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We use chiral perturbation theory for SUð2Þ to compute the leading loop corrections to the thermal mass

of the pions and the pion decay constant in the presence of a constant magnetic field B. The magnetic field

gives rise to a splitting between M�0 and M�� as well as F�0 and F�� . We also calculate the free energy

and the quark condensate to next-to-leading order in chiral perturbation theory. The results suggest that the

critical temperature Tc for the chiral transition is larger in the presence of a constant magnetic field, in

agreement with most model calculations but in disagreement with recent lattice calculations.
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I. INTRODUCTION

Chiral perturbation theory (ChPT) provides a systematic
framework for calculating properties of QCD at low
energies [1–4]. ChPT is not an expansion in powers of
some small coupling constant, but it is a systematic expan-
sion in powers of momenta p where a derivative counts as
one power and the quark masses count as two powers.
Chiral perturbation theory is a nonrenormalizable quantum
field theory in the old sense of the word. This means that a
calculation at a given order in momentum p requires that
one add higher-order operators in order to cancel the diver-
gences that arise in the calculation at that order. This
implies that one needs more and more couplings and
therefore more experiments to determine them. However,
this poses no problem, as long as one is content with
finite precision. This is the essence of effective field theory
[5]. The chiral Lagrangian that describes the (pseudo)
Goldstone bosons is uniquely determined by the global
symmetries of QCD and the assumption of symmetry
breaking. The LagrangianLeff consists of a string of terms
that involve an increasing number of derivatives or quark
mass factors, each multiplied by a low-energy constant
(LEC) li. However, QCD is a confining and strongly inter-
acting theory at low energies. Thus the couplings li of the
chiral Lagrangian cannot be calculated from QCD. Instead,
the couplings are fixed by experiments.

The thermodynamics of a pion gas using ChPT was
studied in detail in a series of papers 25 years ago [6–8].
The thermal pion mass and the thermal pion decay constant
were evaluated at leading order (LO), while the pressure
and the temperature dependence of the quark condensate
were calculated to next-to-next-to-leading order in ChPT.
In the chiral limit, this expansion is controlled by the
parameter T2=8F2

�, where F� is the pion decay constant.
In this paper, we present calculations of the pion masses
M�0 and M�� as well as the decay constants F�0 and F��

to leading order, and the free energy and the quark con-
densate to next-to-leading order (NLO) in ChPT in the

presence of a constant magnetic background B. The details
of the calculations will be presented elsewhere [9].
QCD in external magnetic fields has received a lot of

attention in recent years due to its relevance in several
physical situations. For example, largemagnetic fields exist
inside ordinary neutron stars as well as magnetars [10]. In
the latter case, the cores may be color superconducting and
so it is important to study the effects of external magnetic
fields in this phase [11–18]. Similarly, it has been suggested
that strong magnetic fields are created in heavy-ion colli-
sions at the Relativistic Heavy-Ion Collider (RHIC) and the
Large Hadron Collider (LHC) and that these play an im-
portant role [19]. In this case, themagnetic field strength has
been estimated to be up to B� 1019 gauss, which corre-
sponds to jqBj � 6M2

�, where jqj is the electric charge of
the pion. Even larger fields could be reached due to the
effects of event-by-event fluctuations, see for example [20].
This has spurred the interest in studying QCD in external
fields. At zero baryon chemical potential this can be done
from first principles using lattice simulations and some
recent results are found in [21–24].
Chiral perturbation theory has been used to study the

quark condensate in strong magnetic fields at zero tem-
perature [25–28] and finite temperature [29]. In Ref. [30],
the leading thermal corrections to M�0 and F�0 in a
magnetic background were computed. In Ref. [31], the
quark-hadron phase transition was studied using ChPT to
calculate the free energy at leading order. The effects of
external magnetic fields on the chiral transition have been
studied in detail using the Nambu—Jona-Lasinio (NJL)
model [32–41], the Polyakov-loop extended NJL model
[42,43], the quark-meson model [40,41,44–46], the
Polyakov-loop quark-meson model [47,48], the linear
sigma model [49], and the MIT bag model [50].

II. CHIRAL PERTURBATION THEORY

As explained in the Introduction, chiral perturbation
theory is a low-energy effective field theory that can be
used to systematically calculate physical quantities as a
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power series in momentum. The effective Lagrangian is
given by an infinite string of operators involving an increas-
ing number of derivatives or quark masses. Schematically,

we can write Leff ¼ Lð2Þ þLð4Þ þLð6Þ þ � � � where the
superscript indicates the powers of momentum. The
leading term is given by

L ð2Þ ¼ 1

4
F2 Tr½ðD�UÞyðD�UÞ �M2ðUþUyÞ�; (1)

which is simply is the Lagrangian of the nonlinear sigma

model. Here U ¼ ei�i�i=F is a unitary SUð2Þ matrix, where
�i are the pion fields and �i are the Pauli spin matrices. The
low-energy constantsM and F are the tree-level values for
the pion mass M� and the pion decay constant F�, respec-
tively. MoreoverD� is the covariant derivative. By expand-

ing the LagrangianLð2Þ to fourth order in the pion fields�i,
we obtain

Lð2Þ ¼ �F2M2 þ 1

2
ð@��0Þ2 þ 1

2
M2ð�0Þ2 þ ð@� þ iqA�Þ�þð@� � iqA�Þ�� þM2�þ�� � M2

24F2
½ð�0Þ2 þ 2�þ���2

þ 1

6F2
½�2ð�0Þ2ð@��þÞð@���Þ � 2�þ��ð@��0Þ2 þ ½@�ð�þ��Þ�2 þ 2�0½@��0�½@�ð�þ��Þ�

� 4�þ��ð@��þÞð@���Þ�; (2)

where we have defined the complex pion fields as �� ¼ 1ffiffi
2

p ð�1 � i�2Þ and A� ¼ B��2x1. Similarly, expanding Lð4Þ to
second order in the pion fields yields [26]

Lð4Þ ¼ 1

4
F2
�� þ 2l5

F2
ðqF��Þ2�þ�� þ 2il6

F2
qF��½ð@���Þð@��þÞ þ iqA�@�ð�þ��Þ� þ ðl3 þ l4ÞM

4

F2
ð�0Þ2

þ 2ðl3 þ l4ÞM
4

F2
�þ�� þ l4

M2

F2
ð@��0Þ2 þ 2l4

M2

F2
ð@� þ iqA�Þ�þð@� � iqA�Þ��; (3)

where F�� ¼ @�A� � @�A� is the field strength tensor.
The Lagrangian Lð6Þ is very complicated as it contains
more than 50 terms for SUð2Þ [4]. However, only one term
is relevant for the present problem [26,28], namely

L ð6Þ;relevant ¼ �4c34M
2ðqF��Þ2: (4)

We have used the parametrization U ¼ ei�i�i=F. This pa-
rametrization is different from the one used in [26–28] and
so the expressions for L also differ. However, we get
identical results for physical quantities independent of
parametrization. Moreover, we note that flavor symmetry
is broken in an external electromagnetic field due to the
different charges of the u and the d quarks. In particular,
the SUð2ÞA symmetry is broken down to Uð1Þ3A, which
corresponds to the rotation of the u and d quarks by
opposite angles. The formation of a quark condensate
breaks this Abelian symmetry and gives rise to a
Goldstone boson, namely the neutral pion. The charged
pions are therefore no longer Goldstone modes. In fact, the
presence of the external electromagnetic field allows for an
effective mass term even when M ¼ 0, cf. the second and
third terms in Eq. (3).

The chiral Lagrangian comes with a number of
undetermined parameters or low-energy constants li.
These parameters can be determined by experiments; how-
ever, loop corrections involve renormalization of them.
The relation between the bare and renormalized parame-
ters can be expressed as

li ¼ � �i

2ð4�Þ2
�
1

�
þ 1� �li

�
; (5)

where �i are coefficients and �li are scale-independent
parameters [2], i.e. they are the renormalized couplings
evaluated at the renormalization scale � ¼ M. In
the present calculations, we need �3 ¼ � 1

2 , �4 ¼ 2,

�5 ¼ � 1
6 , and �6 ¼ � 1

3 [2,3].

III. PIONMASSES AND PION DECAY CONSTANTS

The pion masses M�0 and M�� are defined by the
position of the pole of the propagator. At leading order,
their expressions are divergent and require renormalization
of the parameters l3, l5, and l6. The result is

M2
�0 ¼ M2

�

�
1� 1

ð4�Þ2F2

�
IBðMÞ þ 1

2
J1ð�MÞT2

� JB1 ð�MÞjqBj
��

; (6)

M2
�� ¼M2

�

�
1þ T2

2ð4�Þ2F2
J1ð�MÞ

�
þ ðqBÞ2

3ð4�Þ2F2
ð�l6 � �l5Þ;

(7)

where the pion mass M2
� in the vacuum is given by

M2
� ¼ M2

�
1� M2

2ð4�Þ2F2
�l3

�
; (8)

the function IBðMÞ is defined by

IBðMÞ ¼ M2 log
M2

2jqBj �M2 � 2	 ð1;0Þ
�
0;
1

2
þ x

�
jqBj;

(9)
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where 	ðq; sÞ ¼ P1
m¼0ðqþmÞ�s is the Hurwitz zeta-

function and x ¼ M2

2jqBj . The thermal integrals are

J1ð�MÞ ¼ 8�2
Z 1

0

p2dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p 1

e�
ffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
� 1

; (10)

JB1 ð�MÞ ¼ 8
X1
m¼0

Z 1

0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

B

q 1

e�
ffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

B

p
� 1

; (11)

where M2
B ¼ M2 þ ð2mþ 1ÞjqBj and m denotes the mth

Landau level.
In order to calculate the pion decay constant, we need to

evaluate the matrix elements h0jA0
�j�0i and h0jA�

� j��i,
where A0

� and A�
� are the axial currents for �0 and ��.

At zero magnetic field, these are identical, but there are two
pion decay constants at finite temperature; one for the time
component and one for the spatial component ofA� since

Lorentz invariance is broken. The difference between them
is an order-p4 effect, i.e. appears at the two-loop level [51]
and this is beyond the scope of this paper. The matrix
elements are proportional to iP� and the prefactors are

denoted by F�0 and F�� , respectively. The expressions are
divergent and require renormalization of l4 and the renor-
malized result is

F�0 ¼ F�

�
1þ 1

ð4�Þ2F2
ðIBðMÞ � JB1 ð�MÞjqBjÞ

�
; (12)

F�� ¼ F�

�
1þ 1

2ð4�Þ2F2
ðIBðMÞ � J1ð�MÞT2

� JB1 ð�MÞjqBjÞ
�
; (13)

where the pion decay constant F� in the vacuum is

F� ¼
�
1þ M2

ð4�Þ2F2
�l4

�
: (14)

Note that F�0 differs from F�� in a magnetic field. The
reason is that the loop corrections to the former involve
charged pions only, while loop corrections to the latter
involve both neutral and charged pions [9].

IV. FREE ENERGYAND QUARK CONDENSATE

We are interested in the contributions to the free energy
F that are due to a nonzero magnetic field and finite
temperature. We therefore write the contribution to the
free energy at the nth loop order, F n, as a sum of three
terms: F n ¼ F vac

n þF B
n þF T

n , where F vac
n is the free

energy in the vacuum, i.e. B ¼ T ¼ 0, F B
n is the zero-

temperature contribution due to a finite magnetic field, and
F T

n is the finite-temperature contribution. The strategy is to
isolate the term F vac

n and subtract it from F n. This term
contains ultraviolet divergences which are removed by
renormalization of the low-energy constants of the chiral

Lagrangian and the renormalized F vac
n represents the vac-

uum energy of the theory. The term F B
n generally contains

ultraviolet divergences as well and it is rendered finite by
renormalizing the lis. In the present case, �l5 and �l6 in
Eq. (3), and c34 in Eq. (4) require renormalization. If we
express the contributions F B

1 and F T
1 in terms of the

physical pion masses M�0ð0Þ, Eq. (6), and M��ð0Þ,
Eq. (7), at zero temperature, instead of M, most of the
dependence on the constants �lis cancels in the expressions
for F B

1þ2 and F T
1þ2. After a lengthy calculation, one

finds [9]

F B
1þ2 ¼

M4
��ð0Þ

2ð4�Þ2
�
1� 2 log

M2
��ð0Þ
2jqBj

�

þ 4ðqBÞ2
ð4�Þ2 	 ð1;0Þ

�
�1;

1

2
þ x��

�
þ ðqBÞ2

6ð4�Þ2 log
�2

2qB

� ðqBÞ2
ð4�Þ4F2

�dðM2ÞM2; (15)

F T
1þ2 ¼ � 1

2ð4�Þ2 ½J0ð�M�0ð0ÞÞT4

þ 2JB0 ð�M��ð0ÞÞjqBjT2�

þ M2

8ð4�Þ4F2
½�J21ð�MÞT4

þ 4J1ð�MÞJB1 ð�MÞT2jqBjg; (16)

where

�dðM2Þ ¼ 8ð4�Þ4cr34 �
1

3
ð�l6 � �l5Þ logM

2

�2
; (17)

x�� ¼ M2

��ð0Þ
2jqBj , and� is the renormalization scale. The term

ðqBÞ2
6ð4�Þ2 log

�2

2qB arises from wave function renormalization of

the term 1
2B

2 in the tree-level expression for the free energy

F 0 ¼ 1
2B

2 � F2M2. It cancels a logarithmic divergence in

F B
1 proportional to ðqBÞ2. This term is typically ignored in

the literature since it is independent of T and the parame-
ters of the chiral Lagrangian.
We note that the NLO correction to the free energy in the

chiral limit (M ¼ 0) does not vanish since �� are no
longer Goldstone modes and M��ð0Þ is nonzero. This is
in contrast to the case of zero magnetic field [6–8].
At finite temperature, the quark condensate is

h �qqi ¼ h0j �qqj0i
�
1� c

F2

@ðF T þF BÞ
@M2

�

�
; (18)

where the constant c is defined by [8]

c ¼ �F2 @M
2
�

@mq

h0j �qqj0i�1: (19)

Here mq is the quark mass. In the chiral limit, we have

c ¼ 1. In that case, the quark condensate reduces to
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h �qqi¼h0j �qqj0i
�
1þ jqBj

ð4�Þ2F2
IBðM��ð0ÞÞþ ðqBÞ2

ð4�Þ4F4
�dðjqBjÞ

� 1

2ð4�Þ2F2
ðJ1ð0ÞT2þ2JB1 ð�M��ð0ÞÞjqBjÞ

þ T2

8ð4�Þ4F4
ðJ21ð0ÞT2�4J1ð0ÞJB1 ð0ÞjqBj

þ4log2J1ð0ÞjqBjÞ
�
: (20)

This is the main result of the present paper and will be
discussed in the next section.

V. RESULTS AND DISCUSSION

We first notice that we in the limit B ! 0 recover the
temperature dependence of M�, F�, F , and h �qqi as in
[6–8]. Similarly, we obtain the T ¼ 0 result for the free
energy and the B dependence of the quark condensate as in
[26–28]. The results in Eq. (6) forM2

�0 and Eq. (12) for F�0

were first obtained in [30]. The neutral pion decay constant
depends on the magnetic field, which perhaps is unex-
pected. However, it is simply due to a cubic term
ð�þ��Þ@��0 in the expression for the axial current A0

�

and gives rise to a charged pion loop [9,30].
We also notice that the temperature dependence of the

charged pion mass is the same as for vanishing magnetic
field. The only difference is a temperature-independent
constant proportional to ðqBÞ2=F2 arising from the second
and third terms in Eq. (3). Thus the charged pions are
massive excitations even in the limit when the quark
mass mq goes to zero. This simply reflects that only the

neutral pion is a Goldstone mode in an external electro-
magnetic field.

The temperature dependence of M2
�� may seem surpris-

ing at first since there are loop corrections to M2
��

involving charged pion loops. However, these loop correc-
tions cancel after having taken appropriately into account
wave function renormalization of the charged pion
fields [9].

In the remainder we focus on the chiral limit. In this case
there are two dimensionless ratios, namely jqBj=T2 and
T2=F2. The integrals JBn are functions only of the dimen-
sionless ratio jqBj=T2. It is straightforward to show that
J1T

2 � JB1 jqBj for all values of B and T. This implies that
the pion decay constants F�0 and F�� are larger than F�.
Moreover, for small values of jqBj, i.e. for jqBj � T2, we
can calculate the first corrections due to nonzero B as a

power series in
ffiffiffiffiffiffiffiffiffiffijqBjp

=T. One finds

F�0 ¼ F�

�
1þ jqBj log2

ð4�Þ2F2
� T2

12F2
þ 5

ffiffiffiffiffiffiffiffiffiffijqBjp
T

48�F2
þ � � �

�
;

(21)

F�� ¼ F�

�
1þ jqBj log2

2ð4�Þ2F2
� T2

12F2
þ 5

ffiffiffiffiffiffiffiffiffiffijqBjp
T

96�F2
þ � � �

�
:

(22)

Similarly, we can expand the quark condensate around
jqBj ¼ 0 and obtain the first correction proportional toffiffiffiffiffiffiffiffiffiffijqBjp

=T:

h �qqi ¼ h0j �qqj0i
�
1þ jqBj log2

ð4�Þ2F2
� T2

8F2
þ 5

ffiffiffiffiffiffiffiffiffiffijqBjp
T

48�F2
þ � � �

�
:

(23)

In the limit jqBj ! 1, JB1 ! 0 since the terms in the sum
in Eq. (11) are effectively Boltzmann suppressed. Eq. (6)
then shows that the dominant contribution toM2

�0 goes like

�IBð0Þ ¼ �jqBj log2 and so M2
�0 eventually turns nega-

tive which obviously is unphysical. From Eq. (12), we see
that F�0 becomes temperature independent.
In Fig. 1 (left panel), we show the quark condensate

Eq. (20) as a function of temperature for jqBj ¼
5ð140 MeVÞ2 at LO and NLO in chiral perturbation theory
including the T ¼ 0 contribution. For comparison, we also
show the quark condensate for jqBj ¼ 0. We are using
the experimental valueF� ¼ 93 MeV and �l6 � �l5 ¼ 3:0�
0:3 [52,53]. There is a large uncertainty in the constant
�dðjqBjÞ and its value is consistent with zero and we choose
this value for simplicity. In Fig. 1 (right panel), we show
the quark condensate Eq. (20) except that we have
excluded the zero-temperature contribution. We do this to
disentangle the effects of the magnetic field at T ¼ 0 and
the finite-temperature effects. We notice that the LO and
NLO results for the condensate in both cases are very close
to each other in the entire temperature range. In fact, the
LO and NLO curves lie significantly closer than do the
corresponding curves for B ¼ 0. This suggests that chiral
perturbation theory converges at least as well in the pres-
ence of a magnetic field.
The quark condensate for vanishing B goes to zero faster

than it does in the presence of a magnetic field. This effect
is caused by two separate mechanisms. First, there is the
enhanced quark condensate at T ¼ 0, which to leading
order is determined by the function IBðMÞ. This is the
well-known enhancement of the chiral condensate in the
presence of a magnetic field. Second, there are finite-
temperature corrections. The basic effect here is that JB1
is a decreasing function of B and thus J1T

2 > JB1 jqBj for
all B> 0. Using this inequality, it is straightforward to
show that the decrease of the quark condensate [Eq. (20)]
due to thermal effects is smaller for nonzero B. The two
separate effects are clearly demonstrated if one compares
the two panels in Fig. 1.
Comparing the results for the condensate for B ¼ 0 and

jqBj ¼ 5ð140 MeVÞ2, it is clear the effects of the magnetic
field are quantitatively large. This is due to a very strong
magnetic field. For smaller values of jqBj, the gaps
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between the two sets of curves will be smaller too. The
calculations indicate that the critical temperature Tc for the
chiral transition is higher in a nonzero magnetic field. Of
course, this conclusion is cautious since the behavior of the
quark condensate in the vicinity of Tc is beyond the reach
of chiral perturbation theory. This result is in line with most
model calculations, both mean-field type [42,43,47,49] and
beyond [46,48]. Model calculations that seem to indicate a
decrease of Tc as a function of magnetic field can be found
in Refs. [31,50].

In Ref. [31], the authors use ChPT at leading order
to investigate the quark-hadron phase transition as a
function of the magnetic field at the physical point.
They compare the pressure in the hadronic phase with
that of the quark-gluon plasma phase for an ideal gas of
quarks and gluons, and subtracting the vacuum energy
due to a nonzero gluon condensate. For weak magnetic
fields, the transition is first order. The line of first-order
transitions ends at a critical point. From this temperature
onwards, the transition is a crossover. The critical tem-
perature defined this way is a decreasing function of B.
Typically, however, the critical temperature is determined
by the behavior of the quark condensate. At the physical
point, the condensate never vanishes and the transition
is a crossover. The crossover temperature is often de-
fined by the inflection point of h �qqi as a function of
temperature.

D’Elia et al. have carried out lattice simulations in a
constant magnetic background at zero chemical potential
[21,22]. They explored various constituent quark masses
corresponding to a pion mass of 200–480 MeV and
different magnetic fields, up to jqBj � 20M2

� for the light-

est quark masses. For these values of the pion mass, they
found that there is a slight increase in the critical tempera-
ture Tc for the chiral transition. These results have been
confirmed by Bali et al. [23,24,54]. The same group has also
carried out lattice simulations for physical values of the pion
mass, i.e.M� ¼ 140 MeV. Their results which are extrapo-
lated to the continuum limit show that the critical temperature
is a decreasing function of the magnetic field [23,24,54].
Hence the critical temperature for fixed jqBj as a function
of the quark mass is nontrivial. This is in stark contrast to
most model calculations that imply an increasing critical
temperature as a function ofB. This is irrespective ofwhether
one goes beyond mean field or not. The discrepancy is
perhaps somewhat surprising since at T ¼ 0, the lattice
results confirm the magnetic catalysis predicted by model
calculations.
In conclusion, we have used chiral perturbation theory

to calculate the pion masses, the decay constants, the
free energy and the quark condensate at finite tempera-
ture in a magnetic background. Given the conflicting
results for Tc as a function of B of various model
calculations and lattice calculations, clearly more work
needs to be done.
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FIG. 1. Temperature dependence of the quark condensate including the T ¼ 0 contribution normalized to its vacuum value qB ¼
5ð140 MeVÞ2 at LO and NLO in chiral perturbation theory (left panel). For comparison, we show the LO and NLO results for qB ¼ 0
as well (right panel).
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Katz, S. Krieg, A. Schafer, and K.K. Szabo, J. High
Energy Phys. 02 (2012) 044.

[24] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D.
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