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We consider rotating superfluid pionic liquid, with superfluidity being induced by isospin chemical

potential. The rotation is known to result in a chiral current flowing along the axis of the rotation. We

argue that in the case of superfluidity the chiral current is realized on fermionic zero modes propagating

along vortices. The current evaluated in this way differs by a factor of 2 from the standard one. The reason

is that the chiral charge is carried by zero modes which propagate with speed of light, and thus the liquid

cannot be described by a single (local) velocity, like it is assumed in standard derivations.
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I. INTRODUCTION

Recently, there were intense studies of hydrodynamics
of chiral liquids. A crucial novel point is existence of
new transport coefficients, overlooked in the textbook
approaches. In particular, it was discovered [1,2] that in
the case of liquids with chiral constituents there exists
chiral current j5� proportional to the vorticity !�:

�j5� ¼ �2

2�2
!�; (1)

where !� ¼ 1
2 �

����u�@�u�, � is the chemical potential,

and u� is the 4-velocity of an element of the liquid. The

observation (1) can be considered as a kind of general-
ization of the chiral magnetic effect (CME) known since
longer time, for review and further references see, e.g., [3].
In the latter case, the chiral current is directed along the
magnetic field in the local rest frame:

�j5� ¼ �

2�2
qB�; (2)

where B� � �����u�@�A�, q is the charge of the con-

stituent fermion.
The currents (1) and (2) represent macroscopic manifes-

tations of the triangle anomaly in the underlying chiral
theory. It is a fascinating observation that quantum-loop
effects manifest in the hydrodynamic, which is classical
approximation. Naturally enough, Eqs. (2) and (1) were
considered within various frameworks. Originally, Eq. (1)
was derived by considering the entropy current [2]. Later, it
was obtained in other ways, in particular, in the language of
anomalies in effective theory in the presence of a chemical
potential and using other approaches [4–9]. Most recently
[10], the assumptions needed to derive (1) and (2) were
reduced to general Ward identities of the underlying micro-
scopic theory.

Despite the variety of the assumptions tried, all these
approaches treat the liquid as a slowly varying in its
properties medium. Since the constituents of the liquid
are chiral this assumption might look, though, not well
justified. Indeed, the occupation numbers for fermions are

never large and it is not a priori clear how to introduce
hydrodynamics, or classical approximation for fermions.
This problem can be addressed within another approach
which starts with a microscopical picture and the central
role is played then by low-dimensional defects. This
approach goes back to papers [11–13] where it was dem-
onstrated that defects in field theory are closely tied to the
realization of anomaly. In particular, anomaly in 2nþ
2-dimensional theory is connected with 2n-dimensional
index density and can be understood in terms of fermionic
zero modes on strings and domain walls [13]. In all the
cases, the chiral current is carried by fermionic zero modes
living on the defects.
One can expect, therefore, that microscopically the

anomaly is realized on vortexlike strings while the
continuum-medium results (1) and (2) arise upon averag-
ing over a large number of defects. In the case of the chiral
magnetic effect [see Eq. (2)] such a mechanism was con-
sidered, in particular, in Refs. [3,14] and the final result (2)
is reproduced on the microscopic level as well.
In Refs. [3,14], the vortices are modeled by regions of

space free of the medium substance. In the case of super-
fluidity, the vortices are much better understood dynami-
cally. The crucial point is that the velocity field of the
superfluid is known to be potential, and, naively, the vor-
ticity vanishes everywhere. If this were true, the chiral
current (1) would vanish. But it is well known, of course,
that the angular momentum is still transferred to the liquid
through vortices. The potential is singular on the linear
defects, or quantum vortices. The vorticity is not vanishing
on these defects and the entire chiral current flows through
the vortices. Although the vorticity locally vanishes every-
where but the defects, globally, the whole liquid can be
regarded as rotating, e.g., it possesses angular momentum
(provided that the angular velocity is large enough) [15].
This is an example of recovering the continuum limit upon
averaging over a large number of defects.
In the microscopic picture, the evaluation of chiral ef-

fects reduces to counting zero chiral modes. The calcula-
tion is in two steps in fact. In the case of the chiral magnetic
effect, the technique was elaborated in Ref. [12] where
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details can be found. First, one considers plane pierced by
magnetic field B. Then, there is an index theorem which
relates the number of zero modes to the magnetic flux:

N0;? � q
Z

d2xB; (3)

where q is the charge of the particle. These zero modes
exist for any value of the longitudinal momentum directed
along the magnetic field. At the second step, one integrates
over the longitudinal momentum up to the chemical
potential �. Combining all the factors one gets for the
total number of zero modes relevant to the chiral magnetic
effect:

N0 � q � B ��: (4)

Proceed now to the vortical chiral effect. The evaluation
of the number of zero modes is the same two-step process
as above. However, there is no external electromagnetic
field A� any longer. Instead, one considers 4-velocity of

the liquid u� as an external field. One obtains the number

of zero modes N0;? through the substitution:

qA� ! �u�: (5)

In this sense, the chemical potential � plays the role of the
strength of interaction (like the charge q). The next step is
essentially unchanged. One integrates over the longitudinal
momentum up to the chemical potential, pk � � As a

result, the total number of zero modes relevant to the chiral
vortical effect (CVE) is proportional to�2. One factor of�
comes from the flux of the vorticity (analogy to the flux of
the magnetic field). The origin of the other factor � is the
integration over the longitudinal momentum.

The result for the chiral currents obtained through count-
ing zero modes can be compared to the evaluation of the
same currents within effective field theory. In both cases, it
is the triangle graphs which control the effect. The chiral
magnetic effect is linear both in the interaction qA� and

�u�. The chiral vortical effect is quadratic in�u�. In both

cases, the triangle graphs reproduce the results (2) and (1).
Our central point is that the chiral current evaluated in

terms of the zero modes differs from (1) by a factor of 2.
The difference can be traced back to the fact that the
fermionic zero modes propagate with speed of light and
are not equilibrated to the local 4-velocity u� of an element

of the liquid. If we consider magnetic field in charged
superfluid then we find that the magnetic field plays the
role similar to the vorticity and there are strings carrying
magnetic flux, and, therefore, zero modes. The chiral mag-
netic effect in terms of the zero modes turns to be the same
Eq. (2), echoing the results of [3,14]. In this sense, the
vortical and magnetic chiral effects in superfluid substan-
tially differ from each other. We will further comment on
this difference in the conclusions.

The outline of the paper is as follows: We will start by
recalling some common points regarding superfluidity, and

the way it arises in quark medium via chiral Lagrangian.
We also remind the reader of the derivation of (1) and (2).
In the next section, we introduce the interaction between
fermions and the Goldstone field, and derive the chiral
current via anomaly. We then proceed to the microscopic
derivation of the current in terms of zero modes. In the last
section, we discuss our results and mention a few open
questions.

II. HYDRODYNAMICS, VORTICITY, AND
SUPERFLUID

We start our detailed considerations by recalling how
superfluidity arises in pion medium at nonzero isospin
chemical potential and zero temperature [16]. The pion
medium at zero temperature is described by chiral
Lagrangian and at nonzero isospin chemical potential �I

it takes the form

L ¼ 1

4
f2� Tr½D�UðD�UÞy�; (6)

where D0U ¼ @0U� �I

2 ½�3; U�, DiU ¼ @iU. Here, for

simplicity we consider zero quark masses. The chiral sym-
metry is spontaneously broken to SUð2ÞLþR. Moreover, at
nonzero �I this symmetry is explicitly broken to Uð1ÞLþR.
And, finally, the Uð1ÞLþR symmetry is spontaneously
broken, triggering superfluidity. The argumentation is as
follows: The potential energy in (6) equals to

VeffðUÞ ¼ f2��
2
I

8
Tr½�3U�3U

y � 1�; (7)

minima of that potential can be captured by substitution
U ¼ cos�þ ið�1 cos	þ �2 sin	Þ sin�:

Veffð�Þ ¼ f2��
2
I

4
ðcos2�� 1Þ (8)

and for the minimum one readily obtains cos� ¼ 0. Then,
depending on sign of �I, squared mass of either �þ or ��
becomes negative, signalling the condensation of the corre-
sponding pion field. This means that the vacuum is
described by U ¼ ið�1 cos	þ �2 sin	Þ instead of the
‘‘usual’’ vacuumU ¼ I, and the emergence of the new order
parameter h �u
5di þ H:c: ¼ 2h �c c ivac sinð�Þ ¼ 2h �c c ivac.
The system is thus a charged superfluid. Degeneracy with
respect to the	 angle indicates that	 can be identified with
Goldstone boson, and that the symmetryUð1ÞLþR is sponta-
neously broken. More accurately, one needs to make a
replacement, 	þ�t ! 	, since 	 enters stress-energy
tensor as a combination @0	þ�; here and thereafter, we
consider 	 as redefined. In addition to the massless
Goldstone mode, there are two massive modes. Note that
these results can be reproduced holographically [17].
To study vortices we rely on the hydrodynamic approxi-

mation. The hydrodynamics of a charged superfluid incor-
porating the Goldstone field 	 is worked out in [18] and
references therein. The symmetry associated with the
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charge is spontaneously broken by a condensate and the
Goldstone field	 is added to the standard hydrodynamical
variables. The ground state is described by the @0	 ¼ �
(Josephson equation), which implies nonvanishing charge
density. For a general motion of the superfluid the corre-
sponding velocity is given by us� ¼ @�	=j@�	j, vs

i ¼
@i	=� (nonrelativistically) and one readily finds that
rot vs ¼ 0. This seems to forbid rotational motion.

However, it is known that for superfluid (at T ¼ 0, so
that normal component is absent) put into a rotating bucket
the solution with nonzero angular momentum is energeti-
cally preferable for angular velocities larger than some
critical value �>�c. This implies nonzero velocity field
circulation, which means that the velocity potential, given
by the Goldstone field, is multivalued. The Goldstone field
is then ill-defined on a linear defect called the vortex line,
and is given by 	 ¼ �tþ n � ’ in the limit of vanishing
thickness of the core [19]. Note that this description is valid
for distances r � a where a is the size of the vortex. The
value of critical angular velocity is given by �c ¼ 1

�R2 �
logRa where R is the radius of the cylindrical bucket [19].

For higher angular velocities the circulation is increased
via the generation of additional vortices with n ¼ 1, which
are energetically favorable to n > 1 vortices. This, and the
fact that due to mutual repulsion, vortices tend to be distrib-
uted uniformly, causes the motion of the liquid induced by
the vortices to imitate uniform rotation, v ¼ ½�r� for
high enough angular velocities � � �c. This observation
allows to compare the chiral vortical effect evaluated
microscopically with (1) obtained macroscopically.

In next section, we consider chiral vortical effect and
here it is worth mentioning how it is obtained. We follow
[7] and start with action for fermion at nonzero chemical
potential (here, for simplicity we consider the case of one
flavor):

S ¼
Z

d4xði �c
�ð@� � iqA�Þc þ�u� �c
�c Þ; (9)

where the substitution �
0 ! �u�

� makes notations

relativistically invariant. One can obtain CVE and CME
as anomaly-induced currents. At zero axial chemical
potential one should expect chiral effects only in the axial
current. After calculating of anomaly we get

@� �c
�
5c ¼ � 1

4�2
�����ð@�ðA� þ�u�Þ

� @�ðA� þ�u�ÞÞ: (10)

Alternatively, one can introduce a modified current:

j5� ¼ �c
�
5c þ 1

2�2
�2!� þ 1

2�2
�qB�; (11)

which satisfies nonanomalous (in case E �B ¼ 0) equa-
tions and in hydrodynamical limit one replaces
�c
�
5c ! n5u�. Note the factor of 2 difference between

the coefficients in front of the chiral vortical and chiral
magnetic effects. This is a consequence of identity of two

vertices in the anomaly triangle diagram in the CVE case.
For the CVE case that identity takes place and one should

divide the result of diagram on two- �2

4�2 �����u
�@�u� in

contrast to the case of CME- �
2�2 �����u

�@�A�.

III. CHIRAL CURRENTS VIA ANOMALY

We consider quark matter at finite isospin chemical
potential, which forms a superfluid (see [16]) with the
corresponding Nambu-Goldstone boson 	. It is argued in
[18] that @�	 can be identified with non-normalized su-

perfluid velocity. The vortex configuration is in principle
determined by the angular velocity. We address a general
situation, when the n, the quantum number of circulation,
is rather high (but not high enough to ruin the superflu-
idity). We mentioned above that an energetically preferable
configuration is the uniform distribution of vortices with
n ¼ 1. Nearby any given vortex the Goldstone field is
given by [20]

	 ¼ �tþ ’; (12)

where ’ is the polar angle in the plane orthogonal to the
vortex. We will assume that vortices are far from one
another �x � a, we will calculate the current for a single
vortex and then sum it over all vortices, that is, simply
multiply by n.
It is then tempting to introduce the following Lagrangian

for the interaction of fermions with the Nambu-Goldstone
boson (we will limit ourselves to the case of a single
fermion):

L ¼ �c ið@� þ i@�	Þ
�c : (13)

We remind here the following nonrelativistic substitution
@0	 ! �, @i	 ! �vs

i , which relates phi to the non-
normalized potential for the superfluid velocity. Using
standard methods of evaluating the anomalous triangle
diagrams one obtains for the axial current (see [4,5,11])

j5� ¼ 1

4�2
�����@

�	@�@�	: (14)

This current seems to vanish identically. However, for the
vortex field 	 ¼ �tþ ’, and hence:

j53 ¼
�

2�
�ðx; yÞ (15)

since ½@x; @y�	 ¼ 2��ðx; yÞ. The total current (the sum

over the vortices) equals to

J53 ¼
Z

d2xj53 ¼
�

2�
n: (16)

There is an apparent contradiction between (16) with
linear dependence on the chemical potential and (1) where
it is quadratic. It is resolved by noting that n, the quantum

number for vorticity, depends on � (see [3], where e�
2� is

simply flux measured in units of flux quantum). In order to
see this, we have to average over the defects to obtain the
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continuum limit, as we mentioned above. Then n has the
following continuum limit form:

n ¼ 1

2�

Z
dxi@i	 ¼ �

2�

Z
dxiv

s
i ¼

�

�

Z
d2x!3;

since we can replace rot vs ¼ 2!. Thus, from (16)
one can prescribe an average current density exactly
matching (1).

This result for CVE conforms with the usual result for
CME in the sense that if we considered charged superfluid
and turned on magnetic field, a defect would appear, the
current would be obtained by substituting the vortex con-
figuration in the usual formula for CME, and would be
concentrated on the vortex. However, we show in following
section that answers obtained through zero modes calcu-
lation are different for CVE and CME.

IV. ZERO MODES

We now proceed to the microscopic picture based on the
zero modes. Our considerations in this section are close to
those of Ref. [14] but there are several significant differ-
ences as well. We can write Lagrangian for our system with
coupling to the Goldstone field 	 in the following form:

L ¼ �c ið@� þ i@�	Þ
�c : (17)

Such coupling with the Goldstone field corresponds in
nonsuperfluid limit to naive relativisation �c
�c @�	 !
�u� �c
�c .

Nearby any given vortex the Goldstone field is given by
(12). More important, irrelevant of the details of the con-
figuration, the integral

R
dxi@i	 ¼ 2�n.

Further calculation is close to the one performed in [14],
with a substitution Ai ! @i	. The Hamiltonian has the
form

H ¼ �ið@i � i@i	Þ
0
i (18)

then the Dirac equation decomposes:

�HRc L ¼ Ec L; HRc R ¼ Ec R: (19)

Here, HR ¼ ð�i@i þ @i	Þ�i. Hence, any solution c R of
HRc R ¼ �c R simultaneously generates a solution with
E ¼ �,

c ¼ 0

c R

 !

and a solution with E ¼ ��,

c ¼ c R

0

 !
:

Because of invariance with the respect to translations in
the z direction, we decompose c using the momentum
eigenstates �i@3c R ¼ p3c R (it is convenient to take the
z-direction periodic with length L, and take limit L ! 1 at
the end of the calculation. For each p3 we can write

HR ¼ p3�
3 þH?; H? ¼ ð�i@a � @a	Þ�a;

a ¼ 1; 2:
(20)

Notice that f�3; H?g ¼ 0. Hence, if j�i is a properly
normalized eigenstate of H? with eigenvalue �, then
�3j�i is a properly normalized eigenstate with eigenvalue
��. This means that all eigenstates of H? with nonzero
eigenvalue are of the form j�i, j � �i ¼ �3j�i, with
� > 0. Also, �3 maps zero eigenstates of H?, so all
eigenstates of H? can be classified with respect to �3.
We can now express eigenstates of HR in terms of

eigenstates of H?. Since ½HR;H?
2� ¼ 0, HR will only

mix states j�i, j � �i. For � > 0, one can write

c R ¼ c1j�i þ c2�3j�i; (21)

where c1, c2 satisfy

� p3

p3 ��

 !
c1

c2

 !
¼ �

c1

c2

 !
: (22)

Thus, � ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

3

q
and,

c1

c2

 !
	
¼ ð4ð�2 þ p2

3ÞÞ�ð1=4Þ

� 	sgnðp3Þðð�2 þ p2
3Þð1=2Þ 	 �Þð1=2Þ

ðð�2 þ p2
3Þð1=2Þ 
 �Þð1=2Þ

 !
: (23)

This means that every eigenstate of H? with eigenvalue
� > 0 produces two eigenstates of HR, while the zero
modes of H? are eigenstates of HR with eigenvalue

� ¼ p3�
3: (24)

Thus, the zero modes of H? are gapless modes of H,
capable of traveling up or down the vortex, depending on
the sign of �3 and chirality. These will be precisely the
carriers of the axial current along the vortex. Let Nþ and
N� be the numbers of zero modes with �3 ¼ 1 and
�3 ¼ 1, respectively. Consider the zero mode of H?,
j�i ¼ ðu; vÞ, where u and v are c-functions satisfying

Dv ¼ 0; Dyu ¼ 0; (25)

where

D ¼ �i@1 � @2 � ð@1	� i@2	Þ: (26)

Hence, Nþ ¼ dimðkerðDyÞÞ, N� ¼ dimðkerðDÞÞ, and
N ¼ IndexðH?Þ ¼ Nþ � N�

¼ dimðkerðDyÞÞ � dimðkerðDÞÞ: (27)

Note that H? is an elliptic operator. Its index has been
computed via various approaches in papers [21,22]. In our
case the index is given by

N ¼ 1

2�

Z
dxi@i	 ¼ n: (28)
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(For n ¼ 1 the zero mode is easy to construct, see
Appendix.)

One can observe that this result is obtained by direct
substitution of eAi ! @i	 in the well-known case of mag-
netic field parallel to z axis and uniform in that direction,
where the index is given by [14,21]

N ¼ e

2�

Z
dxiAi ¼ e

2�

Z
d2xB3: (29)

Notice that for the case of superfluid, which we discuss
here, the index is essentially an integer.

We now proceed to the computation of the fermion axial
current at a finite chemical potential �. The axial current
density in the third direction is given by

j35ðxÞ ¼ �c ðxÞ
3
5c ðxÞ ¼ c y
L�

3c LðxÞ þ c y
R�

3c RðxÞ:
(30)

We are interested in the expectation value of the axial
current along the vortex, J35 ¼

R
d2xhj35ðxÞi, and at finite

chemical potential, we have

hj35ðxÞi ¼
X
E

ð�� EÞc y
EðxÞ
0
3
5c EðxÞ

¼ X
�

ðð�� �Þ þ ð�þ �ÞÞÞc y
R�ðxÞ�3c R�ðxÞ:

(31)

Here, ð�� EÞ is the Fermi-Dirac distribution (at zero
temperature), c E are eigenstates of H with eigenvalue E,
c R� are eigenstates of HR with eigenvalue �. By substitu-
tion of the explicit form of c R� in terms ofH? eigenstates,
one obtains

hJ35i ¼
1

L

X
p3

X
�>0

X
s¼	

ðð�� ð�2 þ p2
3Þð1=2ÞÞ

þ ð�þ ð�2 þ p2
3Þð1=2ÞÞÞhc s

Rð�; p3Þj�3jc s
Rð�; p3Þi

þ 1

L

X
p3

X
�¼0

ðð�� p3Þ þ ð�þ p3ÞÞh�j�3j�i:

(32)

Here, � > 0 enumerate eigenstates of H?, which
generate eigenstates of HR, c	

R ð�; p3Þ with momentum

p3 and eigenvalue �	 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

3

q
, and � ¼ 0 label

the zero modes of H?. An explicit calculation gives

hc s
Rð�; p3Þj�3jc s

Rð�; p3Þi ¼ sp3ð�2 þ p2
3Þ�ð1=2Þ.

Consequently, since the result is odd in both s and p3, the
sum over all nonzero eigenstates vanishes, and only zero
modes of H? generate J35 . For the zero modes, h�j�3j�i ¼
�3, so we obtain

J35 ¼ ðNþ � N�Þ 1L
X
p3

ðð�� p3Þ þ ð�þ p3ÞÞ

¼ n
Z dp3

2�
ðð�� p3Þ þ ð�þ p3ÞÞ ¼ �

�
n: (33)

This result is similar in structure to (16) but differs from it
by a factor of 2. The origin of this difference is discussed in
conclusions.
The macroscopic calculation through anomaly and the

microscopic one through zero modes seem to be of rather
different nature. The triangle diagram for the anomaly
requires a particular regularization scheme whereas inte-
grals over momenta of zero modes are cut by Fermi-Dirac
distribution. It is worth emphasizing that the two answers
coincide with each other for the chiral magnetic effect. It
means that the observed discrepancy for vortical current
indicates the difference between physical approaches
rather than the regularization details. That fact justifies
the comparison of macroscopic and microscopic results
for CVE.

V. DISCUSSION AND CONCLUSIONS

In this paper we considered the chiral vortical effect in
superfluid. Considering superfluidity helps to fix the
dynamics to a great extent. The central point is that vor-
ticity is nonvanishing only on linear defects and, therefore,
introducing defects is kind of a must. Then, the picture with
defects is only one consistent. Moreover, the vortices are
quantized and this fixes the index which determines the
number of zero modes, which, in turn, are responsible for
the chiral current. The quantization of the vortices also
accounts for the apparent discrepancy between the usual
form of vortical effect (1) and the form (16), since the
vorticity quantum number n depends on� (in the sameway
as the flux quantum in superconductivity depends on the
charge e and magnetic field). On the other hand, it is known
that upon averaging over the defects the rotating superfluid
looks the same as ordinary liquid and one can compare the
result for the current with the continuum limit (1).
A crucial point is that microscopically we get a factor of

2 larger value of the current. To elucidate the origin of this
factor it is useful to compare the triangle anomalous graphs
for the chiral magnetic and chiral vortical effects, see
Fig. 1. The vertices in the graphs are determined by the
corresponding terms in the (effective) Lagrangian:

Lint ¼ �u� �c
�c þ eA�
�c
�c ; (34)

where c is fermionic field. In the language of the Feynman
graphs, we have in case of the vortical effects two identical

FIG. 1. (A)—contribution to CME, (B)—contribution to CVE.
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vertices and this suppresses the result by a factor of 2
compared to the case of the chiral magnetic effect when
there are no identical vertices. This is of course a common
quantum effect.

This factor of one-half is absent from the counting of the
number of zero modes. The result for the vortical effect
looks so as if there were no identical vertices. The reason is
that the chemical potential � plays two different roles.
First, it determines the strength of the effective interaction,
see (34). And second, the chemical potential determines
the upper limit on the value of longitudinal component of
the momentum of zero modes, see (33). The factor �2

which enters the final result (1) is a combined effect of the
strength of interaction, see (34), and of the maximal value
of the longitudinal momentum, see (33). Thus, the source
of the two factors � is not identical now and, as a result,
there is no factor of one-half.

To reiterate: the nowadays common derivation assumes
that the liquid is characterized by a single velocity u�
while the physical picture contains an additional compo-
nent represented by the fermionic zero modes. Indeed, zero
modes always propagate with speed of light and are not
equilibrated with the rest of the liquid. This appearance of
the additional component does not reduce, to our mind, to
the standard introduction of the normal component in the
theory of superfluidity. Remarkably, it does not affect the
final answer in the case of the chiral magnetic effect
because there are no identical vertices in the triangle graph
in this case.

As mentioned above, in the case of superfluidity the
chiral current is indeed concentrated on the vortices. In
this sense, the microscopic picture seems more reliable
than the naive continuum limit (1). In fact, as the result
of this paper, for the case of superfluidity, the defect picture
is the only one possible and the result (33) is the one valid.

In the nonsuperfluid case the defect picture is also more
reliable, generally speaking. However, the theory is much
less definite because of the absence of vortex quantization.

Thus, the dynamics of the vortices with zero fermionic
modes living on them becomes the central issue to evaluate
the chiral vortical effect. It is worth emphasizing, therefore,
that the model for the vortices considered here can well
be oversimplified. Indeed, in the picture considered all zero
modes are peaked around the singular core of a vortex. Thus,
4-fermionic interaction could be important.Moreover, in case
of quarks the effects of confinement can be crucial.

ACKNOWLEDGMENTS

We would like to acknowledge discussions with Z.
Khaidukov and A. Krikun. The work of S. A. V. and
V. P. K. was partly supported by the Dynasty Foundation
and FAIR program for Master’s students. The work of
V. P. K. was also supported by DAAD Leonhard-Euler-
Stipendium 2011–2012. The work of V. I. Z. was partially
supported by FEBR-11-02-01227-a and Fediral Special-
Purpose Programme ‘‘Cadres’’ of the Russian Ministry of
Science and Education.

APPENDIX

In this section, we explicitly construct the zero mode on
the n ¼ 1 vortex. As mentioned above, this problem re-
duces to the analysis of the 2D Dirac operator given by

D y ¼ �i@1 þ @2 � ð@1’þ i@2’Þ; (A1)

here ’ stands for the polar angle, since the vortex field is

given by 	 ¼ �tþ ’. If we substitute c ¼ f
r into

D yc ¼ 0; (A2)

we obtain for f

ð@x þ i@yÞf ¼ 0; (A3)

since �
�i

�
@x þ x

r2

�
þ
�
@y þ y

r2

��
1

r
¼ 0: (A4)

This implies that f is an entire function of xþ iy. We now
note that if f is not a constant, then the norm of c diverges
at least powerlike. It forces us to choose f ¼ 1. The norm
of c still diverges, but only logarithmically. We can cut off
this divergence on the upper limit by r ¼ R, the radius of
the bucket, and by r ¼ a, the size of the vortex on the lower
limit (it is noteworthy that nearby the vortex the equation
	 ¼ �tþ ’ is no longer valid anyway, so our considera-
tion actually applies to distances r � a).
For D one would analogically obtain the following by

substituting c ¼ fr:

ð@x � i@yÞf ¼ 0; (A5)

and f is entire in x� iy. But, for any choice of f the norm
of c diverges. Thus, we have obtained that Nþ ¼ 1, since
there is one zero mode of Dy, and N� ¼ 0, and indeed
N ¼ Nþ � N� ¼ 1.
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