1; 2Þ ¼ 1ffiffiffi
2

p ð�2 þ�4;�2 ��4Þ: (2.28)

Therefore we get a well-defined variational principle by setting a Dirichlet boundary condition on �1 and 2.
11 As a result

the source and response are given by ð�1; 2Þ and ð�2; 1Þ, respectively. The retarded Green’s function is essentially a
matrix which maps the source to the response. To compute the corresponding retarded Green’s function, it is illustrative to
explicitly write the solution we have found in the previous section in components

c 1

c 2

c 3

c 4

0
BBBBB@

1
CCCCCA ¼ r2e�ði!=2Þr2

D�
1"F

�
��; 12 ; i!r2

�
þD�

2"rF
�
��; 32 ; i!r2

�

Dþ
1#F

�
�þ; 12 ; i!r2

�
þDþ

2#rF
�
�þ; 32 ; i!r2

�

Dþ
1"F

�
�þ; 12 ; i!r2

�
þDþ

2"rF
�
�þ; 32 ; i!r2

�

D�
1#F

�
��; 12 ; i!r2

�
þD�

2#rF
�
��; 32 ; i!r2

�

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
: (2.29)

On the other hand, in our basis one has

�rðk:�Þ ¼ i
k1�

1 k2

k2 �k1�
1

 !
: (2.30)

Therefore the Eq. (2.17) reads

0

cþ2#
cþ2"
0

0
BBBBB@

1
CCCCCA¼ 1ffiffiffiffiffiffi

i!
p

0

k1c
�
1" þk2c

�
1#

k2c
�
1" �k1c

�
1#

0

0
BBBBB@

1
CCCCCA¼ 1ffiffiffiffiffiffi

i!
p

0

Acþ1#
Acþ1"
0

0
BBBBB@

1
CCCCCA; (2.31)

where the last equality is the ingoing condition (2.19) with

A ¼ �2
ffiffiffiffiffiffi
i!

p �ð�þ þ 1
2Þ

�ð�þÞ : (2.32)

By making use of this relation and utilizing the asymptotic
behaviors of the solution, the retarded Green’s function can
be read as follows

GRðkÞ¼� 1

A2�k2

� A2�2Ak2þk2 �2k1A

�2k1A A2þ2Ak2þk2

 !
: (2.33)

As is evident from the above expression for the retarded
Green’s function G11ð!; k2Þ ¼ G22ð!;�k2Þ and
detðGRÞ ¼ �1. The spectral function is also given by

AðkÞ ¼ � 1

�
ImðTrðGRÞÞ ¼ 2

�
Im

�
A2 þ k2

A2 � k2

�
: (2.34)

To study different features of the retarded Green’s function
one may use the rotational symmetry to set k1 ¼ 0.12 In
this case, the retarded Green’s function becomes diagonal.
In fact, taking into account that k ¼ k2, one gets

GRðk2Þ ¼ �
A�k2
Aþk2

0

0 Aþk2
A�k2

0
@

1
A: (2.35)

Moreover, one finds

Aðk2Þ¼ 2

�
Im

�
�2ð�þ 1

2Þþ�ð�Þ�ð�þ1Þ
�2ð�þ 1

2Þ��ð�Þ�ð�þ1Þ
�
;

with�¼ k22
4i!

: (2.36)

The behavior of the spectral function as a function of k2
and ! is shown in Fig. 1. Since the spectral function is
symmetric under k ! �k, it is sufficient to draw the figure

11If we had considered 	Sbulk � 	Sbdy, the boundary condition
should have been imposed on �2 and 1.

12Although the model has rotational symmetry, the resultant
retarded Green’s function (2.33) seems asymmetric with respect
to exchanging k1 and k2. We note that it is the artificial of our
asymmetric representation of the Gamma matrices. We will
come back to this point latter.

FERMIONS ON A LIFSHITZ BACKGROUND PHYSICAL REVIEW D 86, 026002 (2012)

026002-5



for positive k. As we observe, the spectral function is
positive for signð!Þ> 0 and diverges at ! ! 0. Actually,
by making use of the asymptotic behavior of the Gamma
functions one can read the asymptotic behavior of the
spectral function near! ¼ 0. Indeed, for finite k2 one finds
A� k2

2

! showing that it has a simple pole.
To further explore the physical content of the model, it is

useful to study the behavior of the eigenvalues of the
retarded Green’s function as we approach ! ¼ 0 for fixed
and finite k2. Indeed, using the asymptotic behavior of the
Gamma functions, for k22 � !, one finds

�1 ¼ k2 � A

k2 þ A
	 i

k22
!
; �2 ¼ k2 þ A

k2 � A
	 �i

!

k22
: (2.37)

This shows that for finite values of k2, one of the eigen-
values, �1, has a pole at ! ¼ 0. More generally, one can
see that the eigenvalue �1 has a pole at! ¼ 0 for all values
of spatial momenta. This can be seen, for example, from
the behavior of the real part of the eigenvalue �1 where
there is a delta function at ! ¼ 0 as shown in Fig. 2. As a
result, one may conclude that there are localized nonpro-
pagating excitations in the model, showing that the theory
exhibits a flat band.

Note that, as we have already mentioned in the intro-
duction, the behavior of the retarded Green’s function is
different from that considered in [18] where, by making
use of a semiholographic method, the authors have shown
that the corresponding Green’s function has no imaginary
part (This is also the case for that in [17]). We note,
however, that since in our case we are using the Lorentz-
symmetry-breaking boundary term, the resultant Green’s
function has, indeed, an imaginary part. Actually, the
situation is similar to the pure AdS case with Lorentz-
symmetry-breaking boundary term (2.26) studied in [19].
Although in this case the bulk AdS geometry respects the

Lorentz symmetry, the boundary term breaks this symme-
try, leading to a nonrelativistic boundary theory. On the
other hand since the boundary term (2.26), up to parity, is
invariant under the Lifshitz symmetry, the nonrelativistic
theory one gets from AdS bulk geometry has the same
symmetry as if we had started with Lifshitz geometry in the
bulk. Therefore one may conclude that the appearance of
flat band is, indeed, the consequence of the nonrelativistic
feature of the dual theory.

III. FINITE TEMPERATURE

In this section, we would like to redo the computations
of the previous section for a nonrelativistic theory at finite
temperature. Following the general idea of gauge/gravity

0

5

10 0

5

10

k2

2

0

2

FIG. 2 (color online). The real part of the flat band eigenvalue,
�1 which shows a delta function behavior at ! ¼ 0, indicating
that the imaginary part of �1 has a pole at ! ¼ 0.
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FIG. 1 (color online). Three-dimensional and density plots of the spectral function as a function of ! and k2. It is positive for
signð!Þ> 0 and has a pole at ! ¼ 0 for fixed k2.
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duality, placing the dual theory at finite temperature cor-
responds to having a black hole in the bulk gravity.
Therefore, in our case we should look for a black hole
solution in the asymptotic Lifshitz geometry. Actually,
black hole solutions in the asymptotic Lifshitz geometry
have been studied in [34–37]. In particular, the authors of
[37] have analytically constructed a black hole which
asymptotes to a vacuum Lifshitz solution with z ¼ 2.
The solution may be supported by different actions with
different field contents, though the metric has the same
form as follows

ds2 ¼ �
�
1� r2

r2H

�
dt2

r4
þ dr2

r2ð1� r2

r2H
Þ þ

d~x2

r2
; (3.1)

where rH is the radius of horizon. The Hawking tempera-
ture is [37]

T ¼ 1

2�r2H
: (3.2)

A. Fermions on Lifshitz black hole

Following our study in the previous section, we will
consider a neutral massless fermion on the Lifshitz black
hole given by Eq. (3.1). For this geometry the nonzero
components of vierbeins and spin connections are

ðetÞa¼ r2ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r2H

r 	ta; ðeiÞa¼ r	ia; ðerÞa¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r2H

s
	ra;

and

ð!trÞa ¼ �ð!rtÞa ¼
�
2

r2
� 1

r2H

�
	ta;

ð!irÞa ¼ �ð!riÞa ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2
� 1

r2H

s
	ia:

Therefore the equation of motion for a massless fermion in
this background, setting

� ¼ ei!tþik
xc ðrÞ ¼ ei!tþik
xr2�ðrÞ; (3.3)

reduces to

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r2H

s
@r� r

r2H

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r2H

r �
1

2
�i!r2H�

r�t

�

þi�rk
�
�
�ðrÞ¼0: (3.4)

To solve this equation, it is useful to act by 6D on the first-
order equation to get a second-order differential equation.
In fact, defining a new variable x ¼ r

rH
, one finds

ð1�x2Þd
2��
dx2

�2x
d��
dx

þ
�
�ð�þ1Þ� �2�

1�x2

�
��¼0;

(3.5)

where �� ¼ 1
2 ð1� �r�tÞ�, and

�¼�1

2
þ irH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ!2r2H

q
; ��¼�1

2
� i!r2H: (3.6)

The resultant differential equation has a well-known form
whose solutions are the associated Legendre functions P
and Q. Therefore the most general solution of the above
equation is

��ðrÞ ¼ c�1 Pð�;��; xÞ þ c�2 Qð�;��; xÞ; (3.7)

where c�1;2 are constant spinors.
Of course, so far we have solved the second-order

differential equation, but its solution is not necessarily a
solution of the equation of motion, which is a first-order
differential equation. In other words, the constant spinors
c�1;2 are not independent. In fact, in order to find a solution

of the equation of motion, one needs to plug the solution
(3.7) into the equation of motion, which in general leads to
certain relations between the constant spinors c�1;2. Indeed,
using the recursion relations between the associated
Legendre functions [38,39],

ð1�x2ÞdPð�;��;xÞ
dx

¼ð����þ1Þð�þ��Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
Pð�;���1;xÞ

þ��xPð�;��;xÞ
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
Pð�;��þ1;xÞ

���xPð�;��;xÞ; (3.8)

one finds

c�1;2 ¼ irH�
rðk 
 �Þcþ1;2: (3.9)

In order to impose the ingoing boundary condition on
the wave function at the horizon, we note that at near
horizon the oscillating part of the solution has the follow-
ing form �

1� r

rH

��i!r2H
; (3.10)

which, in our notation, the ingoing and outgoing waves
correspond to plus and minus signs, respectively. On the
other hand, using the asymptotic behaviors of the associ-
ated Legendre functions near x ¼ 1, one observes that the
function Q has both the ingoing and the outgoing compo-
nents, though the function P has only the ingoing part.
Therefore, in order to have a physical solution one needs to
set c�2 ¼ 0. As a result the solution of the equation of
motion of the massless fermions on the Lifshitz black
hole satisfying the ingoing boundary condition is
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�� ¼ c�r2ei!tþik
xP
�
�;��;

r

rH

�
; (3.11)

with c� being constant two-component spinors satisfying

c� ¼ irH�
rðk 
 �Þcþ: (3.12)

B. Retarded Green’s function

In this subsection, using the solution we just found, we
will compute the retarded Green’s function of a fermionic
operator in the dual nonrelativistic theory at finite tempera-
ture. As we mentioned in the previous section, in order to
compute the corresponding retarded Green’s function, one
needs to properly identify the source and response of the
dual operator, which in turn depends on the boundary
condition. In this section, we will follow our notation in
the previous section and will consider the same boundary
action as that given by the Eq. (2.26). In this notation, the
source and the response of the dual operator are given by
ð�1; 2Þ and ð�2; 1Þ, respectively.

In order to read the proper source and response, one
needs to find the asymptotic behavior of the solution as we
approach the boundary. In fact, by making use of the
asymptotic behaviors of the associated Legendre functions
(see for example [38]) one gets

�� � 2��
ffiffiffiffi
�

p
�ð1�����

2 Þ�ð1þ ����
2 Þ r

2c�ei!tþik
x

� A�r2c�ei!tþik
x: (3.13)

In other words, one may write

�� r2

A�c�"
Aþcþ#
Aþcþ"
A�c�#

0
BBBBBB@

1
CCCCCCAe

i!tþik
x: (3.14)

Note also that in our notation, Eq. (3.12) reads

c�"
0

0

c�#

0
BBBBB@

1
CCCCCA ¼ �rH

k1c
þ
# þ k2c

þ
"

0

0

k2c
þ
# � k1c

þ
"

0
BBBBB@

1
CCCCCA: (3.15)

Altogether with this information the retarded Green’s
function of the dual fermionic operator in the finite-
temperature nonrelativistic theory is

GRðkÞ ¼ �
A2
þþr2Hk

2A2�þ2rHk2A�Aþ
r2Hk

2A2��A2
þ

2rHk1A�Aþ
r2Hk

2A2��A2
þ

2rHk1A�Aþ
r2Hk

2A2��A2
þ

A2
þþr2Hk

2A2��2rHk2A�Aþ
r2Hk

2A2��A2
þ

0
BB@

1
CCA:

(3.16)

It follows from this expression that G11ð!; k2Þ ¼
G22ð!;�k2Þ and detðGRÞ ¼ �1. The spectral function is
also given by

AðkÞ ¼ � 1

�
ImðTrGRÞ ¼ 2

�
Im

�
r2Hk

2A2� þ A2þ
r2Hk

2A2� � A2þ

�
: (3.17)

To explore different features of the retarded Green’s func-
tion, it is useful to use the rotational symmetry to set k1 ¼
0. In this case, the retarded Green’s function reads

GRðk2Þ ¼ �
rHk2A�þAþ
rHk2A��Aþ

0

0 rHk2A��Aþ
AþþrHk2A�

0
@

1
A: (3.18)

Moreover for the spectral function one also finds

Aðk2Þ ¼ 2

�
Im

�r2Hk22
4 �2ð12 þ XþÞ�2ð12 þ X�Þ þ �2ð1þ XþÞ�2ð1þ X�Þ

r2Hk
2
2

4 �2ð12 þ XþÞ�2ð12 þ X�Þ � �2ð1þ XþÞ�2ð1þ X�Þ

�
; (3.19)

with X� ¼ i
2 ð!r2H � rH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ!2r2H

q
Þ.

It is instructive to study the behavior of the spectral function in the small-temperature limit. Physically small
temperature means that we should look for the energies much higher than the temperature, i.e., T

! � 1. Practically, one

may expand the above expression for!r2H � 1. Indeed by making use of the asymptotic behaviors of the Gamma function,

up to order of OðT2

!2Þ, one arrives at

Aðk2Þ ¼ 2

�
Im

�
�2ð�þ 1

2Þ þ �ð�Þ�ð�þ 1Þ
�2ð�þ 1

2Þ � �ð�Þ�ð�þ 1Þ
�
1þ i�T

4!

ð4�� 1Þ�2ð�þ 1
2Þ�ð�Þ�ð1þ �ÞÞ

�4ð�þ 1
2Þ � �2ð�Þ�2ð�þ 1Þ

��
; (3.20)

with � ¼ k2
2

4i! . As we see, at leading order it is exactly the same expression we have found for the zero-temperature case
[see the Eq. (2.36)].

The spectral function as a function of ! and k2 is depicted in Fig. 3. The plot is drawn for rH ¼ 2ffiffiffiffiffi
2�

p where the

temperature is T ¼ 1=4. To further explore the physical content of the model, it is also illustrative to examine the behavior
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of the eigenvalues of the retarded Green’s function as
functions of ! and k2. In fact, the real and imaginary parts
of the first eigenvalue of the retarded Green’s function have
been plotted in Fig. 4. As it is shown, the imaginary part of
the first eigenvalue has a pole at ! ¼ 0. This can also be
seen from the delta function behavior of its real part. On the
other hand, it can be seen that the second eigenvalue has no
pole at ! ¼ 0.

In comparison with the zero-temperature case we see
that the spectral function has qualitatively the same
shape, though there is a small deviation in the low
momentum modes. Nevertheless, for high momenta it

remains unchanged. Therefore the system has a flat
band for high momenta.
It is worth to note that at low momenta and for low

energies there are several nontrivial peaks. In fact, the
presence of these peaks at low energies suggest that heat-
ing up the system has excited zero-energy fermionic modes
at low momenta.

IV. NON-ZERO CHEMICAL POTENTIAL

It is important to mention that when one studies fermionic
features of a system in condensed matter physics, usually
one looks for a possibility of having a Fermi surface.
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FIG. 3 (color online). Three-dimensional and density plots of the spectral function as a function of ! and k2 at rH ¼ 2ffiffiffiffiffi
2�

p . It is
positive for signð!Þ> 0. Note there is no pole at ! ¼ 0 for finite k2.

10

5

0

0

5

10

k2

0

50

100

150

10

5

0

0

5

10

k2

0
1

2

3

4

FIG. 4 (color online). The imaginary (left) and real (right) parts of the flat band eigenvalue. As we see, there is a pole at! ¼ 0 in the
imaginary part of the eigenvalue, which is also evident from the delta function behavior of its real part.

FERMIONS ON A LIFSHITZ BACKGROUND PHYSICAL REVIEW D 86, 026002 (2012)

026002-9



Actually, in order to rigorously address this question one
needs to consider a charged fermion propagating on a
charged Lifshitz black hole13 where we could have a non-
zero chemical potential. In fact, as we have already men-
tioned in Sec. II, the Lifshitz geometry is not a solution of
pure Einstein gravity. In order to find the Lifshitz solution,
one may couple gravity to a massive background gauge
field. In this case, the background supports a nonzero
gauge field.

We note, however, that this gauge field diverges as we
approach the boundary and thus cannot play the role of
chemical potential. In fact, in order to have a chemical
potential, another gauge field is needed [41]. Indeed, the
second gauge field has the proper near-boundary behavior
to define chemical potential. More precisely, one may start
with the following action [41]

S ¼ 1

16�G4

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 2�� 1

2
ð@�Þ2

� 1

4
e�1�ðFð1ÞÞ2 � 1

4
e�2�ðFð2ÞÞ2

�
: (4.1)

This model admits a charged Lifshitz black hole solution
with critical exponent z for the particular values of �, �1

and �2 as follows

�¼�ðzþ1Þðzþ2Þ
2L2

; �1¼� 2ffiffiffiffiffiffiffiffiffiffiffi
z�1

p ; �2¼
ffiffiffiffiffiffiffiffiffiffiffi
z�1

p
:

(4.2)

The corresponding black hole solution is [41]14

ds2 ¼ �r2zfdr2 þ dr2

r2f
þ r2d~x2;

f ¼ 1� 1þ r2ðzþ1Þ
0

rzþ2
þ r2ðzþ1Þ

0

r2ðzþ1Þ ;

e
ffiffiffiffiffiffiffi
z�1

p
� ¼ �2

4zr2ðzþ1Þ
0

r2ðz�1Þ;

Að1Þ
t ¼ ��ð1Þð1� r1þzÞ;

Að2Þ
t ¼ �ð2Þ

�
1� 1

r1þz

�
; (4.3)

where r0 and � are the only remaining free parameters
which determine mass and charges of the solution, and

�ð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz� 1Þðzþ 2Þ

p �
�2

4zr2ðzþ1Þ
0

�
1=z�1

;

�ð2Þ ¼ 4zr2ðzþ1Þ
0

�
: (4.4)

It is, indeed, an asymptotically Lifshitz charged black hole
whose Hawking temperature is

T ¼ zþ 2

4�

�
1� z

zþ 2
r2ðzþ1Þ
0

�
: (4.5)

At low energy, using the general idea of AdS/CFT
correspondence, the physics is governed by near-horizon
modes. In this case, for example, one should study fermi-
ons on the near-horizon background. At zero temperature

where r2ðzþ1Þ
0 ¼ zþ2

2 setting

r� 1 ¼ �

ð2þ 3zþ z2Þ
 ; t ¼ 1

�
�; (4.6)

the near-horizon background can be obtained in the limit of
� ! 0, where one finds

ds2 ¼ �d�2 þ d
2

ð2þ 3zþ z2Þ
2
þ dx22; e� ¼ �2

4ðzþ 2Þ ;

AðiÞ
t ¼ ðzþ 1Þ�ðiÞ

ð2þ 3zþ z2Þ
 : (4.7)

As we observe, the metric is in the form of AdS2 � R2.
Therefore, the low-energy physics is described by an
emergent IR conformal field theory (CFT). Actually, the
situation is very similar to the relativistic case [10]. As a
result, we would expect that the model exhibits a Fermi
surface whose physics is governed by an IR fixed point.

A. Charged fermions

Let us first consider a four-dimensional charged Dirac
fermion on the Lifshitz background whose action is

Sbulk ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
i ��

�
1

2
ð�a ~Da �DQ a�

aÞ �m

�
�: (4.8)

Here 6D ¼ ðe�Þa��½@a þ 1
4 ð!��Þa��� � iqAð2Þ

a �, with

��� ¼ 1
2 ½��;���.

As we discussed in the previous sections, one needs to
impose a proper boundary condition to get a well-defined
variational principle. With a suitable boundary condition
the equation of motion is�
ðe�Þa��

�
@aþ1

4
ð!��Þa���� iqAð2Þ

a

�
�m

�
�¼0: (4.9)

The above equation of motion by the choice of

� ¼ ð�hÞ�1=4e�i!tþik:xc ðrÞ reduces to

13,
A few days after submitting our paper, another paper [40]
appeared on arXiv where charged fermions on the Lifshitz
geometry were studied. Of course, their background is different
from what we are considering in this paper for charged fermions.
14Note that, in comparison with the solution in , we have shifted
the gauge field by constants to make sure that g��AðiÞ

� AðiÞ
� remains

finite. Moreover, by a proper rescaling we have set L ¼ 1 and
also with a proper choice of the parameters the radius of horizon
has also been set to 1.
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�
rf1=2�r@r � i

rzf1=2

�
!þ q�ð2Þ

�
1� 1

rzþ1

��
�t

þ i

r
� 
 k�m

�
c ðrÞ ¼ 0: (4.10)

As we already mentioned, the low energy is governed by
an emergent IR fixed point. To examine the low-energy

limit of the fermions, one should consider the limit of! �
�ð2Þ. At zero temperature, using the scaling (4.6) and in the
limit of � ! 0 keeping!=� fixed, the above equation reads�

��

@
 � i
�t

�
~!þ qe




�

þ i� 
 k� mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3zþ z2

p �
c ð
Þ ¼ 0; (4.11)

where

e ¼ ð1þ zÞ�ð2Þ

2þ 3zþ z2
; ~! ¼ !

�
¼ finite: (4.12)

We recognize the above equation as a charged fermion
probing theAdS2 � R2 background (4.7), as expected. As a
result, one may go through the construction of [10] to
express the retarded Green’s function of the fermion on
the Lifshitz-charged black hole in terms of the retarded
Green’s function of AdS2 model in small ! limit.

Here, instead of doing so, one utilizes the numerical
method to solve the equation of motion numerically. To
proceed, it is useful to consider the following representa-
tion for four-dimensional gamma matrices

�r ¼ ��3 0

0 ��3

 !
; �t ¼ i�1 0

0 i�1

 !
;

�1 ¼ ��2 0

0 �2

 !
; �2 ¼ 0 �i�2

i�2 0

 !
: (4.13)

Because of rotational symmetry in the spatial directions,
we may set k2 ¼ 0. Then using the notation

c ¼ �1

�2

� �
; (4.14)

the equation of motion (4.10) reduces to the following
decoupled equations�
rf1=2@r � 1

rzf1=2

�
!þ q�ð2Þ

�
1� 1

rzþ1

��
i�2

þm�3 � ð�1Þ� k1
r
�1

�
�� ¼ 0 (4.15)

for � ¼ 1, 2. It is easy to see that

�� � a�r
m 0

1

� �
þ b�r

�m 1
0

� �
; for r ! 1: (4.16)

To find the retarded Green’s function, following [10], it
is useful to defined 1 ¼ c 1=c 2 and 2 ¼ c 3=c 4 where

c i’s are defined via �1 ¼ ðc 1; c 2Þ;�2 ¼ ðc 3; c 4Þ.
These parameters satisfy the following equations

rf1=2@r1þ2m1�
�

�

rzf1=2
þk1

r

�
21 ¼

�

rzf1=2
�k1

r
;

rf1=2@r2þ2m2�
�

�

rzf1=2
�k1

r

�
22 ¼

�

rzf1=2
þk1

r
; (4.17)

where

� ¼ !þ q�ð2Þ
�
1� 1

rzþ1

�
: (4.18)

Using these equations, the retarded Green’s function is
essentially given in terms of functions G1ðk;!Þ and
G2ðk;!Þ, where15

G�ðk;!Þ ¼ lim
r!1r

2m�; for � ¼ 1; 2 (4.19)

with the ingoing boundary condition at the horizon, which
in our notation is [10]

�jhorizon ¼ i: (4.20)

The precise expression of the retarded Green’s function
in terms of G� depends on the boundary condition one
imposes to get a well-defined variational principle. For
example, if we impose the standard boundary condition,
in our notation, the corresponding retarded Green’s func-
tion is

Gðk;!Þ ¼ � G1ðk;!Þ 0

0 G2ðk;!Þ

 !
: (4.21)

Therefore the spectral function reads

A ðk;!Þ ¼ 1

�
ImðG1ðk;!Þ þG2ðk;!ÞÞ: (4.22)

On the other hand, for the boundary condition obtained
by adding the boundary term (2.26) the corresponding
retarded Green’s function as a function of G� is given by
(see also [22])

Gðk;!Þ ¼ �
2G1ðk;!ÞG2ðk;!Þ
G1ðk;!ÞþG2ðk;!Þ

G1ðk;!Þ�G2ðk;!Þ
G1ðk;!ÞþG2ðk;!Þ

G1ðk;!Þ�G2ðk;!Þ
G1ðk;!ÞþG2ðk;!Þ

�2
G1ðk;!ÞþG2ðk;!Þ

0
@

1
A: (4.23)

Thus the corresponding spectral function reads

Aðk;!Þ ¼ 2 Im

�
G1ðk;!ÞG2ðk; !Þ � 1

G1ðk;!Þ þG2ðk;!Þ
�
: (4.24)

Note that in the notation we are using in this section [see
(4.13)] the boundary term (2.26) reads

15Here we set k1 ¼ k.
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Sbdy ¼ i

2

Z
d3x

ffiffiffiffiffiffiffi�h
p

���1�2�

¼�i

2

Z
d3x

ffiffiffiffiffiffiffi�h
p ðc y

1 c 4 þ c y
2 c 3 þ c y

3 c 2 þ c y
4 c 1Þ:
(4.25)

Therefore, adding this boundary term to the action results
in imposing the boundary condition on a combination of
the different components of the fermions as follows

	S ¼ i
Z

d3x
ffiffiffiffiffiffiffi�h

p ð	�y
2�2 � 	�y

1�1 � �y
1	�1 þ �y

2	�2Þ;
(4.26)

where

ð�1; �2Þ ¼ 1ffiffiffi
2

p ðc 2 þ c 4; c 2 � c 4Þ;

ð�1; �2Þ ¼ 1ffiffiffi
2

p ðc 1 þ c 3; c 1 � c 3Þ: (4.27)

B. Numerical results

Having found expressions for the retarded Green’s
function and the spectral function for the cases of standard
and nonstandard boundary conditions, it is an easy task to
find their behaviors as functions of k and !. Here, to
explore the physical content of the model, we have plotted
the spectral function of the model for both standard and
nonstandard boundary conditions. At zero temperature,

where r2ðzþ1Þ
0 ¼ ðzþ 2Þ=z, we set m ¼ 0, q�ð2Þ ¼ ffiffiffi

3
p

.

For z ¼ 2, the spectral function is shown in Fig. 5. While
in the standard case the model has a Fermi surface at kf ¼
0:8902, in the nonstandard case it exhibits a flat band. Note
that since the retarded Green’s function is an even function
of k [see Eqs. (4.15)] we only considered k > 0.

It is worthwhile to note that the model contains four free
parameters which are mass m, critical exponent z, tem-

perature T, and chemical potential �ð2Þ, which always

appears in the combination q�ð2Þ, where q is the charge
of the fermion. Therefore it is natural to explore the physi-
cal content of the model when we vary these parameters.
Actually, changing the parameters, we find the following
behaviors.

For fixed m, T, and q�ð2Þ as we increase the critical
exponent z for the standard boundary condition, the sharp
peak representing the Fermi surface becomes smaller and
occurs at smaller kf and eventually, for large enough z, it

distorts the Fermi surface completely. In other words the
model does not have a Fermi surface. On the other hand,
for the nonstandard boundary condition, the model still
exhibits a flat band, though there is a depletion in the low
momentum modes (see, for example, Fig. 6 for z ¼ 3).
For fixed z, the dependence of the spectral function on the

parameters m, T and q�ð2Þ for both standard and nonstan-
dard cases is the same as that for z ¼ 1, where we have AdS
black hole solutions (see for example [10,19] for standard
and nonstandard boundary conditions, respectively).

V. DISCUSSIONS

In this paper, following the general idea of AdS/CFT
correspondence, we have studied retarded Green’s function
of a fermionic operator in a three-dimensional nonrelativ-
istic field theory by making use of a massless fermion on
the asymptotically Lifshitz geometry. In this paper, we
have mainly considered the asymptotically Lifshitz ge-
ometry with critical exponent of z ¼ 2. We have consid-
ered both neutral and charged fermions.
Taking into account that the gravity on asymptotically

Lifshitz backgrounds may provide holographic descriptions
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FIG. 5 (color online). The behavior of spectral functions with the standard (left) and nonstandard (right) boundary conditions for
z ¼ 2 and T ¼ 0 as functions of ! and k. For the standard boundary condition the system exhibits a Fermi surface at kf ¼ 0:8902,

while for the nonstandard case it has a flat band.
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for strange metals [5], our studies might be useful to explore
certain features of strange metals.

For neutral fermions at zero temperature, where the bulk
fermions propagate on the Lifshitz background, the result-
ant retarded Green’s function of the dual fermionic opera-
tor exhibits interesting behaviors. In particular we observe
that the spectral function has a pole at ! ¼ 0 for all values
of spatial momenta. The appearance of the pole may also
be seen from the behavior of the real and imaginary parts of
the eigenvalues of the corresponding retarded Green’s
function.

Having seen a pole at ! ¼ 0 with all values of spatial
momenta shows that there are localized nonpropagating
excitations, which in turn indicates an infinite flat band.
Actually, the situation is similar to that in pure AdS geome-
try with the Lorentz-breaking boundary condition [19].

We have also considered three-dimensional nonrelativ-
istic theories at finite temperature. To study the three-
dimensional model at finite temperature, we have utilized
the asymptotically Lifshitz black hole obtained in [37]. We
have shown that by heating up the dual theory, although the
nonzero temperature can excite low-momenta zero-energy
modes, at high momenta there is still an infinite flat band!

An interesting feature we have seen in our model is that
the spectral function is positive for signð!Þ> 0. In fact,
unitarity requires that the spectral function be always
positive. Since, in our case, the retarded Green’s function
changes its sign and indeed is negative for signð!Þ< 0, it
is tempting to propose that retarded Green’s function we
have found for the nonrelativistic model contains informa-
tion for both particles and antiparticles!

We have also considered charged fermions probing a
charged Lifshitz black hole. While for the standard bound-
ary condition the model exhibits a Fermi surface, for non-
standard boundary condition the model still has a flat band.

We have also observed that, as one increases the critical
exponent z for the standard boundary condition, the sharp
peak representing the Fermi surface becomes smaller and
occurs at smaller kf and eventually, for large enough z, it

distorts the Fermi surface completely. In other words, the
model does not have a Fermi surface. On the other hand for
the nonstandard boundary condition the model still exhib-
its a flat band, though there is a depletion in the low-
momentum modes.
It is worthwhile to note that, in order to make the varia-

tional principle well-defined, one could also use another
boundary action as follows

Sbdy ¼ 1

2

Z
d3x

ffiffiffiffiffiffiffi�h
p ð ��þ�� � ����þÞ

¼ i

2

Z
d3x

ffiffiffiffiffiffiffi�h
p ð�y

2�1 þ�y
3�4 ��y

1�2 ��y
4�3Þ:
(5.1)

With this boundary term, the variation of the whole action
leads to the following boundary terms

i
Z ffiffiffiffiffiffiffi�h

p ½�	�y
2�1 þ 	y2 1 þ �y

1	�2 � y1 	2�; (5.2)

where in this case the newly defined fields are given by

ð�1; �2Þ ¼ 1ffiffiffi
2

p ð�1 þ�2;�1 ��2Þ

ð1; 2Þ ¼ 1ffiffiffi
2

p ð�3 þ�4;�3 ��4Þ: (5.3)

If we follow the steps we went through in the previous
sections, one may compute the corresponding retarded
Green’s function in this case. Doing so, one finds that the
resultant retarded Green’s functions have the same form as
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FIG. 6 (color online). The behavior of spectral functions with the standard (left) and nonstandard (right) boundary conditions for
z ¼ 3 and T ¼ 0 as functions of ! and k. For the standard boundary condition the system exhibits a Fermi surface, while for the
nonstandard case it has a flat band.
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those in the previous sections, except for the fact that the
roles of k1 and k2 have been changed. Now, in this case we
could use the rotational symmetry to set k2 ¼ 0. Of course,
the physics remains unchanged after all.
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