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We study a flavor-violating four-fermion interaction in the Lifshitz context, in 3þ 1 dimensions and

with a critical exponent z ¼ 3. This model is renormalizable, and features dynamical mass generation, as

well as asymptotic freedom. At one-loop, it is only logarithmically divergent, but the superficial degree of

divergence of the two-point functions is 3. We calculate the two-loop corrections to the propagators, and

show that, at this order, the Lorentz-violating corrections to the IR dispersion relation are quadratic in the cut

off. Furthermore, these corrections are too significant to represent a physical effect. As a consequence, the

predictive power of the model in terms of Lorentz-violating effects in the propagation of particles is limited.
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I. INTRODUCTION

Lifshitz-type theories, where time and space have differ-
ent mass dimensions and therefore violate Lorentz invari-
ance, have attracted attention in recent years, motivated
essentially by the possibility of defining new renormaliz-
able interactions. This is because of an improvement in the
convergence of loop integrals, due to higher order space
derivatives, which is achieved without the introduction of
ghost degrees of freedom, since the order of time deriva-
tives remains minimal. A review of Lifshitz theories can be
found in [1] for quantum field theories in particle physics
and in [2] for the Horava-Lifshitz alternative approach to
gravity. An example of a new renormalizable interaction in
the Lifshitz context is the Liouville interaction in 3þ 1
dimensions [3], where the exponential potential for the
scalar field is a relevant interaction because the field is
dimensionless if the critical exponent is z ¼ 3.

We consider a Lifshitz-type four-fermion interaction
model, which, in d ¼ 3 space dimensions and for an aniso-
tropic scaling z ¼ 3, is renormalizable [4]. Such models
have been studied in [5], where two fundamental properties
were shown: dynamical mass generation and asymptotic
freedom. One motivation for these theories, besides renor-
malizability, is the apparent improvement of quantum cor-
rections, since the one-loop graphs are only logarithmically
divergent, instead of quadratically in the Lorentz case. But
the overall superficial degree of divergence of the graphs of
the theory is actually! ¼ 6� 3E=2, whereE is the number
of external lines. If one considers the propagator (E ¼ 2),
the corresponding corrections have a superficial degree of
divergence equal to 3. The coefficient of the cubic diver-
gence may cancel for some graphs, but we calculate here a
two-loop graph which shows that the divergence in the
model is at least quadratic. Therefore, although renormaliz-
able, this Lifshitz model still contains ‘‘large’’ divergences.

Our model features two massless fermion flavors,
coupled with four-fermion interactions which do not re-
spect flavor symmetry. After showing the occurrence of
dynamical flavor oscillations in this model, we calculate
the modified dispersion relations for these two fermions,
arising from quantum fluctuations. Classically, all fermi-
ons have the same dispersion relations, with higher order
powers of the space momentum ~p, rescaled by a large mass
M, which represents the crossover scale between the
Lifshitz and Lorentz regimes. These dispersion relations
coincide with the expected Lorentz-invariant one in the
infrared (IR) regime j ~pj � M. Taking into account quan-
tum corrections, though, modifies this IR limit: it is known
in Lifshitz-type studies that different species of particles
see different effective light cones [6]. Since our model
breaks flavor symmetry, the dressed IR dispersion relations
are different from the Lorentz-invariant one, and we show
that the corresponding corrections are quadratically diver-
gent. Furthermore, as we will see, these corrections are too
significant to represent any physical effect. As a conse-
quence, a proper treatment of the model would consist in
defining counterterms to absorb these divergences, and no
prediction can be made as far as Lorentz-violating propa-
gation is concerned (a logarithmic divergence could lead to
a ‘‘realistic’’ energy dependent effective maximum speed).
The next section derives the dynamical masses for the

model, including the mass mixing terms necessary for
flavor oscillations. From our study of dynamically induced
flavor oscillations, and taking into account experimental
data on neutrino oscillations, we derive values for the
coupling constants of our model, which, as expected, are
perturbative. Although neutrinos are not Dirac fermions,
the corresponding experimental constraints give a good
order of magnitude for the parameters in our model.
Section III shows the asymptotic freedom of the interac-
tion, based on a one-loop calculation. The four-point func-
tion has a vanishing superficial degree of divergence, such
that higher order corrections cannot change the sign of
these beta functions. The effective IR dispersion relations,
dressed by quantum fluctuations, are derived in Sec. IV. For
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this, we need to go to two loops, since the one-loop correc-
tion to the fermion propagators is momentum-independent.
Detailed calculations are given in the Appendix, where we
perform part of the integration analytically and then inte-
grate the rest numerically.

II. FLAVOR OSCILLATIONS

We describe here, in the Lifshitz context, how flavor
oscillations can arise dynamically from flavor-mixing
interactions between two massless bare fermions, as sug-
gested in [7]. From our expressions for the dynamical
masses, together with experimental data, we find phenom-
enologically realistic values for the coupling constants of
our model.

Oscillations of massless neutrinos are studied in [8],
where neutrinos are considered open systems, interacting
with an environment. Such oscillations have also been
studied in [9], in the framework of Lorentz-violating
models, involving nonvanishing vacuum expectation
values for vectors and tensors. Whilst these studies have
been questioned by phenomenological constraints [10], our
present model, based on anisotropic space time and higher
order space derivatives, is not excluded.

Flavor oscillations were also related to superluminality
in [11], where it is shown that, if superluminality is due to a
tachyonic mode, the latter can be stabilized by flavor
mixing. Finally, in [12], superluminal effects are related
to the extension of a single neutrino wave function, where
the oscillation mechanism plays a role in the uncertainty of
the neutrino position.

A. Flavor symmetry violating 4-fermion interactions

We work in the z ¼ 3 Lifshitz context, in d ¼ 3 space
dimensions. We consider two flavors of massless Dirac
fermions c 1, c 2, and the free action

Sfree ¼
Z

dtd~xð �c ai�
0 _c a � �c aðM2 � �Þði ~@ � ~�Þc aÞ
a ¼ 1; 2;

(1)

where ½M� ¼ 1 and ½c a� ¼ 3=2, and a dot over a field
represents a time derivative. For the dispersion relations to
be consistent in the IR [see Eq. (4) below], one can con-
sider M typically of the order of a grand unified theory
scale (GUT), although we will show that our results only
slightly depend on the actual value ofM. We introduce the
following renormalizable, flavor-violating and attractive
4-fermion interactions

Sint ¼
Z

dtd~xðg1 �c 1c 1 þ g2 �c 2c 2 þ hð �c 1c 2 þ �c 2c 1ÞÞ2;
(2)

where the coupling constants g1, g2, h are dimensionless.
As shown in [5], this kind of model exhibits dynamical

mass generation, which can be seen only with a nonper-
turbative approach, as will be shown in the next section.
Taking into account the dynamical masses, but ignoring
quantum corrections to the kinetic terms, the dispersion
relations are of the form

!2 ¼ m6
dyn þ ðM2 þ p2Þ2p2; a ¼ 1; 2; (3)

which, after the rescaling ! ¼ M2 ~!, leads to

~! 2 ¼ ~m2
dyn þ p2 þ 2p4

M2
þ p6

M4
; (4)

where ~mdyn ¼ m3
dyn=M

2. One can see then that Lorentz-

like kinematics are recovered in the IR regime p2 � M2,
as expected in the framework of Lifshitz models. After the
rescaling t ¼ ~t=M2, the action reads

S ¼
Z

d~td ~x

�
�c ai6@c a þ �c a

�

M2
ði ~@ � ~�Þc a

þ
�
g1
M

�c 1c 1 þ g2
M

�c 2c 2 þ h

M
ð �c 1c 2 þ �c 2c 1Þ

�
2
�
;

(5)

where we can see that the four fermion couplings ðga=MÞ2,
gah=M

2, and ðh=MÞ2 are very small compared to the Fermi
coupling ’ 10�5 GeV�2, if M is of the order of a GUT
scale, or even several orders of magnitude smaller, and ga,
h are perturbative. Finally, note that, for Large Hadron
Collider energies up to few TeVs, the classical Lifshitz
corrections p4=M2 and p6=M4 in the dispersion relation
(4) are not detectable, if M is of the order of a GUT scale.
For this reason, if one wishes to describe measurable non-
relativistic effects in the Lifshitz context, these should be
sought in quantum corrections to the IR dispersion relation.

B. Superficial degree of divergence

It is interesting to note that, although this Lifshitz model
has only logarithmic divergences at one-loop, quantum
corrections actually do not ‘‘behave better’’ than those in
the Lorentz-invariant �4 theory, since the superficial
degree of divergence of the propagator is 3.
To show this, we calculate via the usual approach the

degree of divergence! of a graphwithE external lines. Each
loop gives an integration measure dp0d

3p, which has mass
dimension 6, and each propagator has mass dimension-3.
For a graph with I internal lines and L loops, the superficial
degree of divergence is therefore ! ¼ 6L� 3I. As
usual, because of momentum conservation, we also have
L ¼ I � nþ 1, where n is the number of vertices of the
graph. Finally, sincewe have 4-leg vertices, we also have the
relation 4n ¼ Eþ 2I. Taking into account these constraints,
we find ! ¼ 6� 3E=2.
From this result, we see that the four-point function is at

most logarithmically divergent, but the propagator has a
superficial degree of divergence equal to 3, although the
one-loop mass corrections are logarithmically divergent
only, as we show in the next subsection.
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C. Dynamical generation of masses

We now calculate the dynamical masses generated by
the interaction (2). For this, we introduce the auxiliary
scalar field � to express the interaction as

expðiSintÞ ¼
Z

D½�� expðiS�Þ; with

S� ¼
Z

dtd~xð��2 þ 2�ðg1 �c 1c 1 þ g2 �c 2c 2

þ hð �c 1c 2 þ �c 2c 1ÞÞÞ; (6)

and then calculate the effective potential for � ¼
constant as

expðiVVeffð�ÞÞ¼
Z
D½c 1; �c 1;c 2; �c 2�expðiSfreeþ iS�Þ;

(7)

whereV is the space time volume. This integration can be
done exactly, since Sfree þ S� is quadratic in fermion

fields, and leads to an effective potential for �. From the
dispersion relation (4), one can see that a nontrivial mini-
mum �min for this effective potential will give the flavor
mixing mass matrix

m3
1 �3

�3 m3
2

 !
¼ 2�min

g1 h

h g2

 !
; (8)

which leads to the rescaled masses

~m1 ~�

~� ~m2

 !
¼ 2

�min

M2

g1 h

h g2

 !
: (9)

As a consequence, the mass eigenstates are

m� ¼ �min

M2
ðg1 þ g2 � ðg1 � g2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ð2�Þ

q
Þ; (10)

where the mixing angle � is defined by

tanð2�Þ � 2h

g1 � g2
: (11)

With the auxiliary field, the Lagrangian can then be written

in the form ��O�, where

� ¼ c 1

c 2

� �
; (12)

and the operator O is

O ¼ i�0@0 � ðM2 � �Þði ~@ � ~�Þ þ 2g1� 2h�

2h� i�0@0 � ðM2 � �Þði ~@ � ~�Þ þ 2g2�

 !
: (13)

Integration over the fermions then gives the following
effective potential for � (where the Euclidean metric is
used for the loop momentum)

Veffð�Þ ¼ �2 � 1

2

Z d!

2�

d ~p

ð2�Þ3 lnð½!2 þ ðM2 þ p2Þ2p2�2

þ 4�2½!2 þ ðM2 þ p2Þ2p2�ðg21 þ g22 þ 2h2Þ
þ 16ðg1g2 � h2Þ2�4Þ: (14)

A derivative with respect to � gives

dVeff

d�
¼ 2���

Z d!

2�

d ~p

ð2�Þ3
A!2 þ B

ð!2 þ CþÞð!2 þ C�Þ
;

(15)

where

A ¼ 4ðg21 þ g22 þ 2h2Þ
B ¼ 4ðM2 þ p2Þ2p2ðg21 þ g22 þ 2h2Þ þ 32�2ðg1g2 � h2Þ2

(16)

C� ¼ ðM2 þ p2Þ2p2 þ 2�2½ðg21 þ g22 þ 2h2Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg21 � g22Þ2 þ 4h2ðg1 þ g2Þ2

q
�: (17)

The integration over frequencies ! leads to

dVeff

d�
¼ 2���

1

ð2�Þ2
Z �

0
p2dp

�
B

Cþ
ffiffiffiffiffiffiffi
C�

p þ C�
ffiffiffiffiffiffiffi
Cþ

p

þ Affiffiffiffiffiffiffi
Cþ

p þ ffiffiffiffiffiffiffi
C�

p
�

(18)

where� is the UV cutoff, assumed to be large compared to
M. A nontrivial minimum �min � 0 for this effective
potential is solution of the equation

8�2 ¼
Z �

0
p2dp

�
B

Cþ
ffiffiffiffiffiffiffi
C�

p þ C�
ffiffiffiffiffiffiffi
Cþ

p þ Affiffiffiffiffiffiffi
Cþ

p þ ffiffiffiffiffiffiffi
C�

p
�
:

(19)

The dominant contribution of these logarithmically diver-
gent integrals comes from p ! �, so we can therefore
approximate

C� ’ Cþ ’ p6 þ A

2
�2 and B ’ Ap6; (20)

such that

Z �

0
p2dp

�
B

Cþ
ffiffiffiffiffiffiffi
C�

p þ C�
ffiffiffiffiffiffiffi
Cþ

p þ Affiffiffiffiffiffiffi
Cþ

p þ ffiffiffiffiffiffiffi
C�

p
�

’ A

3
ln

�
2

ffiffiffi
2

p
�3

�
ffiffiffiffi
A

p
�
: (21)
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The gap equation (19) then gives

�min ’ �3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ 2h2

q exp

� �6�2

g21 þ g22 þ 2h2

�
; (22)

and the rescaled masses (9) are

~ma’ 2gaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21þg22þ2h2

q �3

M2
exp

� �6�2

g21þg22þ2h2

�
(23)

~� ’ 2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ 2h2

q �3

M2
exp

� �6�2

g21 þ g22 þ 2h2

�
: (24)

As expected, these masses are not analytical in the cou-
pling constants and could not have been obtained with a
perturbative expansion. Similar results have been obtained
in the context of magnetic catalysis [13], based on the
Schwinger-Dyson approach, and also for Lorentz-violating
extensions of QED [14]. Neither of these studies however
feature anisotropic space time studied herein.

Finally, we note that the approach adopted here, based
on the effective potential for the auxiliary field �, is in
principle valid for a large number of flavors. Indeed, this
auxiliary field depends on space and time, and its fluctua-
tions around the minimum �min induce new fermion inter-
actions. For N fermion flavors though, these fluctuations
are suppressed by 1=N, which justifies the approach. In our
case, N ¼ 2 is not ‘‘large,’’ but the corresponding order of
magnitude for the dynamical masses is sufficient for a
suitably accurate determination of the coupling constants
g1, g2, as explained in the next subsection.

D. Experimental constraints

From the expressions (10), we obtain the following
difference of mass eigenstates squared

�m2 ¼ 4

cosð2�Þ
g21 � g22

g21 þ g22 þ tan2ð2�Þðg1 � g2Þ2=2
�6

M4

� exp

� �12�2

g21 þ g22 þ tan2ð2�Þðg1 � g2Þ2=2
�
: (25)

Experimental constraints are [15]

�m2
12 ¼ 7:59ð7:22–8:03Þ � 10�5 ðeVÞ2

sin2�12 ¼ 0:318ð0:29–0:36Þ; (26)

and we plot in Fig. 1, from the expression (25), the set of
points in the plane g1, g2 which are allowed, given the
experimental constraints (26). We consider� ’ 1019 GeV,
corresponding to the Planck mass. An important property
is that the result is hardly sensitive to the value of the mass

scales M: because of the exponential dependence in
Eq. (25), an increase of several orders of magnitude in M
leads to an increase of a few percent only for the couplings
ga, as shown in the following table. Considering the
situation where h � 1, such that g1 ’ g2, according to
Eq. (11), the approximate common value for the coupling
constants as a function of the ratio M=� is then:
On Fig. 1, the thin line represents the set of points

satisfying the constraint

��������ln
��m2

experimental

�m2
calculated

���������� 1; (27)

and the thick line represents the set of points such that the
largest mass eigenvalue is between 10�3 and 1 eV. We see
that the coupling constants appearing in the theory are then
of the order g2a ’ 0:25, and can be considered perturbative.

III. ASYMPTOTIC FREEDOM

We now calculate the one-loop coupling constants, for
h � 1, and we show that the theory is asymptotically free.
For simplicity, we set h ¼ 0 but still keep g1 � g2. The
bare interaction can be expressed as

g21ð �c 1c 1Þ2þG �c 1c 1
�c 2c 2þg22ð �c 2c 2Þ2; G¼ 2g1g2;

(28)

and the dressed interaction is of the form

FIG. 1 (color online). Values of g1 (x-axis) and g2 (y-axis)
allowed by experimental constraints, for M=� ¼ 10�11.
Negative values are allowed, since the physical quantities depend
on the square of the coupling constants only. Points where
g1 ¼ g2 are strictly speaking not allowed, since at these points
�m2 ¼ 0. However, the resulting logarithmic singularity is very
localized in the parameter space, such that we can safely choose
g1 and g2 perturbatively close to each other.
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ðg21 þ �g21Þð �c 1c 1Þ2 þ ðGþ �GÞ �c 1c 1
�c 2c 2

þ ðg22 þ �g22Þð �c 2c 2Þ2: (29)

Note that no symmetry imposes any relation between �G
and �g21, �g

2
2: the interaction

�c 1c 1
�c 2c 2 is dressed inde-

pendently of the interactions ð �c 1c 1Þ2 and ð �c 2c 2Þ2.

A. One-loop Fermi coupling

The one-loop corrections to the coupling constants
correspond to the momentum-independent part of the

one-loop four-point function, and are therefore obtained
for vanishing external momentum. If one denotes

Nað!; ~pÞ ¼ !�0 � ðM2 þ p2Þð ~p � ~�Þ þm3
a

Dað!; ~pÞ ¼ !2 � ðM2 þ p2Þ2p2 �m6
a;

(30)

the generic graph for the one-loop corrections is thus

Iab ¼
Z d!d ~p

ð2�Þ4
iNað!; ~pÞiNbð!; ~pÞ
Dað!; ~pÞDbð!; ~pÞ : (31)

When � 	 M, we obtain

Iab ¼ �
Z d!d ~p

ð2�Þ4
�

m3
a=ðm3

a �m3
bÞ

!2 � ðM2 þ p2Þ2p2 �m6
a

� m3
b=ðm3

a �m3
bÞ

!2 � ðM2 þ p2Þ2p2 �m6
b

�

¼ i

4�2ðm3
a �m3

bÞ
Z �

0
p2dp

�
m3

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 þ p2Þ2p2 þm6
a

p � m3
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2 þ p2Þ2p2 þm6
b

q �

’ i

12�2ðm3
a �m3

bÞ
Z �3

0
dx

�
m3

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm6

a

p � m3
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þm6
b

q �
’ i

4�2ðm3
a �m3

bÞ
�
m3

a ln

�
�

ma

�
�m3

b ln

�
�

mb

��
:

(32)

The integral (32) diverges logarithmically, unlike the
Lorentz symmetric case where it diverges quadratically.
Note that, when mb ! ma, the previous result is regular
and leads to

Iaa ’ i

4�2
ln

�
�

ma

�
: (33)

In order to calculate the number of graphs (32) contributing
to the coupling corrections, we introduce the auxiliary field
� and write the four-fermion interactions in the form

� 1

2
�2 þ �

ffiffiffi
2

p ðg1 �c 1c 1 þ g2 �c 2c 2Þ: (34)

The scalar � does not propagate, but is described by a
fictitious propagator, which carries a factor i. This propa-
gator has to be understood in the limit where it shrinks to a

point, leading to the fermion loops given by the expres-
sions (32). The two vertices corresponding to the effective
Yukawa interactions are i

ffiffiffi
2

p
g1 and i

ffiffiffi
2

p
g2.

The graphs corresponding to the four-point function are
represented in Fig. 2, in terms of the equivalent Yukawa
interaction (34), where the last two graphs do not contrib-
ute to the four-fermion beta functions. Indeed, the general
structure of the four point function is

h0jc yc c yc j0i ¼ A1 
 1þ Bi1 
 �i þ Cij�
i 
 �j;

(35)

where the Dirac indices are omitted and the tensorial
product allows for the two in and two out states. A is the
only quantity contributing to the coupling constant, since the
corresponding term has no Dirac structure. The four-point

2

FIG. 2. One-loop graphs involving the auxiliary scalar field, which contribute to the four-point function. Solid lines represent
fermions and dashed lines represent the scalar. Only the first two diagrams, where the fermion lines cross an odd number of vertices,
contribute to the four-fermion beta functions. The first graph corresponds to the insertion of a scalar self-energy, it involves a factor�4
for the trace over Dirac indices and a summation over both flavors. The second graph has two contributions: one for each insertion of a
vertex correction.
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function contains one divergence only, which is logarith-
mic, such that the divergent graphs are obtained only from
the highest power of momentum in the numerator of
propagators, i.e., from ~p � ~� and not the mass term. The
last two graphs of Fig. 2 contain continuous lines of
fermions with one internal propagator, such that the diver-
gent part is contained in Cij only. A is finite for these two

graphs, and thus does not contribute to the beta function.
More generally [16], to any order of the perturbation
theory, any graph containing a open fermion line, which
meets an even number of vertices, does not contribute to
the beta functions of the model. One needs an even number
of internal lines for the product of gamma matrices
(appearing in ~p � ~�) to give a diverging term with a non-
vanishing trace.

B. Beta-functions

The divergent one-loop correction to the four-fermion
interactions are then given by the first two graphs of Fig. 2,
which are as follows.

(1) For the flavor preserving four-fermion interaction:
(i) Graphs with the insertion of the one-loop scalar self-

energy: both flavors contribute to the fermion loop,
which induces a factor �4 for the trace over Dirac
indices. The contribution is then,

� 4i2ði ffiffiffi
2

p
gaÞ4Iaa � 4i2ði ffiffiffi

2
p

gaÞ2ði
ffiffiffi
2

p
gbÞ2Ibb

¼ 16g2aðg2aIaa þ g2bIbbÞ: (36)

(ii) Graphs with the insertion of the one-loop Yukawa
interaction: only the flavor a plays a role, and the
contribution is

2i2ði ffiffiffi
2

p
gaÞ4Iaa ¼ �8g4aIaa: (37)

The total contribution must be identified with the

correction to the bare graph iði ffiffiffi
2

p
gaÞ2, such that

i�g2a ¼ �4g2aðg2aIaa þ 2g2bIbbÞ; (38)

and the corresponding beta function is therefore

�a � �
@ð�g2aÞ
��

¼ � g2a
�2

ðg2a þ 2g2bÞ: (39)

(2) For the flavor-changing interaction:
(i) Graphs with the insertion of the one-loop scalar self-

energy:

16gagbðg2aIaa þ g2bIbbÞ; (40)

(ii) Graphs with the insertion of the one-loop Yukawa
interaction:

� 4gbg
3
aIaa � 4gag

3
bIbb; (41)

The total contribution must be identified with the
correction to the bare graph iG

i�G ¼ �12gagbðg2aIaa þ g2bIbbÞ; (42)

and the corresponding beta function is therefore

�G ¼ �3
gagb
�2

ðg2a þ g2bÞ: (43)

One can infer from this one-loop analysis that the theory is
asymptotically free, since higher orders also diverge at
most logarithmically, and cannot change the sign of the
one-loop beta functions. Note that, when g1 ¼ g2, then
�G ¼ 2�a, as expected from the Oð2Þ symmetry. To con-
clude this section, we add a comment related to the situ-
ation where h � 0. In this case, the fermion propagator is
not diagonal in flavor space, and the calculations are there-
fore more involved. However, one can predict that asymp-
totic freedom will still hold: the additional graphs to take
into account will feature the flavor changing Yukawa in-

teractions �
ffiffiffi
2

p
hð �c 1c 2 þ �c 2c 1Þ, and the corresponding

fermion loop in Fig. 2 will contain the integral Iab for
a � b. But this integral remains positive (along the imagi-
nary axis) when a � b, as can be seen by setting m3

a ¼
m3

bð1þ 	Þ, which leads to

Iab ¼ i

4�2

�
ln

�
�

mb

�
� 1

3
� 	

6
þ � � �

�
; (44)

where dots represent higher orders in 	. One can see that,
whatever the sign of 	 is, this integral keeps the same sign
as in the situation a ¼ b. As a consequence, the additional
terms to be added to the beta functions will not change their
global sign.

IV. TWO-LOOP PROPAGATOR

Since Lifshitz theories explicitly break Lorentz symme-
try, space and time derivatives are dressed differently by
quantum corrections. If one considers only one particle, or
several particles in a given flavor multiplet, frequency and
space momentum can always be rescaled in such a way that
the particles have the usual Lorentz-like IR dispersion
relation (after neglecting the higher order powers of the
space momentum, suppressed by M). However if one con-
siders several particles without flavor symmetry, then it
becomes necessary to perform a flavor-independent rescal-
ing of frequency and space momentum, such that different
particles see different effective light cones. This is the case
we consider here.
The only one-loop correction to the fermion propagator

is a tadpole diagram, where the loop is made of one internal
propagator only. As a consequence, the external momen-
tum does not flow in this loop, which therefore provides
a momentum-independent correction and contributes only
to the mass dressing. For this reason, one needs to go
at least to two loops, represented in Fig. 3 in terms of
the equivalent Yukawa model (34), in order to get a
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momentum-dependent correction, which leads to a modi-
fication of classical dispersion relations.

We note here that the two-loop propagator is evaluated
in [17] for a scalar �4 theory, in 6 spatial dimensions and
for z ¼ 2. This calculation is done in the massless case and
in the absence of quadratic space derivatives. Dimensional
regularization is used there, such that the power of the
cutoff does not appear explicitly in the results. The authors
conclude that the Lorentz-symmetry breaking terms flow
to 0 in the deep IR.

A. Self-energy

We still consider the case where h � 1 and the corre-
sponding interaction is disregarded. The perturbative
graphs on Fig. 3 can be calculated with massless bare
propagators, since the two-loop graphs contain no IR
divergence. As a consequence, these graphs are flavor
independent (besides an overall factor depending on the
coupling constants), and they involve the integrals

Iðk0; ~kÞ ¼ i2
Z dp0d ~p

ð2�Þ4
Z dq0d ~q

ð2�Þ4

� iNð�pÞiNð�qÞiNðpþ qþ kÞ
Dð�pÞDð�qÞDðpþ qþ kÞ

Jðk0; ~kÞ ¼ i2
Z dp0d ~p

ð2�Þ4
Z dq0d ~q

ð2�Þ4

� Tr½iNð�pÞiNð�qÞ�iNðpþ qþ kÞ
Dð�pÞDð�qÞDðpþ qþ kÞ ;

(45)

where the trace in J arises from the fermion loop, and the
factors i2 are for the scalar propagators. Taking into
account the different possibilities for the self-energy of
flavor a, we obtain

(i) ði ffiffiffi
2

p
gaÞ4I for the graph without fermion loop;

(ii) ½ði ffiffiffi
2

p
gaÞ4 þ ði ffiffiffi

2
p

gaÞ2ði
ffiffiffi
2

p
gbÞ2�J for the graph with

a fermion loop: one contribution for each flavor in
the loop.

We calculate these integrals in the Appendix, where we see
that the only role of the fermion loop is to give a factor�4
from the trace over Dirac indices. We therefore have
J ¼ �4I, and the total contribution to the momentum-

dependent two-loop self-energy �aðk0; ~kÞ is given by

�i�aðk0; ~kÞ ¼ �4g2að3g2a þ 4g2bÞI

¼ �i4g2að3g2a þ 4g2bÞ
Z dp0d ~p

ð2�Þ4
Z dq0d ~q

ð2�Þ4

� Nð�pÞNð�qÞNðpþ qþ kÞ
Dð�pÞDð�qÞDðpþ qþ kÞ : (46)

The bare inverse fermion propagator is

S�1
bare ¼ k0�

0 �M2 ~k � ~�þ � � � ; (47)

where dots represent higher orders in ~k. We parametrize the
dressed inverse propagator as

S�1
dressed ¼ �m3

a þ ð1� YaÞk0�0 � ð1� ZaÞM2 ~k � ~�

þ � � � ; (48)

such that the self-energy is

�aðk0; ~kÞ ¼ S�1
bare � S�1

dressed

¼ m3
a þ Yak0�

0 � ZaM
2 ~k � ~�þ � � � (49)

The integrals (45) should then be expanded in the external

frequency k0 and momentum ~k in order to find the correc-
tions Ya, Za. The k-independent mass correctionm3

a will be
disregarded, since the dynamical masses have already been
calculated.

B. Dressed dispersion relations

From the self-energy (49), the IR dispersion relation for
the flavor a is

ð1� YaÞ2k20 ¼ m6
a þM4ð1� ZaÞ2k2 þ � � � ; (50)

where k ¼ j ~kj. If we assume that the two fermion flavors
are to be coupled to other particles, then one needs a flavor-

independent rescaling of the dispersion relation. k0 ! M2 ~k0
leads then to the following product of the phase and the group
velocities, vp and vg, respectively

v2
a � vpvg ¼

~k0
k

@~k0
@k

¼ 1þ 2ðYa � ZaÞ þOðk=MÞ2:
(51)

We calculate Ya and Za in the Appendix, by expanding

analytically the integral I to first order in k0 and ~k � ~�, and
we find a quadratic divergence of the form (� 	 M)

FIG. 3. Two-loop contributions to the propagator. The fermion loop in the second graph involves a contribution from each flavor, and
a factor �4 for the trace over Dirac indices.
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Ya � Za ’ 4
g2að3g2a þ 4g2bÞ
�2

M2
; 
 ’ �3:49� 10�5

(52)

where a � b. This result shows that the present model is of
limited use for the prediction of Lorentz-violating propaga-
tion. Indeed,with thevalues of�=M,g1, g2 shown inTable I,
the result (52) is not perturbative: one needs to absorb the
quadratic divergence with counterterms, such that the renor-
malized value of Ya � Za needs to be fixed by experimental
data. Therefore the model cannot predict quantitative devia-
tions from special relativity at low energies.

If these corrections were logarithmic, one could infer
from our result a cutoff-independent beta function for the
effective maximum speed seen by the fermions, which
could lead to ‘‘realistic’’ predictions on potential sub/
super-luminal propagation.

Note that the rescaling of frequency which leads to the
speed squared (51) does not make apparent the fact that, if
flavor symmetry is exactly satisfied, then the IR dispersion
relations are relativistic. If one ignores possible interac-
tions with other particles, one can further rescale

k2 ¼ ~k2
1� Y1

1� Z1

1� Y2

1� Z2

; (53)

which leads to the following IR dispersion relations

~k20 ’ ~m2
1 þ ð1þ 2�vÞ~k2

~k20 ’ ~m2
2 þ ð1� 2�vÞ~k2 where �v ¼ 6
ðg41 � g42Þ �2

M2 :

(54)

One can see here that the Lorentz-invariant IR dispersion
relations are recovered when g1 ¼ g2. But for g1 � g2,
one needs the difference jg21 � g22j to be proportional to
M2=�2 in order to deal with realistic phenomenology. One
can take the example of the largest valueM=� ’ 10�5 with
ga ’ 0:58 from Table I. The upper bound �v � 2� 10�9

given by the supernovae SN1987a data [18] gives then

jg21 � g22j �
�vM2=�2

6
ðg21 þ g22Þ
’ 10�15; (55)

such that flavor symmetry can be considered exact, and the
corresponding fine tuning is not natural.

V. CONCLUSION

The main aim of this article was to show how quantum
fluctuations modify classical dispersion relations, obtained
from a four-fermion interaction Lifshitz model, where
flavor symmetry is broken at the classical level. The first
steps to study the model consisted in showing results which
were expected, from similar models previously studied
by other authors: (i) Dynamical mass generation, and
consequently dynamical arising of flavor oscillations.
Using experimental constraints on neutrino oscillations,
we showed that the parameters of the model are consistent
with a perturbative regime, justifying the next steps;
(ii) Asymptotic freedom, derived using an equivalent
Yukawa model, which makes use of an auxiliary scalar
field. The modification of dispersion relations by quantum
corrections has then been calculated at two loops, making
use of the same Yukawa model. We find, after a rescaling
of frequency and space momentum in the effective disper-
sion relations, that the mismatch with the speed of light is
proportional to the difference of the coupling constants,
and scales as the square of the cutoff.
Classically, Lorentz-violating effects in this model are

suppressed by inverse powers of M, and therefore might
not be measurable at low energies k � M. Quantum
corrections, though, can provide measurable contribu-
tions, as the quadratically diverging corrections which
were found here, for the fermion self-energies. We
believe that these corrections are too significant to avoid
an extremely precise fine tuning of the coupling con-
stants, for the model to be consistent with upper bounds
on Lorentz violation.
We therefore suggest that a realistic Lifshitz model

should have logarithmic divergences at most, in order to
have phenomenological relevance. This is the case, for
example, of Lifshitz-type Yukawa models [19], where
one-loop corrections to the fermion dispersion relations
are finite. Also, Lifshitz-type extensions of gauge theo-
ries, which are super-renormalizable in 3þ 1 dimensions
and for z ¼ 3, feature interesting properties [20]. An
essential point is, since the gauge coupling constant has
a (positive) mass dimension, fermion dynamical mass
naturally appears in the dressed theory. If, in addition,
fermion condensates break flavor symmetry, then vectors
automatically become massive [21], with a mechanism
similar to the one initially derived by Schwinger in 1þ 1
dimensional quantum electrodynamics, and used in
Technicolor studies. Such models are to be looked at in
future publications, in order to determine their phenome-
nological relevance.
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TABLE I. Coupling constants for different mass scales M,
when h � 1 and � ¼ 1019 GeV.

M=� 10�16 10�15 10�14 10�13 10�12 10�11

g1 ’ g2 0.46 0.47 0.48 0.48 0.49 0.50

M=� 10�10 10�9 10�8 10�7 10�6 10�5

g1 ’ g2 0.51 0.53 0.54 0.55 0.56 0.58
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APPENDIX: A TWO-LOOP PROPAGATOR

An expansion in the frequency k0 of the integrand appearing on the right-hand side of Eq. (46) gives

Nð�p0;� ~pÞNð�q0;� ~qÞNðp0 þ q0 þ k0; ~pþ ~qÞ
Dð�p0;� ~pÞDð�q0;� ~qÞDðp0 þ q0 þ k0; ~pþ ~qÞ ¼

Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞDðpþ qÞ þ k0�

0 Nð�pÞNð�qÞ
Dð�pÞDð�qÞDðpþ qÞ

� 2k0ðp0 þ q0Þ Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞD2ðpþ qÞ þOðk20Þ; (56)

where ðpÞ � ðp0; ~pÞ, and an expansion in the spatial momentum ~k gives

Nð�p0;� ~pÞNð�q0;� ~qÞNðp0 þ q0; ~pþ ~qþ ~kÞ
Dð�p0;� ~pÞDð�q0;� ~qÞDðp0 þ q0; ~pþ ~qþ ~kÞ

¼ Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞDðpþ qÞ �

Nð�pÞNð�qÞ
Dð�pÞDð�qÞDðpþ qÞ ½2ðð ~pþ ~qÞ � ~kÞðð ~pþ ~qÞ � ~�Þ þ ðM2 þ ð ~pþ ~qÞ2Þð ~k � ~�Þ�

þ Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞD2ðpþ qÞ 2ðð ~pþ ~qÞ � ~kÞ½M2 þ ð ~pþ ~qÞ2�½M2 þ 3ð ~pþ ~qÞ2� þOðk20Þ: (57)

The first term in the k0-expansion leads to the integral

ðk0�0Þ
Z
p;q

Nð�pÞNð�qÞ
Dð�pÞDð�qÞDðpþ qÞ ¼ ðk0�0Þ

Z
p;q

p0q0 � ðM2 þ ~p2ÞðM2 þ ~q2Þ ~p � ~q
Dð�pÞDð�qÞDðpþ qÞ

þ ðk0�0Þ
Z
p;q

p0ðM2 þ ~q2Þ ~q � ~�� q0ðM2 þ ~q2Þ ~p � ~�
Dð�pÞDð�qÞDðpþ qÞ ; (58)

and, because of the symmetry p $ q, the second integral vanishes. The following rescaling

p0 ¼ M3u0; q0 ¼ M3v0; ~p ¼ M~u; ~q ¼ M ~v; (59)

together with a Wick rotation on u0, v0 finally leads to

ðk0�0Þ
Z
p;q

Nð�pÞNð�qÞ
Dð�pÞDð�qÞDðpþ qÞ (60)

¼ �ðk0�0Þ
Z d4uE

ð2�Þ4
d4vE

ð2�Þ4
u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞDEðuE þ vEÞ ; (61)

where DEðuEÞ ¼ u24 þ ð1þ ~u2Þ2 ~u2. The second term in the k0-expansion gives

� 2k0
Z
u;v

ðp0 þ q0Þ Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞD2ðpþ qÞ

¼ �2ðk0�0Þ
Z
p;q

ðp0 þ q0Þ2 p0q0 � ðM2 þ ~p2ÞðM2 þ ~q2Þ ~p � ~q
Dð�pÞDð�qÞD2ðpþ qÞ

� 2k0
Z
p;q

ðp0 þ q0Þp0�
0 ~q � ~�ð ~pþ ~qÞ � ~�ðM2 þ q2Þ½M2 þ ð ~pþ ~qÞ2� � ðp $ qÞ

Dð�pÞDð�qÞD2ðpþ qÞ ; (62)

where, by symmetry, the terms proportional to ~� lead to a vanishing integral. After the rescaling (59) and a Wick rotation,
we then obtain

� 2k0
Z
u;v

ðp0 þ q0Þ Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞD2ðpþ qÞ ¼ 2ðk0�0Þ

Z d4uE
ð2�Þ4

d4vE

ð2�Þ4 ðu4 þ v4Þ2 u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞD2

EðuE þ vEÞ
:

(63)

The term proportional to k0�
0 is then

ðk0�0Þ
Z d4uE

ð2�Þ4
d4vE

ð2�Þ4
u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞDEðuE þ vEÞ

�
�1þ 2ðu4 þ v4Þ2

DEðuE þ vEÞ
�
: (64)

HIGHER-ORDER CORRECTIONS IN A FOUR-FERMION . . . PHYSICAL REVIEW D 86, 025030 (2012)

025030-9



For the first term in the ~k-expansion, we use the identity

Z
p;q

fðp; qÞ ~p � ~kð ~pþ ~qÞ � ~� ¼
~k � ~�

3

Z
p;q

fðp; qÞ ~p � ð ~pþ ~qÞ; (65)

where fðp; qÞ depends on ð ~pÞ2, ð ~qÞ2 and ~p � ~q only. The rescaling (59) and a Wick rotation then lead to the integral

�
Z
p;q

Nð�pÞNð�qÞ
Dð�pÞDð�qÞDðpþ qÞ ½2ðð ~pþ ~qÞ � ~kÞðð ~pþ ~qÞ � ~�Þ þ ðM2 þ ð ~pþ ~qÞ2Þð ~k � ~�Þ�

¼ M2ð ~k � ~�Þ
Z d4uE

ð2�Þ4
d4vE

ð2�Þ4
�
1þ 5

3
ð ~uþ ~vÞ2

�
u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞDEðuE þ vEÞ : (66)

The second term in the ~k-expansion leads to the integral

2
Z
p;q

Nð�pÞNð�qÞNðpþqÞ
Dð�pÞDð�qÞD2ðpþqÞðð ~pþ ~qÞ � ~kÞ½M2þð ~pþ ~qÞ2�½M2þ3ð ~pþ ~qÞ2�

¼�2M2
Z
u;v

u0v0�ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞD2

EðuEþvEÞ
ð1þð ~uþ ~vÞ2Þð ~uþ ~vÞ � ~�ð ~uþ ~vÞ � ~k½1þð ~uþ ~vÞ2�½1þ3ð ~uþ ~vÞ2�; (67)

where, by symmetry, the term not proportional to ~� vanishes. Using the identity (65), a Wick rotation then leads to

2
Z
p;q

Nð�pÞNð�qÞNðpþ qÞ
Dð�pÞDð�qÞD2ðpþ qÞ ðð ~pþ ~qÞ � ~kÞ½M2 þ ð ~pþ ~qÞ2�½M2 þ 3ð ~pþ ~qÞ2�

¼ � 2

3
M2ð ~k � ~�Þ

Z d4uE
ð2�Þ4

d4vE

ð2�Þ4
u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞD2

EðuE þ vEÞ
ð ~uþ ~vÞ2½1þ ð ~uþ ~vÞ2�2½1þ 3ð ~uþ ~vÞ2�: (68)

The term proportional to ð ~k � ~�Þ is then

M2ð ~k � ~�Þ
Z d4uE

ð2�Þ4
d4vE

ð2�Þ4
u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞDEðuE þ vEÞ

�
1þ 5

3
ð ~uþ ~vÞ2 � 2

3
ð ~uþ ~vÞ2 ½1þ ð ~uþ ~vÞ2�2½1þ 3ð ~uþ ~vÞ2�

DEðuE þ vEÞ
�
:

(69)

Finally, from Eqs. (64) and (69), the quantum corrections to the IR dispersion relation are determined by

Ya � Za ¼ 4g2að3g2a þ 4g2bÞ
Z d4uE

ð2�Þ4
d4vE

ð2�Þ4 Int; (70)

where the integrand is

Int ¼ 1

3

u4v4 þ ð1þ ~u2Þð1þ ~v2Þ ~u � ~v
DEðuEÞDEðvEÞD2

EðuE þ vEÞ
½ðu4 þ v4Þ2ð6þ 5ð ~uþ ~vÞ2Þ � ð ~uþ ~vÞ2ð1þ ð ~uþ ~vÞ2Þ2ð2þ ð ~uþ ~vÞ2Þ�: (71)

Note that in the Lorentz-symmetric case, higher orders in ~u, ~v are absent and Ya ¼ Za. The integral (70) is evaluated as
follows.

We can first perform the exact integration over u4, v4, using the Feynman parametrization. This introduces two new
variables of integration, but which lie in a compact domain of integration:

1

DEðuEÞDEðvEÞD2
EðuE þ vEÞ ¼ 6

Z 1

0
dx

Z 1�x

0
dy

1� x� y

½xDEðuEÞ þ yDEðvEÞ þ ð1� x� yÞDEðuE þ vEÞ�4
;

We then introduce the variables a, b, such that

u4 ¼ sðaþ bÞ and v4 ¼ tða� bÞ; with s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p
and t ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1� y
p

; (72)

to obtain

du4dv4

DEðuEÞDEðvEÞD2
EðuE þ vEÞ ¼

Z 1

0
dx
Z 1�x

0
dy

12dadbst�

½2stðstþ �Þa2 þ 2stðst� �Þb2 þD�4 ; (73)
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where

D ¼ xð1þ u2Þ2u2 þ yð1þ v2Þ2v2 þ �ð1þ�Þ2� � ¼ ð ~uþ ~vÞ2; � ¼ 1� x� y: (74)

We then write, with 0 � � <1, 0 � �< 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2stðstþ �Þ

p
a ¼ � cos� and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2stðst� �Þ

p
b ¼ � sin� (75)

to obtain

Z
du4

Z
dv4Int (76)

¼ 2
Z 1

0
dx

Z 1�x

0
dy

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2t2 � �2

p
Z 1

0
�d�

Z 2�

0
d�

1

½�2 þD�4
�
�2

2

�
cos2�

stþ �
� sin2�

st� �

�
þ ð1þ u2Þð1þ v2Þ ~u � ~v

�

�
�
�2

2st

�ðsþ tÞ2cos2�
stþ �

þ ðs� tÞ2sin2�
st� �

�
ð6þ 5�Þ ��ð1þ �Þ2ð2þ �Þ

�

¼ 2�
Z 1

0
dx

Z 1�x

0
dy

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2t2 � �2

p
Z 1

0
�d�

A�4 þ B�2 þ C

½�2 þD�4

¼ �

6

Z 1

0
dx

Z 1�x

0
dy

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2t2 � �2

p
�
2A

D
þ B

D2
þ 2C

D3

�
; (77)

where

A ¼ 6þ 5�

4

2s2t2 þ 4�2 � 3�ðs2 þ t2Þ
ðs2t2 � �2Þ2

B ¼ ð1þ u2Þð1þ v2Þ ~u � ~vð6þ 5�Þ s
2 þ t2 � 2�

s2t2 � �2
þ �ð1þ�Þ2ð2þ �Þ �

s2t2 � �2

C ¼ �2ð1þ u2Þð1þ v2Þ ~u � ~v�ð1þ �Þ2ð2þ�Þ:

(78)

We then define ~u � ~v ¼ uv cos� and

u ¼ r cos�; v ¼ r sin�; with 0 � r <1 and 0 � � � �=2; (79)

and the final integral is

Fð�=MÞ ¼
Z d4uE

ð2�Þ4
d4vE

ð2�Þ4 Int

¼ 1

3� 28�5

Z 1

0
dx

Z 1�x

0
dy

Z �=M

0
dr
Z �

0
d�

Z �=2

0
d�

�r5sin2ð2�Þ sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2t2 � �2

p
�
2A

D
þ B

D2
þ 2C

D3

�
; (80)

which is quadratically divergent, as FðzÞ � 
z2 when z ! 1. We then find via numerical integration


 ¼ lim
z!1

�
1

2z

dF

dz

�
(81)

¼ lim
r!1

�
r4

3� 29�5

Z 1

0
dx
Z 1�x

0
dy

Z �

0
d�

Z �=2

0
d�

�sin2ð2�Þ sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2t2 � �2

p
�
2A

D
þ B

D2
þ 2C

D3

��
’ �3:49� 10�5; ðto a 1% accuracyÞ: (82)
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