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Building on our previous work [Phys. Rev. D 82, 085016 (2010)], we show in this paper how a
Brownian motion on a short scale can originate a relativistic motion on scales that are larger than particle’s
Compton wavelength. This can be described in terms of polycrystalline vacuum. Viewed in this way,
special relativity is not a primitive concept, but rather it statistically emerges when a coarse-graining
average over distances of order, or longer than the Compton wavelength is taken. By analyzing the

robustness of such a special relativity under small variations in the polycrystalline grain-size distribution

we naturally arrive at the notion of doubly-special relativistic dynamics. In this way, a previously
unsuspected, common statistical origin of the two frameworks is brought to light. Salient issues such
as the role of gauge fixing in emergent relativity, generalized commutation relations, Hausdorff
dimensions of representative path-integral trajectories and a connection with Feynman chessboard model

are also discussed.
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L. INTRODUCTION

Without doubts, the discovery of Lorentz symmetry (LS)
irrevocably changed the theoretical landscape in physics.
Up to now, LS has been confirmed to unprecedented pre-
cision, and during the last century it has powerfully con-
strained theories in a way that has proved instrumental in
discovering new laws of physics. Moreover, the mathe-
matical structure of the Lorentz group is compellingly
simple and elegant. It thus seems natural to assume that
Lorentz invariance is an exact symmetry of nature which is
valid for an arbitrary boost. Yet, there are several reasons to
doubt the exactness of LS. From a purely conceptual stand-
point, the most cogent reason is that an infinite volume of
the Lorentz group is experimentally untestable since, un-
like the rotation group, the Lorentz group is noncompact.
Why should one then assume that exact LS holds when this
hypothesis cannot be tested, not even in principle? The
noncompactness may, indeed, sound as a logically con-
vincing argument for doubting the exactness of LS but in
itself is not enough to attract a sufficient attention. There
are, however, other more pressing reasons to suspect that
LS may fail at some critical energy or boost. For instance,
in quantum field theory both the ultraviolet divergences
and Landau poles are direct artifacts of the assumption that
the spectrum of field degrees of freedom is boost invariant.
Another sound reason comes from quantum gravity where
profound difficulties associated with the problem of time
[1-3] indicate that an underlying preferred time may be
necessary in order to reconcile gravitational and quantum
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physics. In particular, general arguments imply that a
radical departure from standard space-time symmetries at
the Planck-scale [4] is necessary. Aside from general issues
of principle, specific hints of Lorentz violation come from
tentative calculations in various approaches to quantum
gravity. Examples include: space-time foam [5], cosmolog-
ically varying moduli [6], Witten’s string field theory [7],
semiclassical spin-network calculations in Loop quantum
gravity [8,9], noncommutative geometry [10-12], world-
crystal physics [13,14], ’t Hooft’s cosmic cellular automata
[15] or condensed matter analogues of emergent gravity
[16]. None of the above reasons amount to a convincing
argument that a LS breaking is an inevitable aspect of
quantum gravity. However, taken together they do motivate
serious attempts to address possible observable consequen-
ces of a violation of LS, and to strengthen observational
bounds. What should be perhaps emphasized is that the
idea of LS violation is not new and it has been considered
by a number of authors over the last 40 years or so (see,
e.g., Refs. [17,18] and citations therein). It has, however,
received a serious boost only during the past decade. The
catalyst has been both a massive infusion of ideas from
quantum gravity, and improvements in observational
sensitivity that allow to detect violations of LS that are
linearly Planck suppressed (see, e.g., [19] for an extensive
review).

In this paper we show that a relativistic quantum
mechanics, as formulated through path integrals (PIs),
bears in itself a seed of understanding how LS can be
broken at short spatio-temporal scales and yet emerge as
an apparently exact symmetry at large scales. Our argu-
ment is based upon a recent observation [20,21] that PI for
both fermionic and bosonic relativistic particles may be
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interpreted (when analytically continued to imaginary
times) as describing a doubly-stochastic process that op-
erates on two vastly different spatio-temporal scales. The
short spatial scale, which is much smaller than the
Compton length, describes a Wiener (i.e., nonrelativistic)
process with a fluctuating Newtonian mass. This might
be visualized as if the particle would be randomly prop-
agating (in the sense of Brownian motion) through a
granular or “‘polycrystalline” medium. The large spatial
scale corresponds, on the other hand, to distances that are
much larger than particle’s Compton length. At such a
scale the particle evolves according to a genuine relativ-
istic motion, with a sharp value of the mass coinciding
with the Einstein rest mass. Particularly striking is the fact
that when we average the particle’s velocity over the
correlation distance (i.e., over particle’s Compton wave-
length) we obtain the velocity of light c¢. So the picture
that emerges from this analysis is that the particle (with a
nonzero mass) propagates over the correlation distance
1/mc (hereafter 71 = 1) with an average velocity ¢, while
at larger distance scales (i.e., when a more coarse-grained
view is taken) the particle propagates as a relativistic
particle with a sharp mass and an average velocity that
is smaller than c. This bears a strong resemblance with
Feynman’s chessboard PI for a relativistic Dirac fermion
in 1 + 1 dimensions [22]. There, an analogous situation
occurs, i.e., a massive particle propagates over distances
of Compton length with velocity ¢, and it is only on
much larger spatial scales where the Brownian motion
with a subluminal average velocity emerges [22,23]. The
analogy with Feynman’s chessboard PI appears also on
the level of Hausdorff dimensions of representative tra-
jectories. While below the Compton wavelength the
Haussdorff dimension dy = 1, which corresponds to a
superdiffusive process, on scales much larger than the
Compton length one has dy =2, which is the usual
Brownian diffusion. In passing, we may stress that the
outlined superposition of two stochastic processes with
widely separated times scales fits the conceptual frame-
work which is often referred to as a superstatistics [24].

Of course, a single-particle relativistic quantum theory is
a logically untenable concept, since a multiparticle pro-
duction is allowed whenever the particle reaches the
threshold energy for pair production. At the same time,
the PI for a single relativistic particle is a perfectly legiti-
mate building block in quantum field theory (QFT).
Indeed, QFT can be viewed as a grand-canonical ensemble
of particle histories where Feynman diagrammatic repre-
sentation of quantum fields depicts directly the pictures of
the worldlines in a grand-canonical ensemble. In particular,
the partition function for quantized relativistic fields can be
fully rephrased in terms of single-particle relativistic PI’s.
This view is epitomized, e.g., in the Bern-Kosower *“string-
inspired”” approach to quantum field theory [25] or in
Kleinert’s disorder field theory [26].
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The outlined scenario can be also conveniently applied
in various doubly-special relativistic (DSR) models. In
those models a further invariant scale €, besides the speed
of light ¢, is introduced, and ¢ is assumed typically to be of
the order of the Planck length. In the present framework,
the scale € can be naturally identified with the minimal
grain size of the polycrystalline medium. By following the
same strategy as in the special-relativistic context, i.e.,
analyzing the structure of paths which enter the Feynman
summation, one can again identify correlation lengths,
canonical commutation relations and the respective
Hausdorff dimensions. All of these critically depend on
the DSR model at hand, and may serve to gain insight into
the underlying stochastic process which is, as a rule, re-
lated by an analytic continuation with the corresponding
quantum mechanical dynamics.

The purpose of this paper is to call attention to such a
peculiar behavior of relativistic PI at short spatio-temporal
scales—a fact already recognized by Feynman—and bring
ensuing implications to the attention of our particle physics
and cosmology colleagues.

The structure of the paper is as follows. To set the stage
we recall in the next section some fundamentals of
Markovian smearing of path integrals, also known as
superstatistics path integrals (SPI). Section III is devoted
to application of SPI in relativistic quantum mechanics. We
restrict our presentation largely to bosons of zero spin that
are described by the Klein-Gordon equation. Though the
Klein-Gordon particle (KGP) is not a key for the results
obtained, it will allow to elucidate the physics behind our
reasonings quite straightforwardly. In particular we show
how a transitional amplitude for the KGP can be written as
a superposition of nonrelativistic free-particle PIs with
different Newtonian masses. To this end we use a less
known but equivalent representation of Klein-Gordon
equation, namely, the so-called Feshbach-Villars represen-
tation. The concept of emergent relativity is discussed
in Sec. IV. There we observe that the superstatistics version
of Feynman path summation for a relativistic particle
allows the following probabilistic interpretation: the
single-particle relativistic theory might be viewed as a
single-particle nonrelativistic theory (Wiener process)
whose Newtonian mass /7 (which is not invariant under
Lorentz transformations) is a fluctuating parameter, whose
average approaches the true relativistic Einstein mass m at
observational (or resolution) times that are much larger
than the Compton time 1/mc?. On a spatial scale greater
than the particle’s Compton wavelength, the particle fol-
lows the standard relativistic motion with a sharp mass and
a subluminal average velocity. Sections V and VI contain
discussions of two conceptually important concomitant
topics. In particular, Sec. V concentrates on the issue of
stability of the emergent special relativity (SR) under a
small perturbation of the grain (or mass-smearing) distri-
bution in the polycrystalline vacuum. There we show that
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small perturbations naturally lead to the DSR theory. Hence,
the class of DSR models (of which the special relativity
theory is a particular example) is robust under and a small
change of the grain-size distribution. In Sec. VI, we are
concerned with the question of how a choice of a gauge
fixing influences our polycrystalline-vacuum picture. We
employ the Stiickelberg field-enlarging trick and show that
the SPI in question can be made explicitly invariant under
gauge transformations (or reparametrizations), i.e., under
the same group under which relativistic particle systems
are invariant. By revealing that our original action is
dynamically equivalent to the relativistic action with the
reparametrization symmetry we are allowed to proclaim
the polycrystalline picture as being a basic (or primitive)
edifice of SR, and consider the reparametrization symmetry
as a mere artifact of an artificial redundancy that is allowed
in the description.

In Sec. VII, we extend our approach to doubly-special
relativistic dynamics, sketch the computation of the ensu-
ing canonical commutation relations (CCRs) and the
Hausdorff dimensions of representative trajectories. Since
the smearing distribution implicitly corresponds to the
gauge-fixing condition, the obtained CCR automatically
match the quantized Dirac brackets. It is, indeed, a bonus
of the superstatistics PI for (doubly-)relativistic particle
that it directly provides a symplectic structure in the
reduced phase space. We close Sec. VII with some com-
ments on the underlying nonrelativistic picture.

Various remarks and generalizations are proposed in the
concluding section. For the reader’s convenience, the paper
is supplemented with four appendices which clarify some
finer technical details.

II. SUPERSTATISTICS PATH INTEGRALS

We begin with the well-known fact that when conditional
probability density functions (PDFs) are formulated through
PI, then they satisfy the Chapman-Kolmogorov equation
(CKE) for continuous Markovian processes, namely,

Py, 1y 1) = ] deP(xy, 1, P, tlxg 1) (1)

Conversely, any probability satisfying CKE possesses a PI
representation [22,27].

In physics one often encounters probabilities formulated
as a superposition of PIs, e.g.,

P(xb’ tblxar ta)

= f * dvo(v, 1y)
0

x(t,)=x,,

DxDpe f:’; dr(ipx—vH(p,x))

x(t,)=x,
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Here w(v, t,,) with t,, = t, — t, is a normalized PDF
defined on R X R*. The random variable v is in practice
typically related to the inverse temperature, coupling
constant, friction constant or volatility.

At this stage one may ask if is it possible that also
P(x,, t,x,, t,) satisfies the CKE (1). The answer is sur-
prisingly affirmative provided w(v, t) fulfills a certain
simple functional equation. Following Ref. [20], we define
a rescaled weight function,

w(v, t) = w(v/t, 1)/t 3)

and calculate its Laplace transform,
W) = [ dverrww.n, 4
0

Then P(x,, t,|x,, t,) satisfies CKE only if
W(pv’ h + t2) = W(Pw IZ)W(pv’ tl)' (5)

Assuming continuity in ¢, w(p,, f) is unique and can be
explicitly written as (see [20])

W(p,, 1) = [G(p,)] = e TP, (6)

A function F(p,) must increase monotonically in order to
allow for inverse Laplace transform, and satisfy the condi-
tion F(0) = 0 to ensure that w is normalized to one. Finally
the Laplace inverse of w(p,, t) yields w(v, 1).

Once the above conditions are satisfied, then
P(xy, t,]x,, t,) possesses a path-integral representation on
its own. The new Hamiltonian is given by the relation
H(p, x) = F(H(p, x)). Here one must worry about the no-
torious operator-ordering problem, not knowing in which
temporal order p and x must be taken in F. At this stage it
suffices to observe that when H is x independent, the former
relation is exact. The issue of general H’s and the ensuing
operator ordering was discussed in detail in Ref. [20].

III. PATH INTEGRAL FOR
FESHBACH-VILLARS PARTICLE

Our following argument is based upon Refs. [20,21],
where it was shown that the Newton-Wigner [28,29] propa-
gator for a relativistic scalar particle with Hamiltonian

2) H(p) = cp* + m*2, ie.,
|
(1)= D i
P(xb’ tblxa) ta) = [x o x—pD exp{[b dT[lp "X —c P2 + mZCZ]}’ (7)
x(t,,):xa (27T) la
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can be considered as a superposition of nonrelativistic free-particle path integrals provided one chooses the generating
function G(p,) = e~ /P with a € R*. In such a case one obtains [20,21]

x(t,)=x)

P(x,, tylx,, t,) = /m dve(v, t,,) Dx
0

x(t,)=x,

with w(v, 1) being the Weibull distribution of order 1. In
general, Weibull’s PDF of order a is defined as [30]

aexp(—a’t/4v)
2 /mv/t ‘

We note that, neither (7) nor (8) are propagators for Klein-
Gordon equation. As stressed first by Stuckelberg [31,32],
the true relativistic propagator must include also the nega-
tive energy spectrum, reflecting the existence of charge-
conjugated solutions, i.e., antiparticles.

Recently, it was pointed out that the resolution of this
problem in the framework of PIs can be readily found when
the Klein-Gordon particle is written in the so-called
Feshbach-Villars (FV) representation [21],

18,‘1’ = ﬂpv(p)\lf,

()]

wv,at) =

p? (10)

Hey(p) = (03 + iUz)L + o3mc?,
2m

Dp
@mP

exp{f drlip - ¥ — v(p*c® + m2c4)]} (8)

where ¥ is a two component wave function. The two
components are related to opposite parity states—a fact
that is automatically fulfilled by Dirac bispinors in case of
Dirac’s equations. FV representation was already thor-
oughly discussed in Ref. [21] and we shall refrain from
going to further details here. The interested reader is
referred to Appendix A where the relevant essentials are
presented. Here we only mention that in order to deal with
the full PI representation of the Klein-Gordon particle it
will suffice to discuss the PI relation (8) alone; see Eq. (A5)

IV. EMERGENT SPECIAL RELATIVITY

If we now consider the change of variable vc? « 1/27,
then the right-hand side (rhs) of the key relativistic
PI identity (8) can be rewritten in the form (see also
Ref. [21])

j‘x(t):x Dx (;)I),D exp{j drlip - & — cy/ p?> + m? 2]}

x(0)=x'

=f°°dn~1
0

= f dif (1 ) (i, tc?, te*m?)
0

x(1)=x

x(0)=x'

where 1, —t, =t — 0 =t, and

(a/b)r/?
2K ,(\Jab) D)

is the generalized inverse Gaussian distribution [33] (K, is
the modified Bessel function of the second kind with index
p)- The structure of (11) suggests that 72 can be interpreted
as a Newtonian mass which takes on continuous values
distributed according to f( /2)(m tc?, tctm?) with (/) =

m + 1/tc? and var(/) = m/tc? + 2/1‘2 4. As a result one
may view a single-particle relativistic theory as a single-
particle nonrelativistic theory where the particle’s
Newtonian mass 7/ represents a fluctuating parameter
which approaches on average the Einstein rest mass m in
the large ¢ limit. We stress that the time # in question should
be understood as a time after which the observation (i.e.,
the position measurement) is made. In particular, during
the period 7 the system remains unperturbed. In this respect
the smearing distribution f(; /5 (7#, tc?, tc*m?) represents a

fp(z, a, ) p 1e—(az+b/z)/2’ (12)

¢t e*rcz(rh*m)z/Zrh [x(t)zx Dx
m x(0)=x'

Dp r .. .. P
fDxW exp{fo drl:lp X— o

(ZDTI)’D exp{fot dr[ip X — S mcz]}

- mcz]} (11)

temporal coarse-grained distribution for a Newtonian
mass—the longer the time between measurements, the
poorer the resolution of mass fluctuations. One can thus
justly expect that in the long run all mass fluctuations will
be washed out and only a sharp time-independent effective
mass will be perceived. The form of (;7z) identifies the time
scale at which this happens with ¢ ~ 1/mc?. The latter is
the time for light to cross the particle’s Compton wave-
length, i.e., the Compton time ¢.. The expression for (i7)
suggests, however, also another interesting physical impli-
cation. As we have seen, when 7 > 1/mc? then (/i7) rapidly
converges to the relativistic value m, signaling that the
motion becomes genuinely relativistic at large times.
Note that for ¢ large enough we surely have m > 1/tc?
which we can read as mc2¢ > 1. The latter means that, for
large ¢, the relativistic Heisenberg inequality for the en-
ergy/time variables is satisfied, AEAt = 1. On the other
hand, for t < 1/mc?, the fluctuations of the Newtonian
mass 7 around the average m are huge. The motion takes
place inside a specific space-grain, and in each space-grain

IR

025029-4



EMERGENCE OF SPECIAL AND DOUBLY SPECIAL ...

the motion is a classical, i.e., nonrelativistic, Brownian
motion controlled by the Hamiltonian p?/2si1. There the
relativistic Heisenberg uncertainty relation is clearly
violated, in fact mc?t < 1 (remind that m is the Einstein
rest mass). However, if we compute the nonrelativistic
Heisenberg relation, using the Newtonian mass 7/ and the
nonrelativistic kinetic energy E,;, ~ mv?, we find

S (Ax)?
AZAEkin = <m At > 1.

(13)

So the nonrelativistic Heisenberg relation is not violated.
This is because for a Brownian motion the standard non-
relativistic scaling (Ax)?/At ~ 1/ holds. In this connec-
tion it is interesting to observe that for t < 1/mc? we have
() ~ 1/(Atc?). By comparing this with (13) we see that on
a short-time scale Ax ~ cAt. So the corresponding stochas-
tic process is superdiffusive. The preceding scaling behavior
will be rigorously justified in Appendices B and C.

The observant reader might notice that the PI (11) can be
identified with a PI for a relativistic particle in the so-called
Polyakov’s gauge [34]. So, the form of the smearing func-
tion f; /) (11, tc?, tc>m?) naturally fixes the gauge, which in
this case turns out to be to Polyakov’s gauge. In this way
the use of smearing functions bypasses the conventional
Dirac-Bergman methodology for quantization of con-
strained systems. In fact, in Appendix B we arrive at the
correct special-relativistic CCR

A . Pibj

[, p:] = 1(5ij + mz—cjz) (14)

without using the machinery of Dirac brackets.
Fluctuations of the Newtonian mass can be depicted as
originating from particle’s evolution in an ‘“‘inhomogene-
ous” or a polycrystalline medium. Granularity, as well-
known, for instance, from solid-state systems, typically
leads to corrections in the local dispersion relation [35]
and hence to alterations in the local effective mass. The
following picture thus emerges: on the short-distance scale,
a nonrelativistic particle can be envisaged as propagating
through a single grain with a local mass 7, in a classical
Brownian motion. This fast-time process has a time scale
~1/mc?. An averaged value of the time scale can be
computed with the help of the smearing distribution
fa2(m, tc?, te*m?), which gives a transient temporal scale
(1/mc?y = 1/mc?. The latter coincides with particle’s
Compton time f-. At time scales much longer than 7.
(large-distance scale), the probability that the particle en-
counters a grain which endows it with a mass @ is
faya(m, tc?, tc*m?). Because the fast-time scale motion
is essentially Brownian, the local probability density ma-
trix (PDM) conditioned on some fixed 77 in a given grain is

Gaussian,
t \3/2 p?
—t— | 15
mzw) eXp[ 2n~1] (15

p(p, i) = (

PHYSICAL REVIEW D 86, 025029 (2012)

As the particle moves through a “grainy environment’ the
Newtonian mass 7 fluctuates and the corresponding joint
PDM will be p(p, t;m) = f (i, tc?, tc2m?)p(p, tlm).
The marginal PDM describing the mass-averaged (i.e.,
long-term) behavior is thus

pp. 1) = fo dinf (1 2 (i, tc?, tc*m?)p(p, tlm).  (16)

The matrix elements of p(p, 1) in the x-basis are then
described by the PI (11).

We may also observe that the averaged (or coarse-
grained) velocity over the correlation time t = 1/mc?
equals the speed of light c. In fact

Ipl)
Jolye e = 2 |
#=1/me <m> t=1/mc?*

1 I B 8miiic?
z%/; dif (i, 1/m, m) ( )

=c. 7)

So, on a short-time scale of order A. the Klein-Gordon
particle propagates with an averaged velocity which is the
speed of light c. But if one checks the particle’s position at
widely separated intervals (much larger than A.), then
many directional reversals along a typical PI trajectory
will take place, and the particle’s net velocity will be
then less than c—as it should be for a massive particle
(see Fig. 1). In addition, the time-compounded smearing
distribution tends for large times rapidly to the delta-
function distribution 8(/7 — m) thanks to the central limit
theorem. This means that the particle acquires a sharp mass
equal to Einstein’s (i.e., Lorentz invariant) mass, and the
process (not being hindered by fluctuating masses) turns
out to be purely Brownian. As detailed in Appendix B, this
is also confirmed by a direct calculation of the Feynman-
Hibbs scaling relation between Ax and Az which indeed
gives the fractal dimension 2—one of the key signatures of
a Brownian motion.

On more formal level, a stochastic process, representing
a relativistic motion on the long-time scale, and described
by the Kramers-Moyal equation with the Kramers-Moyal

operator cy/p> + m>c?, is shown to be equivalent to a
doubly-stochastic process in which the fast-time dynamics
of a free nonrelativistic particle (Brownian motion) is
coupled with a long-time dynamics describing fluctuations
of the particle’s Newtonian mass [20].

On a more speculative vein, one can fit the above ob-
servation into the currently much debated emergent rela-
tivity theory, i.e., the approach that tries to view either
special or general theory of relativity not as primitive
concepts but rather as theories that statistically emerge
from a deeper (essentially nonrelativistic) level of dynam-
ics [16,19,36-41].

All of these remarks extend directly also to certain inter-
acting systems. For instance, to Dirac’s Hamiltonian [21]
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EN

FIG. 1. The roughness of the representative trajectories in the
relativistic path integral (11) depends on a spatial/temporal scale.
On a fine scale (A), where ¢t < ¢ (or £ < A¢), a particle can be
considered as propagating with a sharp Newtonian mass 7 in a
single spatial grain with a Brownian motion controlled by the
Hamiltonian p? /2. On the intermediate scale of order A the
particle propagates with an average velocity equal to the speed
of light ¢. On a coarser scale (B), the particle appears to follow
a Brownian process with a sharp Lorentz invariant mass m, and
the particle’s net velocity is then less than c—as it should be for
a massive relativistic particle governed by the relativistic
Hamiltonian c(p? + m?c?)!/2.

Hp" = cyoy - (p = eA/c) + yo(me® + V) + eAy, (18)

and to the Feshbach-Villars Hamiltonian [21]

1
HY = (2 +i02) 5 (p — ea /)
+ o5(mc? + V) + eA,. (19)

For example, in the casewhen V = 0,A, = —By (B, = B),
and Ay = A, =0, then the PI for Dirac’s Hamiltonian
yields the “fast scale” Hamiltonian (see [21] for details),

1 e 2
Hgp = 2—~|:(Px + —By) +py+ P%:I — pgBos. (20)
7 ¢

This is the Schrodinger-Pauli Hamiltonian with up = efi/2im
representing the Bohr magneton. The corresponding grain
distribution is again the inverse Gauss distribution.
Analogous reasonings can be carried on also for charged
spin-0 particles, such as, e.g, 77 mesons.

PHYSICAL REVIEW D 86, 025029 (2012)

At first sight it may seem rather surprising that a LS
process may emerge from a superposition of two nonrela-
tivistic stochastic processes. What is perhaps even more
surprising is that none of the involved processes have a
dynamical symmetry that would correspond to a Lorentz
subgroup or to some form of a deformed Lorentz group
(see also [42,43]). This behavior is, however, less striking
when one observes that in many doubly-stochastic systems
the statistically emergent behavior has a structure vastly
different from those of the respective defining processes.
Hydrodynamic turbulence provides an example, where the
emergent velocity increments and their ensuing Kolmogorov
scaling can be understood as originating from two stochastic
processes (energy dissipation and chaotic force) operating on
two vastly different time scales, despite the fact that none of
the processes exhibits any particular scaling structure [44].
Analogous situations are also known from financial markets,
e.g., credit risk models or stochastic volatility models.

V. ROBUSTNESS OF SR UNDER SMALL
VARIATIONS OF MASS-SMEARING
DISTRIBUTION

Let us now turn to the question of how robust the
emergent special relativity is with respect to a slight
change in the mass-smearing distribution. In particular,
we are asking what is the relation between dw (or equiv-
alently 6f}/,) and 6F. Such a connection can be easily
read off from the relations (4) and (6). Namely,

e MFWHOFH)] = foo dve™™[w(v, 1) + dw(v, 1)], (21)
0
which directly implies
— te " FOSF(s) = foo dve ™ 8w(v, 1). (22)
0

Because of properties of the Laplace transform, the only
solution of Eq. (22) for 6F = 0 is 6w = 0. From this we
immediately see that the smearing distribution yielding the
left-hand side (lhs) of (11) is unique insofar as the relativ-
istic Hamiltonian for both positive and negative frequen-
cies has the usual square root form and the dynamics
within a “grain” is purely Brownian. So the form of the
SR is inexorably connected with the specific structure of
the mass-smearing distribution. The aforementioned spe-
cificity might be, similarly as in the case of explicit values
of the constants of nature, attributed either to the particular
form of initial conditions or to some as yet unknown
dynamical mechanism.

The question naturally arising in this connection is how

much the SR Hamiltonian F(H) = H(p) = cy/p> + m*c?
changes when small perturbations around the mass-
smearing distribution (12) are considered. To answer this,
we restrict ourselves to the transformations of the type

i=1, = 0(v, 1). (23)

025029-6



EMERGENCE OF SPECIAL AND DOUBLY SPECIAL ...

Since w should transform in v as a scalar density we have
0
o0, 1) == w(v, 1), (24)
av
or infinitesimally
d
Sw=aoi1— o) =— a—(a)(v, 1)ov). (25)
v

This also ensures that & is correctly normalized to 1.
In addition, we require that Sw(v =10,¢f) =0 and
Sv(v=0,1) =0, so that @(v =0,¢7) = 0 and the end-
point v = 0 is fixed. Inserting (25) back to Eq. (22) we
obtain equivalently

e*tF(s)

SF(s) = foo dve ™ w(v, 1)dv. (26)
s 0
Because of the condition Sv(v =0,7) =0 we might
assume that dv can be represented by the series

Sv(v, 1) = v¥ z €, (Hv", 27)
n=0
where a =< 1 is a positive constant and €,,(f) << 1 (in order
to facilitate small variations in v). Through Eq. (25) this
also implies that

- t 3
S, 1) = —ov, v [Zov (m - %>en(1)
+ > v+ a)en(t)], (28)
n=0
which indeed satisfies the required condition
Sw(v=20,1)=0.

Note further, that (26) can be with the help of (27)
written as

OF(s) = i n(l‘)( ) Kot a-1/2(t/5)

X sV M (29)
V T

To reveal more details about the previous expansion, let us
look at the large-s asymptotic expansion. From theory
of modified Bessel functions of the second kind it is
known that

K,(x) = ‘g%(l + 4”287;1 + @(1/x2)) (30)

at x — oo and hence from (29) the leading-order terms are
OF(s) = t
(s) = seo<)(2\/_)

+ O(s—/?). (31)
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So, in order to have the rhs ¢ independent, the leading-order
coefficient €,(z) must be time-independent, i.e., €,(f) = €,
and similarly €,(r) = €, — €y(a® — a)/t.

On the other hand, the small-s expansion can be
obtained by observing that upon setting on the rhs of (26)
s = ¢ ! and sv = v’ we have

RHS (26) = ¢ foo dv'e ™ w(ev, )dv(sv, ). (32)
0

If we now use (27) and expand w(gv’, t) for large & we can
easily find that the leading term in the large-¢ behavior of
(32) has the form

M@ -

RHS (26) ~ eyt~ @2~ 1/2 2\/;2 . (33)

By substituting back & = 57!

SF(s) ~ egf! a<s>a Y L;\/;) (34)

The rhs is t-independent only if « = 1. This also
implies that the coefficient €,(¢) is time-independent, i.e.,
€,(t) = €, [cf. Eq. B1)].

With this preparatory analysis we can now substantially
simplify (29). In particular, we can write

(SF(S) = 60\/75

+ 21+ flt)

8 \/E st §32p2

+ (t)(l 4 12 + 60 120)
€ e R N A Bl
NG 32 22§53

we get

=6£+ﬁ+161
%2 4 S5

So, perturbatively (i.e., order by order in the expansions of
6v and 6F) the lhs can equal to the rhs only when ¢ is
nonzero and all other €; are zero. When we wish to include
also other €;’s apart from €, then we must include all of
them in order to allow for mutual compensations of their ¢
dependencies. So for instance, we should choose €,(f) =
€, — 2€,/t in order to get rid of a time dependence in the
term 1/./s. The time dependence in the term with 1/s will
be canceled by €;(r), while the time dependence in 1/s53/2
can be canceled through e€;(¢) and €,(¢). In this way one
may proceed at infinitum.

To gain insight into implications of the series expansion
(35), one may assume (e.g., on convergence ground) that
the surviving constant coefficients €; are decreasing func-
tions of their order ““i.”” One may then hope that a trunca-
tion at a suitable higher order term might give analytically

(1) .
m + T) + . (35
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manageable and fairly precise form of §F(s). In view of
Sec. VII, a particularly pertinent truncation is a truncation
that terminates after the €, term. In this way we include a
first nontrivial contribution beyond €;. Note also that such
a truncation must include a part from the €,(7) term in order
to cancel the unwanted ¢ dependence. The resulting expan-
sion reads

iia,le (36)

2 4 S8

To a linear order in €;’s we can write this equivalently as

F(s) = F(s) + 8F(s) ~ % + (1 + %)Js + % 37)

Here the use was made of the fact that F(s) = /s. In order
to ensure that F(0) = 0 we should chose €; so that

€ = —2(1 + %)@ (38)

OF(s) = €

PHYSICAL REVIEW D 86, 025029 (2012)

Let us now turn our attention to the analysis of the result
(37). We begin with the observation that the inverse
Laplace transform [see Egs. (4) and (6)] gives us &(v, 1)
in the explicit form
ov,H=w(v1)+ 6w

_exp{=g5[(1+ €/2) —v /G + &/2)
2 /m v/t

In terms of the mass-smearing distribution this corresponds
to the PDF

(39)

- te
f(1/2)<m, 1c*(1 + €/2)% tm*c* + ﬁ), (40)

and to the associated emergent Hamiltonian

A=+ (1 + %)‘/p%z + m2ct + % (41)

The ensuing superstatistics PI identity then reads

x(1)=x Dp L €o ‘/ €
Dx—5 d X ——— 1+ PP+ 24+—]}
fx(o)—x’ x(zﬂ_)D exp{ﬂ) T[lp X 2 ( 2) pc m-c 4

tEZ

= /00 dmf(1/2)<rﬁ, tcz(l + 60/2)2, tm262 + F
0 c

Here

E, = (1 + %)( m2c* + % - ?) (43)

is the particle’s rest energy implied by H.

In passing we may note that perturbatively we cannot go
beyond a simple rescaling of the emergent Hamiltonian
because in such a case only €, coefficient is nontrivial. In
this latter situation the mass-smearing distribution corre-
sponds to the PDF

Fap i, tc2(1 + €/2), tm?c?), (44)

and the emergent Hamiltonian has then the form

H=(1+ 60/2)‘\/p202 + m?c*. (45)

For the future reference this can be cast in the form

H =p*c® + m*¢, (46)
with &2 = c2(1 + €/2)? and m> = m?>/(1 + €,/2).

As a final remark we mention that the key PI identity
(42) alongside with the ensuing emergent Hamiltonians
(41) and (45) [or (46)] can be nicely fitted into the frame-
work of doubly-special relativity. We will return in more
detail to this issue in Sec. VII.

x(f)=x Dp t . . p? B
[ el -]

VI. THE ROLE OF GAUGE FIXING IN
EMERGENT SPECIAL RELATIVITY

As we have mentioned in Sec. IV (cf. also Appendices A
and B) the superstatistics PI identity (11) implicitly corre-
sponds to a special choice of a gauge, namely, to the so-
called Polyakov or the proper-time gauge. A legitimate
question to ask is: what would happen if a different gauge
choice is made? After all, a different gauge-fixing condi-
tion can change the physically preferred foliation of space-
time that is central in our polycrystalline picture. But one
could equally turn this question around and ask whether
our granular space-time with its preferred foliation could
not be the fundamental (or primitive) concept and the
reparametrization invariance only a spurious symmetry
related to an inherent redundancy in our description. We
shall see in a moment that one may indeed introduce a new
redundant variable into the PI on the rhs of (11) in such a
way that the new action will have the reparametrization
symmetry, but will be still dynamically equivalent to the
original action. By not knowing the source, one may then
view this artificial gauge invariance as being a fundamental
or even defining property of the relativistic theory. One
might, however, equally proclaim the polycrystalline pic-
ture as being a basic (or primitive) edifice of SR and view
the reparametrization symmetry as a mere artefact of an
artificial redundancy that is allowed in our description. It is
this second view that we favor in this paper.

025029-8
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The trick which will help us to introduce a reparametri-
zation symmetry into the superstatistics PI (11) is akin to
the Stiickelberg mechanism, whereby one adds a fictitious
field to a given system in order to reveal some hidden
properties it might possess [45—47]. For instance, in quan-
tum electrodynamics one can install gauge symmetry arti-
ficially with additional scalar fields, in order to pass from
Proca’s ill defined massive Abelian gauge-field theory to
renormalizable and gauge invariant massive electromag-
netism. Similar field-enlarging transformations are also
found useful in non-Abelian Yang-Mills theories [48] or
in gravity [49].

To proceed, let us introduce a new scalar n by making
the replacement

x —x+np, 47

which, according to the Siiteckelberg prescription,
should follow the pattern of the gauge symmetry we
want to introduce. In addition, in order to keep the
boundary conditions for x we must require n(0) = n().
Substituting (47) into the “‘nonrelativistic Lagrangian” in
(11) gives

1/1
L=ip-x— —(T - i*r'))(p2 + m*c?)
2\m
(m — m)3c?  mc?
w2 (45)

7(1)=0 x(1)=x
(11) E[ @7][ drf (1 ) (i, tc? O)f
7(0)=0 x(0)=x'

Here we have used the path-integral analogue of the inte-
gral identity

[ andsapste s ap. = N [asdpri . 63

with the constant N = [dn.
Let us now define

e(r) = — —iq(7). (54)

|
[De [m dnﬁ@(/t dre(7) — ;)f(l/z)(nﬁ, tc2, 0)
0 0 m
, c’r £2c?\ [x(=x Dp
[ De exp( 57 ) [x o fDx—(qu)D

Here, in particular, the total length of particle’s trajectory is

L Efod’Te(T). (57)

In connection with (56) we should mention two important
points. First, the gauge invariance of the action can be used

x(0)=x'

exp{fot dr[ip X — %(p2 + mzcz)]}. (56)

PHYSICAL REVIEW D 86, 025029 (2012)

Here we have neglected total derivative terms. Note that
the last two terms can be assimilated into a smearing
distribution provided we make the redefinition

f(l/z)(ﬁ’l, tCz, tczmz) —> f(l/z)(ﬁ’l, tcz, 0) 49)

Let us further observe that,

oL oL oL
SL = (s )5)6 (1) + —— e Sn(r) + mépi(r)
_ , oL Bx’k(T’) ; Sx'* (')
= [0 s (o 270+ 5 00)
oL
5 ()517,(7) (50)

and hence the Lagrangian (48) is invariant with respect to
the gauge transformation

ox(7) = A(7)p(7),
on(r) = —A(r), (51)
ép(r) =0,
where A(r) is an arbitrary function satisfying
A(0) = A(r) = 0.

At this stage we observe that modulo a multiplicative
constant the rhs of the superstatistics identity (11) can be
written as

I e ot

This trades
Se(t) =

es the gauge transformation &n(r) for
iA(7). Note further that e(z) fulfils the constraint

f "dre(r) = L. (55)
0 m

which should be included into a function measure for e(7)
variables in the form of a delta function. The equation (52)
can be then equivalently written as

x(1)=x D

Dxﬁ exp{/ot dT[ip X — %(p2 + mzcz)]}

to reparametrize the time. Indeed, let 7— 7+ £(7) =
A(7) such that £(0) = £(r) = 0. In this case the ““action”
takes the form

Ay . .dx_é 2
[/\] d)l(lp T 2( +mc)) (58)
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Where
g()\) € ( 7 ) > 5 9

that is, it transforms as the einbein (i.e., a square root of
the intrinsic metric along the worldline). In particular, the
infinitesimal form of the previous transformation reads

d(ef)
dr ~

oe = — (60)

PHYSICAL REVIEW D 86, 025029 (2012)

This change can be, however, assimilated into gauge
transformations of x and p that have the form
[cf. (51) and (54)]

2t e\ [fx(A)=x Dp
23 5D ——(p*+
-[De 27l eXp< ZL)Lw—x/ DX eXPUM d/\[lp * (p me )]}

XH(Ay)=xH
Cat[ ,[“(Al)—x‘”

In the second line we have utilized an auxiliary Gaussian
path integral for x, in the form [21,50]

d fxo(/\z):Cf Dpy {/Az [ . e
— Dxy ——= ex dA| ipgxg — = 2:”»
3t Join=o0 0 ) p N PoXo 21’0

1 2t
T3 exp(— i) (63)

= —c2¢

The path integral after the time derivative in (62) is already
formulated in a covariant way, as it should be according to
Appendix A. At the same time it is well known that this
covariant path integral is not completely right (see, e.g.,
Refs. [34,50]). In fact, it contains an enormous overcounting,

62) = ] R (225;1 eXp{ [O - d/\I:iplL =S m2c2)]}. (65)

X (A)=x

The expression after d,, is nothing but the well known
Feynman-Fock worldline representation of the Klein-
Gordon (KG) propagator [21,22,34,50]. In addition, in this
particular gauge the PI form (65) explicitly coincides with
the superstatistics PI (11) as the reader can easily observe by
performing the x, and p, functional integrations.

From the previous considerations we see that the
Stiickelberg trick is a terrific illustration of the fact that
the reparametrization invariance of a quantum relativistic
particle can be regarded as a mathematical sham. It repre-
sents nothing more than a redundancy of description. In
practice one could take any theory and form from it a gauge
theory by introducing redundant variables along the pre-
sented lines. Conversely, given any gauge theory, one can
always eliminate the gauge symmetry by eliminating the
redundant degrees of freedom. The drawback is that re-
moving the redundancy is not always a smart thing to do. In
fact, it is often said that gauge symmetry is fundamental
as, for instance, in electromagnetism. A more accurate

DpM
(2 )D+1

sx =i(eé)p,
ép =0. 61
So Eq. (56) can be equivalently written as
exp{f d/\[lprM - —(p + mzcz)]} (62)
Ay

|

because configurations (e, x*, p,) and (¢, x'*, p,), that are
related to one another by the gauge transformation (51),
represent the same physical configuration. One should use
any of the standard techniques of constrained quantization,
such as, e.g., Faddeev-Popov procedure, to remove this
redundancy by imposing appropriately a gauge-fixing
condition. For instance, by utilizing the Polyakov (or
proper-time) gauge

ée=0, (64)

the Faddeev-Popov procedure allows to recast (62) into the
form

statement is, however, that the gauge symmetry in electro-
magnetism is necessary only if one demands the conve-
nience of linearly realized LS and locality. Fixing a gauge
will not change the physics, but the price paid is that the LS
and locality are not necessarily manifest. This is precisely
what has happened in the case of the FV equation. There,
the particular choice of a gauge in which the equation is
formulated leads to a nonlinear realization of the LS (see
Appendix A in Ref. [21] where the associated nonlinear
realization is discussed).

In conclusion, the previous construction shows clearly
that the polycrystalline space-time picture may be legiti-
mately considered as the primitive conceptual framework
for a relativistic quantum particle. On the other hand, the
assumptions like the reparametrization invariance, which
lie at the bedrock of relativistic quantum mechanics, can-
not be held immune to scrutiny. In fact, we have seen that
the reparametrization symmetry can be perceived as a mere
artefact of an underlying (spurious) redundancy of the
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description. In other words, the reparametrization symme-
try can be seen as being a derived, rather than a primitive
edifice of relativistic quantum mechanics.

In what follows we propose an unifying approach for
special and doubly-special relativity, based on the existing
laws of quantum mechanics as formulated through super-
statistics PIs.

VII. EMERGENT DOUBLY-SPECIAL RELATIVITY

Our analysis from Sec. V reveals what kind of dynami-
cal systems should be expected when the underlying mass-
smearing (or equivalently grain-size) distribution is
slightly deformed. Under a fairly general set of assump-
tions, we have arrived there at the emergent Hamiltonian
(41) and its “contracted” version (45). In this section we
are going to see in more detail, that the dynamics associ-
ated with the aforementioned Hamiltonians can be identi-
fied with the so-called doubly (or deformed) special
relativistic dynamics.

In a nutshell, DSR is a theory which coherently tries to
implement a second invariant, besides the speed of light,
into the transformations among inertial reference frames.
This new invariant comes directly from the research in
quantum gravity, and it is usually assumed to be an
observer-independent length-scale—the Planck length €,
or its inverse, i.e., the Planck energy E,, = 05;1. Thus, it is
not so surprising that the relations mainly studied are those
between DSR and various quantum gravity models
[51-53]. In a particularly suggestive approach [54], DSR
has been presented as the low-energy limit of Quantum
Gravity. Connections between DSR and other theories
(noncommutative geometry, anti-de Sitter space-time,
etc.) have also been recently investigated [55].

It is by now well acknowledged that the DSR stands
among the prominent ideas introduced in physics during
the last decade, and also among the most controversial
ones. Many foundational issues about this theory are still
being debated, in particular, for example, the multiparticle
sector of the theory (the so-called soccer ball problem)
[56]. An important area of investigation has been that of the
relations between DSR and other theoretical construction
of modern physics.
|
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Clearly, the most important connection is the one
between DSR and special relativity (SR) itself. However,
in literature there does not exist any conceptually deeper
elaboration of this connection, apart from the obvious
statement that for energy scales much smaller than E,
DSR should reduce to conventional SR with leading cor-
rections of first or higher order in the ratio of energy scales
to E,. To this respect, the findings of the present paper
seem to open up new vistas. In fact, when the microstruc-
ture of space-time is considered, then SR or DSR seem to
emerge from particular choices of such microstructure
itself, and from a nonrelativistic Hamilton (i.e., phase-
space) mechanics.

To extend our reasonings to DSR, we start by consider-
ing the modified invariant, or deformed dispersion relation,

ﬂahpaph _ .22
T 3 — moct,
(1 - €pp0)

proposed by Magueijo and Smolin [57,58]. Here m plays
the role of the DSR invariant mass. Assuming a metric
signature (+, —, —, —) we can solve (66) in respect to py,
which essentially coincides with the physical Hamiltonian
H = cp,. The latter is the generator of the temporal trans-
lations with respect to the coordinate time ¢. Our starting
Hamiltonian is, therefore,

(66)

—m2c ¥ \p*(1 — m?c2€?) + m?c?

1 — m?c*¢? ’
which we assume as the transformed Hamiltonian
H(p, x) = F(H(p, x)) entering the proper PI representation
of P(x, 1p|x,, t,), see Eq. (6) and the comments below (see
also Ref. [20]). Note that by setting

’ 1
=af—————1
€1 ( 1 — c2m?e? )

A4cSmA 02 (68)
1= EmPe
we can identify the DSR Hamiltonian (67) with the
Hamiltonian (41) obtained in Sec. V. In close analogy with

(11), it is now possible to show the superstatistics identity
(see Appendix C)

H=c¢

(67)

€

x(1)= D 226_ 21_ 22€2+ )
T 0

x(0)=x'

- f " dimf (i, 12, tm?A)
0

where E, = mc*/(1 + mcf) is the particle’s rest
energy (see, e.g., [58]) and A = 1/(1 — m?c?€?) is the
deformation parameter. From (12), it is easy to see that
(m)y = m + 1/(tc*A) and var(i) = m/tc?A + 2/12c*A2.
From the structure of (i7) we can obtain further useful
insights. Similarly as in the SR framework, the fluctuating

x(t)=x

Dp N U
e Dx @mP exp{j;) dr[lp X 7 EO]}, (69)

e

Newtonian mass 71 converges rapidly, at long times ¢, to the
SR rest mass m. But in this case is the rate of convergence
controlled also by the parameter A. Reminding that £, =
c¢/€,, weseethat A = 1/(1 — E?/E2). So, (fin) can converge
rapidly to the Einstein value m, even at short times, provided
that the particle’s energy E be close to the Planck energy E,,.
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The correlation distance is now given by ~1/(mcA), and
since A > 1, then 1/(mcA) < 1/(mc) always.

From the identity (69) we can quickly deduce the CCR
via the standard PI analysis. In particular, the CCR can be
directly related to the degree of roughness (described
through Hausdorff dimension dy or Hurst exponent %) of
typical PI paths [22,59]. For instance, the usual nonrelativ-
istic canonical relation [£;, p;] = i8;; results from the fact
that, for a typical path occurring in nonrelativistic Pls, dy
and h are 2 and 1/2, respectively. In fact, in nonrelativistic
quantum mechanics all local potentials fall into the same
universality class (as for the scaling behavior) as the free
system [59]. The latter might be viewed as a PI justification
of the universal form of nonrelativistic CCRs.

It is not hard to show (cf. Appendix D) that the PI
identity (69) implies the commutators

K2—m2C2A )

S b)) 0

Here « = 1/€. The CCR (70) resembles the Snyder
version of the deformed CCR associated to the dispersion
relation (66) (cf. Refs. [60-63]). To be precise, the Snyder
fundamental commutation relation (see Ref. [60]) in the
notation of the present paper (for 7 = 1, the Snyder
fundamental length a = € = 1/«) would read

[%:, Pjlpsr1 = i(5ij +

. . Db,
[xir pj]Snyder = 1(61'/' + —21) (71)

K
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So the prefactor of the deforming term in the Snyder com-
mutator is a constant related to the fundamental length,
while in the DSR commutator (70) the prefactor varies
with the FEinstein mass of the particle considered. The
minimal length interval € is typically set to be the Planck
length €,,, or more generally to be the Compton length A
(which reduces to the Planck length for a Planck mass). For
definiteness we will in the following identify € with €,,. In
this connection, note that when mc — k, i.e., when m
coincides with the Planck mass, then the CCR (70) becomes
nonrelativistic. This can also be directly seen from (69),
where for m — M/, the defromation parameter A — o,
and the smearing distribution f(; /5 (i, 1c* A, tc2m?A) —
S8(m — m), which yields the usual PI for a Wiener process.

Should we have used instead of (66) a different DSR
dispersion relation, for example,

2 2

Po P 5.,
o B2 (72)
1- (epp())2

(which is discussed in Ref. [64]), we would have obtained
the DSR Hamiltonian

(2 + e
V1 + m22e?’

from which follows the superstatistics identity (see again
Appendix C)

H==* (73)

j‘x(t):x D Dp {j‘zd [ ) 1/chZ + m2c4]}
X ——= €X TI1p X — —F/—M—M—/—
x0—  QmP P, P V1 + m2c2e?

= [00 dif (i o (m, 1c*£2, tc*m?)
0

Here E, = mc?/v/1 + m>c?€? is the particle’s rest energy
and the deformation parameter now reads ¢ =
1/V/1 + m?c*€2. 1t is not difficult to compute that (i) =
m/{ + 1/(c?tZ?) and var(im) = m/(tc* %) + 2/(Pc* %),
Let us observe that this double-special relativity model
does not have the desired property that its fluctuating
mass converges to a Lorentz mass in the large ¢ limit. In
addition, because ¢ € (0, 1), the fluctuations at short times
cannot be suppressed and one thus cannot hope to have a
relativistic system with a sharp Einsteinian mass at the
Planck energy. In passing, we may note that the DSR
system (73) coincides with system (45) and (46) from
Sec. V provided we make identification

€ =2(L—1). (75)
The CCR in this system reads (cf. Appendix D)

A . Pib;
[%;, Pilosr> = 1<5ij + mzcjz)- (76)

x(1)=x

x(0)=x'

D t . 2
Dx (2771))1) exp{fo dT[lp - X — 5_;51 — EO:”». (74)

As the reader can see, this commutator coincides with the
SR one. Some comments on this apparently surprising fact
are contained in Appendix D.

At this point, for the sake of completeness, we should
also note that commutator (70) does not coincide with the
commutator (61) of the Magueijo-Smolin paper [58],
although it comes from the same dispersion relation (66),
proposed in [58] as formula (3). Moreover, both commu-
tators (70) and (76) do not enjoy an important property of
the commutator (61) from Ref. [58]. In fact, when the
energy of the boosted system approaches the Planck en-
ergy, the aforementioned commutator, which reads

[, Pilms = i5ij<1 - EE) (77)
P
goes to zero, and so it predicts the appearance of a classical
world at the Planck scale. On the contrary, when the energy
of the particle under boost approaches the Planck value,
commutators (70) and (76) become respectively
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[fj, ﬁi]Dsm = iaij’
PP (78)
[%;, Pilpsr2 = i<5ij + %)

The qualitative difference in behavior of both CCR can
be traced back to the fact that commutators in (doubly-)
special relativity depend on two things: First, the funda-
mental commutators are essentially the Dirac brackets of
the canonical variables. The explicit definition of the Dirac
brackets depends on the choice of a gauge (gauge-fixing
condition), which for relativistic systems corresponds to
choice of a specific physical time. So the commutation
relations are generally gauge-fixing dependent in both SR
and DSR systems. Second, the fundamental commutator
[X;, p;] depends (through the Jacobi identities) on the
whole symplectic structure of the system (and therefore
also on the commutator [£}, X;], for example). These are
not specified by a particular DSR model, but they have to
be chosen aside. Of course, one obtains different theories
for different choices of [}, X;].

In our specific path-integral approach, the gauge which
is automatically incorporated in the path integral is the
Polyakov gauge. We obtain the same fundamental commu-
tator of Ghosh [62]. For Ghosh [62] and Mignemi [65] the
x;’s do not commute, [£;, &;] # 0, while on the contrary
Magueijo-Smolin in [58] require the X;’s to commute
[formula (60)].

So, a DSR theory is not only defined by the dispersion
relation, but also by the gauge fixing and the choice of the
symplectic structure, which is essentially arbitrary. In prin-
ciple, therefore, only the experiment can effectively dis-
criminate among different models. It should now become
clear why our model can produce commutators different
from those of Ref. [58], although both models share the
same deformed dispersion relation. As a small further note,
we may add that from the Magueijo-Smolin paper [58] it is
not clear if the proposed commutators satisfy the Jacobi
identities or not (not enough commutators are, in fact,
explicitly specified to enable the reader to verify the
Jacobi identity).

We conclude with an important observation. Should we
have applied our analysis from Sec. V to the above DSR
systems, we would have obtained that a slight perturbation
in the mass-smearing distribution would yield again DSR
systems. From this standpoint is the DSR (as well as its
low-energy limit—SR) a robust concept, i.e. its algebraic
structure continues to hold despite (potentially dynamical)
alterations in polycrystalline structure conditions.

VIII. CONCLUDING REMARKS

In this paper we have shown that both SR and DSR systems
can arise by statistically coarse-graining underlying nonrela-
tivistic (Wiener) process, making the latter more fundamental
and the former in some sense emergent. The coarse-graining
can be viewed as arising from superposition of two stochastic
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processes. On a short spatial scale (much shorter than
particle’s Compton wavelength) the particle moves according
to a Brownian, nonrelativistic, motion. Its Newtonian-mass
fluctuates according to an inverse Gaussian distribution.

The time-compounded smearing distribution tends,
however, rapidly to the delta-function distribution due to
the central limit theorem. This happens at the time scale of
the order of Compton time, at which the relative mass
fluctuation is of order unity. The Compton length also
represents the critical length scale at which the Feynman-
Hibbs scaling relation between Ax and At changes its
critical exponent (Hurst exponent) from 1 to 1/2. The
Compton time and ensuing Compton length can be thus
viewed as correlation time and correlation length, respec-
tively. The averaged (or coarse-grained) velocity over the
correlation time is the light velocity c. On a time scale much
larger than the Compton time, the particle then behaves as
a relativistic particle with a sharp mass equal to Einstein’s
(i.e., Lorentz invariant) mass. In this case the particle moves
with a net velocity which is less than c. Here the reader may
notice a close analogy with the Feynman chessboard PI. In
contrast to the chessboard PI, our approach is not confined
to only 1 + 1 dimensional Dirac fermions.

The presented concept of statistical emergence, which is
shared both by SR and DSR, can offer a new valid insight
into the Planck-scale structure of space-time. The exis-
tence of a discrete polycrystalline substrate (or vacuum)
might be welcomed in various quantum gravity construc-
tions. In fact, it has been speculated for a long time that
quantum gravity may lead to a discrete structure of space
and time which can cure classical singularities. This idea
has been embodied, in particular, in loop quantum cosmol-
ogy [66,67]. A similar proposal was put forward in
Ref. [68] in connection with the space-time foam. It should
be stressed that many condensed matter systems show that
a discrete substructure might lead to a genuinely relativis-
tic dynamics at low energies [16], without any internal
inconsistency. A paradigmatic example of this are wide
single-layer carbon crystals (graphene), where an effective
theory emerges in which conducting electrons behave, at
low temperatures, as massless relativistic Dirac fermions
with a “light speed” equal to the Fermi velocity of the
crystal [69]. Essentially the same emergent behavior is
known to hold also for silicene, i.e., the monolayer silicon
equivalent of graphene [70].

In this connection one can also stress that crystal-like
substrates—discrete lattices, are routinely used, for in-
stance, in computational quantum field theory [26,71,72]
where the genuine relativistic field dynamics emerges only
in the long-wavelength limit, i.e., at distances much larger
than a typical lattice spacing. However, with a few notable
exceptions [73,74], the lattices is these case mainly serve as
numerical regulators of ultraviolet divergences. Indeed, a
crucial point of renormalized theories is precisely to extract
lattice-independent data from numerical computations.

025029-13
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We close this paper with a number of questions, to be
examined in a future work. Foremost, we have stressed that
the proposed coarse-graining view directly applies also to
simple interacting systems, such as the Dirac’s particle in a
constant external electromagnetic potential. One may natu-
rally wonder whether this interpretation can be extended to
more general interacting systems. So far, two points hinder
this program to be carried further in a full generality: first,
the general x-dependence of A, and V leads to a notorious
ordering problem. Second, and most important, the trans-
formation that would bring the Hamiltonian into a form
where the positive and negative energy parts are explicitly
separated is no longer possible for a general interaction.
This last point makes it difficult to carry over straightfor-
wardly our reasonings. On the other hand, if the proposed
picture aspires to be more than just an interesting meta-
phor, one should be able to demonstrate the viability of our
scheme also for less trivial interactions. It remains yet to be
seen to what extent this can be done.

Another open issue is the role of the smearing distribu-
tion. In the presented approach, the specific form of the
smearing distribution is a mere byproduct of the supersta-
tistics PI paradigm. Our heuristic picture of a polycrystalline
medium which we affiliate with the smearing distribution is
clearly not the only possibility. Furthermore, a deeper under-
standing of a dynamical origin of our smearing would be
highly desirable. In fact, the exact LS is due to a very special
form of the Newtonian-mass distribution. The exact LS of a
space-time has no fundamental significance in our model,
but it is only an accidental symmetry of the spatially coarse-
grained theory. This ‘‘accidentalness” is controlled by a
specific form of the grain distribution. We have seen that a
small departure from its shape brings a departure from LS
and leads naturally to the DSR. In this respect a useful guide
to understanding the specificity of grain distributions could
be the observation that generalized inverse Gaussian distri-
butions with p = 1/2 correspond (among others) to first-
hitting inverse-time PDFs [75]. This might indicate that our
smearings distribute inverse times (i.e., masses) between
successive events in a renewal process (such as a passage
to a new grain). The latter would, in a sense, support our
polycrystalline picture.

dD+l
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Finally, it is also hoped that the essence of our results
will continue to hold in curved space-times. This could be
an important step in addressing the issue of quantum
gravity. In this connection we may notice a conceptual
similarity with the Horava-Lifshitz gravity theory [76],
where, as in our case, space and time are not equivalent
at the fundamental level, and therefore the theory is in-
trinsically nonrelativistic. The relativistic concept of time
together with its Lorentz invariance emerges at distances
much larger than Compton wavelength.
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APPENDIX A

Here we briefly review, without going to much detail,
some essentials related to PI representation of the Klein-
Gordon particle in the Feshbach-Villars representation.

The doubling of the wave function in Eq. (10) implies
the simultaneous description of particles and antiparticles
[77]. The Hamiltonian Hgy(p) can be diagonalized as

Hey(p) = U(p)osU(p) 'H(p), (A1)
where U is nonunitary Hermitian matrix
(I+y,)+0=y)o
U(p) = oo (A2)

NG ’

H(p) = c/p*> + m?>c? is the energy operator, and 1y, =

1/4/1 — v?/c?. The Green’s function G(x, y) associated
with the FV Schrodinger equation can be written as

p e ipx—y)

- 2
) = L o) 2 2
G(x;y) = .[R4 CmP T =t e [poc + (o3 + i0y) - + o3me ]

Here the ie prescription corresponds to the usual Feynman boundary condition. Note that the imaginary-time Green
function G(x, —it;x/, —it') = P(x, t|x’, 1) is a solution of the Fokker-Planck like equation (9, + Hgy)P(x, t|x, ') =
8(t —1)6®) (x — x'), where P(x, tlx,t) = (x|e=~"Hr|x/). Because of (Al), the latter can be equivalently

written as

dp : % Ners B
Iy — /! ip-(x—x") 1, —(t—1")o3H(p) |/ -1
P(x, tlx', 1) [RD dx ,[RD amp e U(p){x"|e SHP|XYU(p) L.

(A4)
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At this point a warning should be made, that we cannot
write naively the PI representation of (x|e~(~")7sHP)|x!)
by considering o3H(p) as a formal Hamiltonian. This is
because the PI with the ensuing action [! d7[ip-

X — cosWp? + m>c*] would diverge. The pathology
involved can be evaded by forming superpositions of

x(t)—x

(xle™ ’”*H(p)|x’)—[ dvow(v, t)f

x(0)=x'

(2D)D exp{f drlip - x — v(p*c® + mzc“)]}
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integrals which differ for upper and lower components
of exp(—to3H(p)) according to Feynman-Stuckelberg
prescription, i.e., we consider positive frequencies as
propagating forward in time and negative frequencies
backward in time. This yields the well behaved PI
(cf. Ref. [21])

(A5)

The weight function is now a matrix-valued Weibull distribution

1

N

w(v, 1) =

At the same time we can write

<x|e—m3H(p)|x/> = 6( ) 20-3 <x|e—tH(p)|x/>

1 - .
+ 0(— 1) — 22 (x| )| x)

Comparing the Euclidean version of G(x, y) represented
by Eq. (A3) with (A4) and (A7) we see that (x|e @) |5y
(with positive f) can be written as a time derivative of a
covariant quantity, namely, the KG propagator. It can be
shown (see [21]) that the resulting covariant quantity is a PI
which coincides with the familiar Feynman-Fock’s repre-
sentation of the KG propagator in the Polyakov (or proper-
time) gauge [34,50].

Because of the formal similarity of the diagonalization
(A1) with a Foldy-Wouthuysen diagonalization [78], one
can treat spin—% fermions in close analogy with KG parti-
cles (see [21] for details). It should be also noted that
Foldy-Wouthuysen-like diagonalizations are quite stan-
dard also for particles with a higher spin. This is particu-
larly clearly seen when the higher-spin particle wave
equations are phrased via Bargmann-Wigner equations
[79]. There the corresponding wave functions, the so-
called Bargmann-Wigner amplitudes, can be again trans-
formed into form where the positive and negative fre-
quency parts are explicitly separated. For these reasons
our superstatistics Eq. (A5) will still hold with the alter-
ation that for a spin n/2 particle the smearing matrix will
be 271 X 2"*1 matrix.

APPENDIX B

We show here how to obtain the CCR for the nonrela-
tivistic and special-relativistic systems discussed in the
main text. Doubly-special relativistic systems are then
considered in Appendix D.

6(1)e"/4 0
0 o(=ne’* |

(A6)

f
(a) Nonrelativistic systems.—From the invariance of
nonrelativistic PIs with respect to translation by a
fixed path we obtain the Ward identity in the

form [80]
<x// t” |

i0;;
mU + [, % £l ) =0, r<r<t

(B1)

The completeness of the Heisenberg base vectors
{|x, £)} turns the weak matrix relation (B1) into a
strong operatorial identity—the usual nonrelativistic
CCR. For analytically continued PI [such as the PI
(2)] this reads

PV
" =L+ (R #1x ) = 0, r<r<t
m

(B2)

The conclusions (B1) and (B2) are true for any
nonrelativistic system with a kinetic term of the
form mx?/2. It can be shown [59,80] that the pre-
vious Ward identities imply the Feynman-Hibbs
scaling [22]

xR (7 4+ Af) — #,(7)||x, 1) o< (A2 (B3)

This means that the Hurst exponent % of a represen-
tative trajectory is 1/2 and the corresponding
Hausdorff fractal dimension dy is 2. In this respect
the nonrelativistic PI trajectories are reminiscent of
a Wiener process.

(b) Special Relativity.—In the relativistic framework the
Ward identity (B2) boils down to [cf. identities (11)
and (16)]

f A f i o) (i, tc2, 1P m?)(x", 1) =2
0 7
+ & &)1l 1) = 0, (B4)

where t = ¢/ — 7.
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In order to explicitly compute the previous integral we
need to recall several formulae. First, since the base-
vectors in Heisenberg picture are time dependent while
in Schrodinger picture they are time-independent (in con-
trast to state-vectors), we can write

X/, t/> _ e’lﬁc|x'>,
<x//’ ' = (x”|e_’”ﬂc,

E %], = eTHC[J.?i, fj]efTHCy

(B5)

where H is the classical, i.e., nonrelativistic Hamiltonian.
A second relation useful in the simplification of (B4) is
formula (6) of Ref. [20], namely, for Hamiltonians not
explicitly dependent on time we have

e*IHsR = j(.:o dfﬁf(l/z)(l’h, tcz, tszz)eitHC, (B6)
with
2
HSR = CVPZ + mzCZ, HC = 21,’_771 + mcz' (B7)

Combining (B4) and (B6) with yet another identity, namely

e~ Hsr

myy

where y, = 1/4/1 — v?/c?, then relation (B4) becomes

00 eifHC
= f dﬁ’lf(v@(ﬁ’l, lC2, tczmz)f, (BY)
0 m

0= _[ dmf(l/z)(rh’ tcz, tc2m2)<x1/|e7(l”*7)lflc
0
o
X <— + [xv ]]>e (r— t)HClx,>
m

Y (S _ o
- <x”|67(’ 7T)HSR<# + [-’ei» fj])e*(T*l)HSR|x1>. (B9)

v

Similarly for negative frequencies we obtain (see [21] in
Sec. II)

1 'y 6 A NET
(x""e= —T>HSR<4 - [x, fj])e—<f—f>ﬂsr<|x/> =0. (B10)
m v
Equation (B9) together with (B10) implies the matrix-
valued commutator [x;, X;] = —038;;/(mvy,). Because of
x; = 030Hsx(p)/dp; = o3p;/(my,), which means p; =
o3my,X;, we can make use of the algebraic identity

[X), p;] = o3my,[%), x]+ U3mfi[fj, Yol (B11)
Reminding now that
o A . a1 9V
[xj, Yo(X)] = [xj: x]- e (B12)

i

we finally arrive at
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(B13)

The analytical continuation of the relativistic stochastic
process (7) gives the corresponding quantum mechanical
(QM) CCR

A

(%, Pilsg = (6 + 2ib; C) (B14)

This coincides with the SR commutator that one obtains by
lifting Dirac brackets (corresponding to the first class con-
straint @ = p —m? and the gauge condition y =
x“p, — sm?c?, with s being the worldline parameter) to
QM commutators. The gauge condition leading to (B14) is
precisely the Polyakov gauge condition which, as men-
tioned earlier, is implicit in our superstatistics formulation
[21,81]. It is worth of noting that the SR commutator (B14)
appears frequently when the first quantization of relativis-
tic systems is discussed; see, e.g., Refs. [61-63,82].

The roughness of a typical relativistic path can be eval-
uated by rewriting (B9) in a time-sliced version as

Al‘<xl/ t/IIJ

<x// t//l(x

(&;(r + A1) — ,(1) . o)
(A )2 2 X1

+ A1) — &(7) I, 1),

(B15)

which gives for A%;(7) = £;(7 + A1) — £,(7)

At = (&, AR (D)1 + m2A (AR (DRI, 1),

In particular, for Ax much smaller than the Compton
wavelength A = 1/mc, the Hausdorff dimension dy = 1,
i.e. for such short times the process is superdiffusive. In the
opposite case, when Ax is much bigger than A~ we recover
the nonrelativistic Feynman-Hibbs scaling (B3) with dy; = 2.

APPENDIX C

In this Appendix we prove the relations (69) and (74). In
both cases we start from relation (11), which we take
for granted.

(a) Relation (69).—The DSR1 Hamiltonian (67) can be

brought into the same form as the relativistic

Hamiltonian c+/p* + m?c* by renaming the speed

of light
c2=c2), (CD)
with
A= ; (C2)
1 — m?c*?
Then
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—m2c + \p*(1 — m*c2€2) + m?c?
1 — m2c2¢?

= —m2clé* + E\/pz + m2é?,
(0= D

/‘x X Dy pD
x(0)=x' (2m)

= / dif (1 ) (m, tc? A, tc* Am?)
0

Hpsg) = ¢

(C3)

x(1)=x
x(0)=x'
But

mc2

1 — m2c2e?

met =
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where in the last line ¢ is understood to be expressed
as a function of ¢, precisely ¢ = &/v1 + m*€>¢>.
Now, relation (11) must hold also when we formally
replace everywhere ¢ with ¢. Therefore,

exp{fl drlip - & — c4p* + m252]}
0

therefore, defining E, = mc? / (1 + mcf), the relation (C4) becomes

j‘x(t) X
x(0)=x'
= / dif (1 ) (i, tc* A, tc* Am?)

0

which, in force of relation (C3), coincides with Eq. (69).
Note that we can obtain the DSR expressions for (i)
and for var(im) reported in the text, by simply replacing
c?> — ¢ = ¢ into the similar expressions given for the
special-relativistic case after formula (11).

As for the fractal dimension of the representative trajecto-
ries (or histories), one finds that (following the same

reasonings as in Appendix B), the following scaling holds:

2,020 A $.())2
mA(Ax,(T)) ¥, 1),

and thus for Ax < /\C/\/X we have dy = 1, while for
Ax > Ao/ VA holds dy = 2. Hence the representative
trajectories have a shorter typical length scale Ax (i.e.,
average distance between change of direction) than in the
SR case.

(b) Relation (74).—We can prove relation (74) in an

1+ A
cAr = {x", t”IIAfi(T)I\/ ¢

analogous way, by noting that the DSR2
Hamiltonian (73) can be written as
, 2.2 +
HDSR2 p ¢ m C C + 7}_1254, (C7)
1+ m2c2€2
once we make the replacements
2
2, 2= ¢ _ 22
e e T A (C8)

m? — m? = m*(1 + m>c*€*) = m?>/ 2,

where ¢ = 1/4/1 + m?c?€>. Therefore relation (11)
must formally hold once we make such replacements
in it, and these bring to the following expressions

x(0)=x'

(2 amp exp{f drlip - x + m?c€c® — ¢4[p? + mzcz]}

x(t)=x

Dp N P L
Dx—(27T)D exp{/o d7'|:1p X o mc :I} (C4)
— et + "1 (C5)
mete 1+ mcl’
Dx 2P {fd [ -'—p—z—E]} (C6)
x(27T)D exp . T|ip X = o |t
|
me* = S C— E
V1 + m?ce? o
faypm, 182 1&2m?) = f2)(m, tc2 {2, tc?m?),
1 m 1
N=m+—=—t— (&Y)
) = > ¢ et
. m 2 m 2
varin) =5 ¥ i = g T e

which prove the relation (74) and the expressions for
() and var(/m) as given in the main text. Ej is
identified with the particle’s rest energy.

As for the scaling behavior Ax vs At we find in this case

c{At = (x", l””Afi(T)lJl + 2m*(A%(7))*x/, 1),

which provides the same fractal dimension as SR, i.e., for
Ax << A one has dy = 1, while for Ax>> A holds dy =2.

APPENDIX D

Similar arguments as in Appendix B can be now applied
to the DSR systems (67) and (73) to compute the funda-
mental commutators. In the DSR system (67) we consider
the replacement

2= e =2

(D)

and because of relations (C3) and (C5) of Appendix C, we
can rewrite the identity (B6) as

e tHpsri = [ dﬁ’lf(l/z)(ﬁ’l, té2, tmzfz)e—tHa, (D2)
0

with

025029-17



PETR JIZBA AND FABIO SCARDIGLI

P> me>

Hy=—+E, and Ej=——.
A om 0 O + met

In the DSR1 framework the Ward identity (B2) reads

(D3)

[ A f (i, 122, 1222, 1) ”+[x,, 2,111, )
=0, (D4)
where the vectors |x/, ') and the commutator [%; £;]|,
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evolve analogously as in (B5), but now controlled by the
Hamiltonian H;. The integration formula (B8), after the

o Rz Y o
0= [ dif (12 (i, tc? A, tm2 2 A){x"|e ="~ He (# + [x;, fj])e*(T*’)HC' |x')
0 m ’

= <x”|e*(f”*7)’:’nsm (—
my,(¢)

Because X, = dHpggi(p)/dp; = pi/(my, (), which
means p; = mvy,(¢)x;, we see that the corresponding
CCR can be written (after analytical continuation) in the
form

ip.p,.
(D7)

PP
! ) [x];P]SR

(X, Pilpsr1 = (3 +

In the low momentum limit (i.e. when |p| << 1/€) the
commutator [£;, p;Ipsr1 approaches the SR commutator
(B14). In passing we note that the CCR (D7) resembles the
Snyder commutators (71) (see also Ref. [60]), which are
familiar commutators of DSR [61-63].

In the second case [(cf. Eq. (73)] we use the replace-
ments (C8) (see again Appendix C) so that identity (B6)
now, in the DSR2 framework, becomes

e Hpsre = f dﬁ;lf(l/z)(ﬁl, tc2§2 tm C2)€ tch (D8)
0

with
2 2
P _ — mc
H~» =—+E d EFy=—F—-—--—=. D9
2= 52 o0 an 0 T (D9)

) S

replacement ¢? — &2, reads
e~ tHpsri 00 e He
_— = f an’lf(l/z)(ﬁ’l, IEZ, l52m2) —, (D5)
my,(¢) 0 m
where y,(¢) = 1/41 — v*/(c*A).
The DSR1 Ward identity (D4) then becomes
(D6)
[
After the replacements ¢ — & = c?/?, m?> — m? =

m?/{?, and the corresponding changes in formula (BS),
the DSR2 Ward identity finally becomes

{6

<x//|e*(f”*7)1:1DSRz< —
my,(¢)

+ [52[’ _fj.])e*(T*t’)HDSRZ |x/> =0

(D10)

where v, (¢) = 1/4/1 — v*/&.
Since %; = 0Hpsro (p)/0p; = p;/ iy, (%)), we see that
the resulting QM CCR reads (after analytical continuation)

ﬁf’)
c

Note, in particular, that the CCR (D11) coincides with
the SR commutator (B14). This fact should not be so
surprising, since CCRs directly reflect the roughness of
the representative paths [83] and from Appendix C we
know that the fractal dimension of the DSR2 system co-
incides with that of SR.

(%), Pilpsr2 = ( (DID)
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