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The convexity of a scalar effective potential is a well-known property, and, in the situation of

spontaneous symmetry breaking, leads to the so-called Maxwell construction, characterized by a flat

effective potential between the minima of the bare potential. Simple derivations are given here, which

show how linear effective potentials arise from nontrivial saddles points which dominate the partition

function, for a self-interacting scalar field and for a Yukawa model.
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I. INTRODUCTION

The convexity of the effective potential for a scalar
theory has been known for a long time [1], and is a purely
nonperturbative effect, which cannot be reproduced by a
naive loop expansion. Convexity is a consequence of the
definition of the effective potential in terms of a Legendre
transform. In addition, the effective potential exhibits a flat
part, and the corresponding Maxwell construction is a
consequence of nontrivial saddle points in the path integral
which defines the quantum theory, when the bare potential
features spontaneous symmetry breaking (SSB). The aim
of this article is to give a simple analytical argument for the
occurrence of a linear effective potential, based on a semi-
classical description.

A whole Ph.D. thesis has been written on the topic [2],
where many aspects are studied, and a detailed literature
review is given. A simple argument for the convexity can
be found in [3], and the role of two competing nontrivial
saddle points for the flattening of the effective potential
was proposed in [4]. Lattice approaches are given in [5,6],
with an analytical argument based on a large N expansion,
and where finite size effects are also discussed. Convexity
of the effective potential and its relevance to finite tempera-
ture phase transitions is studied in [7], and a treatment of
convexity in quantum mechanics can be found in [8]. Also,
interesting approaches to convexity have been studied, using
exact Wilsonian renormalization group, and they are shortly
reviewed here, in Sec. IIC.

We note that an original realization of the flattening of
the potential is given by the spinodal inflation [9]. In this
work, the authors decompose the inflaton as the sum of its
space average � and the standard deviation � of its fluc-
tuations. The resulting model is similar to a hybrid inflation
scenario, and it is shown that the flattening of the potential
seen by �, as time increases (or � increases), is a conse-
quence of the instability of modes with superhorizon
wavelength.

Finally, the spinodal instability also appears in relativ-
istic nuclear collisions [10], where both quark-gluon

plasma and hadrons can coexist (spinodal decomposition).
More generally, the flattening of the effective potential is
related to the instability of the monophasic vacuum, and
leads to the coexistence of two phases, or bubbles of different
vacua.
In the next section, general arguments for convexity are

reviewed, and a derivation for the Maxwell construction is
proposed, in the case of a self-interacting real scalar field.
Section III describes similar steps when the scalar field is
coupled to a fermion. It is shown that the presence of a
fermion condensate and a nontrivial vacuum expectation
value (v.e.v) for the scalar field are self-consistent, and lead
to a linear potential between the minima of the bare potential.

II. SELF-INTERACTING REAL SCALAR FIELD

We first review the general arguments leading to the
convexity of the effective potential, and then propose a
derivation for the linearity of the effective potential between
the minima of the bare potential.

A. Convexity of the effective potential

We work her in Euclidean metric, which makes the
argument of convexity more straightforward. It has been
noted, though, that ambiguities can arise when using the
Minkowski metric [11].
Given a bare action S½��, the partition function Z and

the connected graph generating functionalW are defined as

Z½j�¼
Z
D½��exp

�
�S½���

Z
j�

�
� expð�W½j�Þ; (1)

and the classical field is

�c��W

�j
¼ 1

Z

Z
D½���exp

�
�S½���

Z
j�

�
¼h�i: (2)

�c is a functional of the source j, which does not corre-
spond to a physical source, but is rather an intermediate
variable, to parametrize the system, and which will even-
tually be replaced by the classical field. A key inequality is
obtained by taking the second derivative of W*jean.alexandre@kcl.ac.uk
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�2W

�j�j
¼ �h��i þ h�ih�i � 0: (3)

The proper graph generating functional �, defined as the
Legendre transform of W, is obtained by inverting the
relation between the source and the classical field, such
that j has now to be read as a functional of �c, and

�½�c� ¼ W½j� �
Z

j�c: (4)

The effective action � contains all the quantum corrections
which dress the system.

The equation of motion of the classical field is obtained
by noting that

��

��c

¼
Z �W

�j

�j

��c

� j�
Z

�c

�j

�c

; (5)

and using the definition (2) of the classical field, to find

��

��c

¼ �j; (6)

where we remind that j has to be understood as a functional
of �c. An important relation is then

�2�

��c��c

¼ � �j

��c

¼ �
�
��c

�j

��1 ¼ �
�
�2W

�j�j

��1
; (7)

which, together with the inequality (3), leads to

�2�

��c��c

� 0: (8)

The effective potential is the momentum independent part of
�, and is therefore a convex function of the classical field.

B. Maxwell construction

As a consequence of convexity, quantum effects must
erase all possible concave contribution in the bare potential.
We now show how this happens, taking into account the
nontrivial saddle point configurations which appear when
the bare potential feature SSB.

We assume that �1 > 0 and �2 < 0 are nonvanishing
constant configurations for which the bare action S has the
local minima S1 ¼ S½�1� and S2 ¼ S½�2�. The bare action
might contain a physical source, such that we do not
necessarily have �2 ¼ ��1 and S1 ¼ S2.

We do not take into account the kink configuration, since
the latter is stable in 1þ 1 dimensions only, if no other
field is present [12], and we consider here two space
dimensions at least (a recent work on the quantization of
the 1þ 1 dimensional kink can be found in [13]). In addi-
tion, the kink has a finite action Skink, and its contribution
expð�SkinkÞ to the partition function is much smaller than
the contribution expð�S1;2Þ of constant saddle points, with
negative actions S1;2, which are proportional to the volume.

If one neglects quantumfluctuations, the partition function
is then dominated by the two saddle points�1, �2

Z ’ exp

�
�S1 �

Z
j�1

�
þ exp

�
�S2 �

Z
j�2

�
; (9)

and the classical field is

�c ’�1 expð�S1�
R
j�1Þþ�2 expð�S2�

R
j�2Þ

expð�S1�
R
j�1Þþexpð�S2�

R
j�2Þ ; (10)

which represents a weighted average of the two configura-
tions �1, �2. This shows that the approximation (9) can
describe the region �2 � �c � �1 only: the limits of
the classical field (10) are

lim
j!þ1�c ¼ �2 lim

j!�1�c ¼ �1: (11)

Outside the interval ½�2; �1�, the effective action is
equal to the bare action, since we neglect quantum fluctua-
tions. In this approximation, the effective action is, for
�2 � �c � �1,

�½�c� ¼ � ln

�
exp

�
�S1 �

Z
j�1

�

þ exp

�
�S2 �

Z
j�2

��
�

Z
j�c; (12)

and, as expected, has the following limits:

�½�2� ¼ lim
j!þ1�½�c� ¼ S½�2�

�½�1� ¼ lim
j!�1�½�c� ¼ S½�1�:

(13)

In order to find an expression for � in terms of the classical
field�c, one needs to express the source j in terms of�c, and
plug the result in the expression (12). The classical field (10)
can be written as

�c ¼ �1 þ�2

2
��1 ��2

2
tanh

�
A1 � A2

2

�

where Ai ¼ Si þ
Z

j�i; i ¼ 1; 2: (14)

We note here that there is a one-to-one relation between the
source j and the classical field�c, which is not the case if one
uses the bare potential as the classical approximation for the
effective potential [4]. As a consequence, since the fields�1,
�2, j are constant, we have

Z
j¼ S1�S2

�1��2

þ 2

�1��2

tanh�1

�
�1þ�2�2�c

�1��2

�
; (15)

and therefore
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Ai¼�1S2��2S1
�1��2

þ 2�i

�1��2

tanh�1

�
�1þ�2�2�c

�1��2

�

Z
j�c¼�cðS2�S1Þ

�1��2

þ 2�c

�1��2

tanh�1

�
�1þ�2�2�c

�1��2

�
:

(16)

From these last two expressions, one finds that the effective
action is

�½�c� ¼ ð�1 ��cÞS2 þ ð�c ��2ÞS1
�1 ��2

� ln

��
�1 ��c

�c ��2

�ð�c��1Þ=ð�1��2Þ

þ
�
�1 ��c

�c ��2

�ð�c��2Þ=ð�1��2Þ�
; (17)

where the second term vanishes for�c ¼ �i, i ¼ 1, 2, and is
independent of the volume V of space time, whereas
the first term is proportional to V. The expression for the
effective potential Ueffð�cÞ ¼ V�1�½�c� in terms of the
bare potential Ubareð�Þ ¼ V�1S½�� is then obtained after
dividing by V and taking the limit V ! 1:

Ueffð�cÞ ¼ ð�1 ��cÞUbareð�2Þ þ ð�c ��2ÞUbareð�1Þ
�1 ��2

:

(18)

Therefore the effective potential is linear between�1 and�2

(see Fig. 1), and the concave part of the bare potential has
been eliminated by the presence of nontrivial saddle points in
the partition function (9). Note that the present argument is
valid for an infinite volume.

If S1 ¼ S2, one recovers here the famous Maxwell con-
struction, where the isothermal curve in the Clapeyron

diagram shows a plateau, corresponding to a constant
saturated vapor pressure, as long as both vapor and liquid
coexist. In the quantum field theory case [14], the vacuum
j0> is made of a superposition of the two states j�1>
and j�2 > , which satisfies <0j�j0> ¼ �c.

C. Wilsonian approach

The first studies [15,16] show that nontrivial saddle point
must be taken into account in Wilsonian renormalization
procedure, for each blocking step in the construction of the
infrared theory (IR).
Infinitesimal Wilsonian renormalization group studies

have later also shown the flattening of the running potential
in the IR. One way is to consider the average action
formalism (see for example [17] for a review), where a
smoothly varying weight is associated to Fourier modes in
the path integral. IR modes, with momenta smaller than a
typical scale k are then frozen, and only UV modes, with
momenta larger than k, are integrated out. As k ! 0, the
full effective action is recovered, and one can follow the
evolution of the average action with k, in order to construct
the full quantum theory in the limit k ! 0. In [18], a
nontrivial saddle point dominates the path integral defining
the average action, and as k ! 0, the average potential
smoothly goes to a flat potential in the IR.
A similar study is done in [19], using a sharp cutoff, and

shows that a nontrivial saddle point (plane wave with
momentum k), in each infinitesimal integration of Fourier
modes between k� �k and k, leads to the flattening of the
potential, as shown in Fig. 2.
The smoothness of renormalization flows in the presence

of the so-called spinodal instability might not clearly be
established yet. Analytical arguments for the absence of
singularity in the renormalization flows are given in [20],
but singular flows are observed in [21], where the study is

φ φ

φ

2 1

c

FIG. 1. The effective potential (thick line) interpolates linearly
the minima of the bare potential (thin line). Quantum corrections
are neglected here, and would slightly modify the effective
potential quantitatively only.
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FIG. 2. The Maxwell construction in infinitesimal Wilsonian
renormalization group studies, involving the sharp cutoff. The
running potential flattens as the observation scale reaches the IR
(this figure is taken from [19]).
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based on precise numerical analysis. It is interesting to note
that the Sine-Gordon model must lead to a flat effective
potential, for every value of the classical field, since this is
the only way for the effective potential to be convex and
periodic at the same time. This has been studied in [22],
where, unlike with a polynomial bare potential, smooth
renormalization flows are observed numerically.

Another example of flattening of a periodic bare
potential was looked at in [23] for the axion field, using
an alternative to Wilsonian renormalization.

III. YUKAWA MODEL

We add here to the scalar self interactions a Yukawa
interaction, and show that the potential is also linear
between the minima of the bare action.

A. Convexity of the effective potential

The partition function, functional of the sources j,�, ��, is

Z½j; �; ��� ¼
Z

D½�; c ; �c � exp
�
�S½�; c ; �c �

�
Z

j�þ ��c þ �c�

�

� expð�W½j; �; ���Þ; (19)

and the classical fields are defined as

�c ¼ �W

�j
¼ h�i;

c c ¼ �W

� ��
¼ hc i;

�c c ¼ ��W

��
¼ h �c i:

(20)

The effective action is

�½�c; c c; �c c� ¼ W½j; �; ��� �
Z
ðj�c þ ��c c þ �c c�Þ;

(21)

where the sources j, �, ��must be understood as functionals
of the classical fields. The equation of motion for the
classical scalar field is then

��

��c

¼
Z �W

�j

�j

��c

� �W

��

��

��c

þ � ��

��c

�W

� ��
� j

�
Z �

�j

��c

�c þ � ��

��c

c c þ �c c

��

��c

�
¼ �j; (22)

and, similarly, we find

��

�c c

¼ �� and
��

� �c c

¼ ��; (23)

such that the second derivative matrices�2� and �2W satisfy

�2� ¼ �ð�2WÞ�1: (24)

The off-diagonal terms in �2� vanish when setting the fields
to the constant values �c ¼ �0, �c c ¼ c c ¼ 0:

�2�

��c�c c

��������0
¼ �2�

��c� �c c

��������0
¼ �2�

�c�c c

��������vac

¼ �2�

� �c c� �c c

��������0
¼ 0; (25)

such that

�2�0 ¼
�2��c�c

0 0

0 �2�c c
�c c

0

0 0 �2� �c cc c

0
BB@

1
CCA: (26)

As a consequence, because of the inequality (3),

ð�2��c�c
Þ�1 ¼ ð�2��1Þ�c�c

¼ �ð�2WÞjj � 0; (27)

and the scalar sector is convex, as in the self-interacting
case. But the additional feature here is the possibility of
having a fermion condensate, which contributes to the
effective potential for the scalar field, as we show in the
next section.

B. Linear effective potential

We consider here the following Euclidean model:

S½�; �c ; c � ¼
Z

d4x

�
1

2
@��@��þ �c i@6 c þ g� �c c

þUbareð�Þ
�
; (28)

where the potential Ubare features SSB characteristics. For
the sake of simplicity, we assume that the two minima are
located at opposite points ��0 and have the same value
Ubareð��0Þ � U0. In what follows, we consider constant
fermionic configurations: the effective scalar potential will
depend on the fermion condensate only, which is a scalar
and can have a nonvanishing uniform v.e.v. Considering
the same approximation as in Sec. II, the partition function
is then

Z ’ exp

�
�

Z
U0 þ j�0

�Z
D½ �c ; c �

� exp

�
�
Z

g�0
�c c þ ��c þ �c�

�

þ exp

�
�
Z

U0 � j�0

�Z
D½ �c ; c �

� exp

�
�
Z

�g�0
�c c þ ��c þ �c�

�
; (29)

We define then

�þ ¼ c þ �

g�0

; �� ¼ c � �

g�0

; (30)

to obtain
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Z ’ exp

�
�
Z

U0 þ j�0

�Z
D½ ��þ; �þ�

� exp

�
�
Z

g�0 ��þ�þ � ���

g�0

�

þ exp

�
�
Z

U0 � j�0

�Z
D½ ���; ���

� exp

�Z
g�0 ����� � ���

g�0

�
: (31)

The integration over fermions is dominated by a possible
fermion condensate � ¼ < �c c > , such that

Z ’ exp

�
�

Z
U0 þ j�0 þ g�0�� ���

g�0

�

þ exp

�
�

Z
U0 � j�0 � g�0�þ ���

g�0

�

¼ 2 exp

�
�
Z

U0

�
coshðAÞ; (32)

where

A ¼
Z �

j�0 þ g�0�� ���

g�0

�
: (33)

There is actually a zero mode which should be taken into
account in the evaluation of the dominant contributions for
Z, due to the global symmetry c ! ei�c and �c ! e�i� �c ,
but the corresponding factor is source-independent and
has no consequence on the results.

The classical fields are

�c ¼ � 1

Z

�Z

�j
¼ ��0 tanhðAÞ

c c ¼ � 1

Z

�Z

� ��
¼ �

g�0

tanhðAÞ

�c c ¼ 1

Z

�Z

��
¼ ��

g�0

tanhðAÞ;

(34)

and we see that the present approximation is valid only in
the interval ½��0; �0�, since the limits of �c are

lim
j!þ1�c ¼ ��0; and lim

j!�1�c ¼ �0: (35)

The condensate � is defined for vanishing fermionic
sources, and with the classical scalar field set to its v.e.v
v (the corresponding source is jðvÞ):
� � 1

Z

Z
D½�; �c ; c � �c c exp

�
�S½�; c ; �c � �

Z
jðvÞ�

�

¼
�
�2W

��� ��

�
�¼ ��¼0;�c¼v

¼ �
�
1

Z

�2Z

��� ��

�
�¼ ��¼0;�c¼v

¼
�
tanhðAÞ
g�0

�ð0Þ
�
�¼ ��¼0;�c¼v

; (36)

where �ð0Þ ¼ limx!0�ðxÞ is the volume of Fourier space,
that we denote �4, where � is an ultraviolet (UV) cutoff.

The latter identity is a self-consistent equation which
determines �, but one can express the fermion condensate
in terms of the scalar field v.e.v

v ¼ ½��0 tanhðAÞ�v:e:v; (37)

to obtain finally

� ¼ ��4v

g�2
0

: (38)

Using these different results, and expressing j in terms
of �c as�Z

j�0

�
��¼�¼0

¼ �tanh�1

�
�c

�0

�
�

Z
g�0�; (39)

we find that the scalar sector of the effective action is, for
�c ¼ constant,

�scalar ¼
Z
ðU0 þ g�c�Þ � ln

�
2 coshtanh�1

�
�c

�0

��

þ�c

�0

tanh�1

�
�c

�0

�
: (40)

The last two terms in the previous equation are both
divergent when �c ! ��0, but these divergences cancel,
such that together these terms give a finite contribution,
independent of the volume V of space time. The effective
potential is finally obtained after dividing by V and taking
the limit V ! 1, where the only remaining terms are

Ueffð�cÞ ¼ U0 þ g�c�: (41)

The effective potential is therefore linear between the
minima of the bare potential. We represent Ueffð�cÞ in
Fig. 3, where the smooth matching with the bare potential
outside the interval ½��0; �0� is assumed, and arises from
quantum corrections, which are not taken into account in

φ−φ 00

FIG. 3. The effective potential is linear in the interval
½��0; �0�, with a slope due to the fermion condensate. The
smooth matching with the bare potential outside the interval
½��0; �0� is assumed, and arises from quantum corrections,
which are not evaluated here.
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this study. As can be seen on Fig. 3, the minimum of the
effective potential occurs for the v.e.v v ¼ �0, since the
condensate is negative and is given by

� ¼ � �4

g�0

: (42)

Note that the latter result does not make sense for �0 ¼ 0,
but the whole study is valid for a nonvanishing interval
½��0; �0� only.

IV. CONCLUSION

We showed with a semiclassical approach that the flat-
tening of the effective potential can be obtained after
approximating the partition function by its main contribu-
tions, arising from nontrivial saddle points. In the case of
the Yukawa model, it is interesting to see that the fermion

condensate and the scalar v.e.v are self-consistent, and
arise from a linear effective potential. The situation where
the fermion condensate vanishes is equivalent to the
absence of a specific scalar v.e.v, and is consistently rep-
resented by a flat effective potential.
The next step is to consider a complex scalar field, and to

couple it to a gauge field. This case is more subtle though,
because of the existence of zero modes and nontrivial
manifold of saddle points in the partition function. Such
a study has been initialized in [24], using the interpolated
loop expansion, as well as a t’ Hooft-style gauge fixing,
which involves the Higgs field and reduces the manifold
of saddle points. The authors show that the scalar effective
potential can be made convex to any order of the loop
expansion. We plan to extend the present work to such a
situation, in order to find nonperturbative constraints on
the Higgs potential.
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