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The N ¼ 4 super Yang-Mills plasma is studied in the regime of weak coupling. Collective excitations

and collisional processes are discussed. Since the Keldysh-Schwinger approach is used, the collective

excitations in both equilibrium and nonequilibrium plasma are under consideration. The dispersion

equations of gluon, fermion, and scalar fields are written down and the self-energies, which enter the

equations, are computed in the hard loop approximation. The self-energies are discussed in the context of

effective action which is also given. The gluon modes and fermion ones appear to be the same as those in

the QCD plasma of gluons and massless quarks. The scalar modes are as of a free relativistic massive

particle. The binary collisional processes, which occur at the lowest nontrivial order of the coupling

constant, are reviewed and then the transport properties of the plasma are discussed. The N ¼ 4 super

Yang-Mills plasma is finally concluded to be very similar to the QCD plasma of gluons and light quarks.

The differences mostly reflect different numbers of degrees of freedom in the two systems.
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I. INTRODUCTION

Supersymmetric models are considered as possible ex-
tensions of the standard model (see, e.g., [1]), and super-
symmetry (SUSY) is then assumed to be a symmetry of
nature at a sufficiently high energy scale. Experiments at
the Large Hadron Collider may soon show whether this
is the case. This paper is devoted to a plasma system with
the dynamics governed by the N ¼ 4 supersymmetric
Yang-Mills theory [2,3]. In the models with an extended
(N > 1) supersymmetry, the left- and right-handed fermi-
ons interact in the same way, in conflict with the standard
model where the left- and right-handed matter particles are
coupled differently. Consequently, theN ¼ 4 super Yang-
Mills is not treated as a serious candidate for a theory to
describe the world of elementary particles. Nevertheless,
the theory attracts a lot of attention because of its unique
features. TheN ¼ 4 super Yang-Mills appears to be finite
and thus it is conformally invariant not only at the classical
but at the quantum level as well.

A great interest in the N ¼ 4 super Yang-Mills theory
was stimulated by a discovery of the AdS/CFT duality of
the five-dimensional gravity in the anti–de Sitter geometry
and the conformal field theories [4] (for a review see [5]
and the lecture notes [6] as an introduction). The duality
offered a unique tool to study strongly coupled field theo-
ries. Since the gravitational constant and the coupling
constant of dual conformal field theory are inversely pro-
portional to each other, some problems of strongly coupled
field theories can be solved via weakly coupled gravity.
In this way some intriguing features of strongly coupled
systems driven by the N ¼ 4 super Yang-Mills dynamics
were revealed (see the reviews [7,8]), but the relevance of

the results for nonsupersymmetric systems, which are of
our actual interest, remains an open issue. In particular,
one asks how properties of the N ¼ 4 super Yang-Mills
plasma (SYMP) are related to those of quark-gluon plasma
(QGP) studied experimentally in relativistic heavy-ion
collisions. While such a comparison is, in general, a dif-
ficult problem, some comparative analyses have been
done in the domain of weak coupling where perturbative
methods are applicable [9–14].
We undertook a task of systematic comparison of super-

symmetric perturbative plasmas to their nonsupersymmet-
ric counterparts. We started with the N ¼ 1 SUSY QED,
analyzing first collective excitations of ultrarelativistic
plasma which, in general, is out of equilibrium [15]. We
computed the one-loop retarded self-energies of photons,
photinos, electrons, and selectrons in the hard loop
approximation using the Keldysh-Schwinger formalism.
The self-energies, which we also analyzed in the context
of effective action, enter the dispersion equations of pho-
tons, photinos, electrons, and selectrons, respectively. The
collective modes of N ¼ 1 SUSY QED plasma appear to
be essentially the same as those in ultrarelativistic electro-
magnetic plasma of photons, electrons, and positrons. In
particular, a spectrum of photino modes coincides with
that of quasielectrons. Therefore, independent of whether
photon modes are stable or unstable, there are no unstable
photino excitations. The supersymmetry, which is obvi-
ously broken in the plasma medium, does not induce any
instability in the photino sector.
In the subsequent paper [16] we discussed collisional

characteristics of N ¼ 1 SUSY QED plasma. For this
purpose we computed cross sections of all elementary
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processes which occur at the lowest nontrivial order of
� � e2=4�. We found that some processes, e.g., the
Compton scattering on selectrons, are independent of
momentum transfer. The processes are qualitatively differ-
ent from those of the usual electromagnetic interactions
dominated by small momentum transfers. Further on we
discussed collisional characteristics of equilibriumN ¼ 1
SUSYQED plasma, observing that parameters of ultrarela-
tivistic plasmas are strongly constrained by dimensional
arguments, as the temperature is the only dimensional
quantity of equilibrium system. Then, transport coefficients
like viscosity are proportional to appropriate powers of
temperature and the coefficients characterizing different
plasmas can differ only by numerical factors. Sowe derived
the energy loss and momentum broadening of a particle
traversing the equilibrium plasma, which depend not only
on the plasma temperature but on the energy of the test
particle as well. We found that the two quantities have very
similar structure (in the limit of the high energy of the test
particle) even for very different elementary cross sections.
Our findings presented in [15,16] show that the plasmas
of N ¼ 1 SUSY QED and of QED are surprisingly
similar to each other. In this paper we discuss properties
of the N ¼ 4 super Yang-Mills plasma, analyzing
both collective excitations and collisional characteristics
of the system.

Our main aim is to confront the weakly coupled plasma
driven by N ¼ 4 super Yang-Mills with the perturbative
quark-gluon plasma governed by QCD. We do not attempt
to compare our results to those obtained in a strong cou-
pling regime using either the AdS/CFT duality or lattice
QCD. Some plasma characteristics we discuss, e.g., the
energy loss, are computed in both strongly and weakly
coupled systems but it is rather unclear how to study
collective excitations representing colored quasiparticles
in the setting of AdS/CFT duality or lattice QCD. The
paper [17] demonstrates that even the definition of Debye
screening mass, which has a very simple meaning in
perturbative plasmas, is not straightforward in strongly
interacting systems. For these reasons we escape from
discussing our results in the context of strong coupling.

Our paper is organized as follows. In the next section,
we discuss the Lagrangian of N ¼ 4 super Yang-Mills
and the field content of the system under consideration.
The vertices of N ¼ 4 super Yang-Mills are collected in
Appendix A. In Sec. III basic characteristics of SYMP such
as energy density and Debye mass are discussed and
compared to those of QGP. Then, we move to plasma

collective excitations. The general dispersion equations
of gauge bosons, fermions, and scalars are written down
in Sec. IVand the self-energies, which enter the equations,
are obtained in the subsequent section. We apply here the
Keldysh-Schwinger approach which allows one to study
equilibrium and nonequilibrium systems. The free Green’s
functions of Keldysh-Schwinger formalism are given in
Appendix B. Since we are interested in collective modes,
the self-energies are obtained in the long wavelength limit
corresponding to the hard loop approximation. The effec-
tive action of the hard loop approach is derived in Sec. VI
and possible structures of self-energies are considered in
this context. In Sec. VII we present a qualitative discussion
of collective modes in SYMP. Section VIII is devoted to
collisional characteristics of the plasma—elementary pro-
cesses and transport coefficients are briefly discussed here.
Finally, we conclude our study in Sec. IX.
As we have intended to make our paper complete and

self-contained, there is inevitably some repetition of the
content of our previous publications [15,16], mostly in
Secs. VII and VIII. Throughout the paper we use the
natural system of units with c ¼ ℏ ¼ kB ¼ 1; our choice
of the signature of the metric tensor is ðþ ���Þ.

II. N ¼ 4 SUPER YANG-MILLS THEORY

We start our considerations with a discussion of the
Lagrangian of N ¼ 4 super Yang-Mills theory [2,3]. We
follow here the presentation given in [18].
The gauge group is assumed to be SUðNcÞ and every

field of the N ¼ 4 super Yang-Mills theory belongs to its
adjoint representation. The field content of the theory,
which is summarized in Table I, is the following. There
are gauge bosons (gluons) described by the vector field Aa

�

with a; b; c; . . . ¼ 1; 2; . . .N2
c � 1. There are four Majorana

fermions represented by theWeyl spinors �� with� ¼ 1, 2
which can be combined in the Dirac bispinors as

� ¼ ��

�� _�

� �
; �� ¼ ð��; ��

_�Þ; (1)

where �� _� � ½���y with y denoting Hermitian conjugation.
To numerate the Majorana fermions we use the indices i,
j ¼ 1, 2, 3, 4 and the corresponding bispinor is denoted as
�i. Finally, there are six real scalar fields which are
assembled in the multiplet � ¼ ðX1; Y1; X2; Y2; X3; Y3Þ.
The components of � are either denoted as Xp for scalars,

and Yp for pseudoscalars, with p, q ¼ 1, 2, 3 or as�A with

A; B ¼ 1; 2; . . . 6.

TABLE I. Field content of N ¼ 4 super Yang-Mills theory.

Field’s symbol Type of the field Range of the field’s index Spin Number of degrees of freedom ðNdofÞ
A� Vector �, � ¼ 0, 1, 2, 3 1 2� ðN2

c � 1Þ
�A Real (pseudo)scalar A, B ¼ 1, 2, 3, 4, 5, 6 0 6� ðN2

c � 1Þ
�i Majorana spinor i, j ¼ 1, 2, 3, 4 1=2 8� ðN2

c � 1Þ
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The Lagrangian density of N ¼ 4 super Yang-Mills
theory can be written as

L ¼ � 1

4
F��
a Fa

�� þ i

2
��a
i ð 6D�iÞa þ 1

2
ðD��AÞaðD��AÞa

� 1

4
g2fabefcde�a

A�
b
B�

c
A�

d
B

� i
g

2
fabcð ��a

i �
p
ijX

b
p�

c
j þ i ��a

i �
p
ij�5Y

b
p�

c
jÞ; (2)

where F��
a ¼ @�A�

a � @�A�
a þ gfabcA�

b A
�
c and the cova-

riant derivatives equal ð 6D�iÞa ¼ ð6@�ab þ gfabc 6AcÞ�b
i

and ðD��Þa ¼ D�
ab�b ¼ ð@��ab þ gfabcA�

c Þ�b; g is the

coupling constant; fabc are the structure constants of
the SUðNcÞ group; and the 4� 4 matrices �p, �p satisfy
the relations

f�p; �qg ¼ �2�pq; f�p;�qg ¼ �2�pq;

½�p; �q� ¼ 0;
(3)

and their explicit form can be chosen as

�1 ¼ 0 	1

�	1 0

 !
; �2 ¼ 0 �	3

	3 0

 !
;

�3 ¼ i	2 0

0 i	2

 !
;

(4)

�1 ¼ 0 i	2

i	2 0

 !
; �2 ¼ 0 	0

�	0 0

 !
;

�3 ¼ �i	2 0

0 i	2

 !
;

(5)

where the 2� 2 Pauli matrices read

	0 ¼ 1 0

0 1

 !
; 	1 ¼ 0 1

1 0

 !
;

	2 ¼ 0 �i

i 0

 !
; 	3 ¼ 1 0

0 �1

 !
:

(6)

As seen, the matrices �p, �p are anti-Hermitian: ð�pÞy ¼
��p, ð�pÞy ¼ ��p. The vertices of N ¼ 4 super Yang-
Mills, which can be inferred from the Lagrangian (2), are
collected in Appendix A. The vertices are used in pertur-
bative calculations presented in the subsequent sections.

The Lagrangian (2) is sometimes [11,13,14] extended by
adding a fundamental N ¼ 2 hypermultiplet to mimic a
behavior of quarks in QCD plasma. The hypermultiplet is
typically massive to study heavy flavors but it can be
massless as well. We do not consider any extension of
the Lagrangian (2) but at the end of Sec. VI we briefly
comment on a possible structure of self-energies of fields
belonging to the fundamental N ¼ 2 hypermultiplet.

III. BASIC PLASMA CHARACTERISTICS

We start our discussion of SYMP with basic character-
istics of the equilibrium plasma. Specifically, we consider
the energy and particle densities, Debye mass, and plasma
parameter of SYMP comparing the quantities to those
of QGP. For the beginning, however, a few comments are
in order.
In QGP there are several conserved charges: baryon

number, electric and color charges, strangeness. The net
baryon number and electric charge are typically nonzero in
QGP produced in relativistic heavy-ion collisions while the
total strangeness and color charge vanish. Actually, the
color charge is usually assumed to vanish not only globally
but locally as well. It certainly makes sense as the whiten-
ing of QGP appears to be the relaxation process of the
shortest time scale [19]. In SYMP, there are conserved
charges carried by fermions and scalars associated with
the global SU(4) symmetry. One of these charges can be
identified with the electric charge to couple N ¼ 4 super
Yang-Mills to the electromagnetic field [9]. In the forth-
coming the average SU(4) charges of SYMP are assumed
to vanish and so are the associated chemical potentials. The
constituents of SYMP carry color charges but we further
assume that the plasma is globally and locally colorless.
Since there are conserved supercharges in supersym-

metric theories, it seems reasonable to consider a statistical
supersymmetric system with a nonzero expectation value
of the supercharge. However, it is not obvious how
to deal with a partition function customary defined as

Tre��ðH��QÞ where � � T�1 is the inverse temperature,
H is the Hamiltonian,Q is the supercharge operator, and�
is the associated chemical potential. The problem is caused
by a fermionic character of the supercharge Q. If � is
simply a number, as, say, the baryon chemical potential,
the partition function even of the noninteracting system
does not factorize into a product of partition functions
of single momentum modes because the supercharges of
different modes do not commute with each other. The
supercharge is not an extensive quantity [20]. There were
proposed two ways to resolve the problem. Either the
chemical potential remains a number but the supercharge
is modified by multiplying it by an additional fermionic
field c [20,21] or the chemical potential by itself is a
fermionic field [22]. Then, �cQ and �Q are both bosonic
and the partition function can be computed in a standard
way. The two formulations, however, are not equivalent to
each other. According to the former one [20,21], properties
of a supercharged system vary with an expectation value of
the supercharge; within the latter one [22], the partition
function appears to be effectively independent of Q.
Because of the ambiguity, we further consider SYMP
where the expectation values of all supercharges vanish
both globally and locally.
In view of the above discussion, SYMP is comparable to

QGP where the conserved charges are all zero and so are
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the associated chemical potentials. We adopt the assump-
tion whenever the two plasma systems are compared to
each other.

When the chemical potentials are absent, the tempera-
ture (T) is the only dimensional parameter, which charac-
terizes the equilibrium plasma, and all plasma parameters
are expressed through the appropriate powers of T. Taking
into account the right numbers of bosonic and fermionic
degrees of freedom in SYMP and QGP, the energy den-
sities of equilibrium noninteracting plasmas equal

" ¼ �2

60

30ðN2
c � 1Þ

4ðN2
c � 1Þ þ 7NfNc

 !
T4; (7)

where the upper expression is for SYMP and the lower one
for QGP with Nf light quark flavors. The quark is light

when its mass is much smaller than the plasma tempera-
ture. For Nc ¼ Nf ¼ 3, the energy density of SYMP is

approximately 2.5 times bigger than that of QGP at the
same temperature. The same holds for the pressure p
which, obviously, equals "=3.

The particle densities in SYMP and QGP are found to be

n ¼ 2
ð3Þ
�2

7ðN2
c � 1Þ

2ðN2
c � 1Þ þ 3NfNc

 !
T3; (8)

where 
ð3Þ � 1:202 is the Riemann zeta function. For
Nc ¼ Nf ¼ 3 we have nSYMP=nQGP � 1:3 at the same

temperature.
As we show in Sec. VA, the gluon polarization tensor

has exactly the same structure in SYMP and QGP, and
consequently the Debye mass in SYMP is defined in the
same way as in QGP. The masses in both plasmas equal

m2
D ¼ g2

6

12Nc

2Nc þ Nf

 !
T2; (9)

where, as previously, the upper case is for SYMP and the
lower one for QGP. For Nc ¼ Nf ¼ 3, the ratio of Debye

masses squared is 4 at the same value of gT. The Debye
mass determines not only the screening length rD ¼ 1=mD

but it also gives the plasma frequency!p ¼ mD=
ffiffiffi
3

p
which

is the minimal frequency of longitudinal and transverse
plasma oscillations corresponding to the zero wave vector.
The plasma frequency is also called the gluon thermal
mass.

Another important quantity characterizing the equilib-
rium plasma is the so-called plasma parameter � which
equals the inverse number of particles in the sphere of
radius of the screening length. When � is decreasing, the
behavior of plasma is more and more collective while
interparticle collisions are less and less important. For
Nc ¼ Nf ¼ 3, we have

� � 1
4
3�r

3
Dn

� 0:257

0:042

 !
g3: (10)

As seen, the dynamics of QGP is more collective than that
of SYMP.
The differences of " and n for SYMP and QGP merely

reflect the difference in numbers of degrees of freedom in
the two plasma systems. In the case of mD and � it also
matters that (anti)quarks in QGP and fermions in SYMP
belong to different representations—fundamental and
adjoint, respectively—of the SUðNcÞ gauge group.

IV. DISPERSION EQUATIONS

Dispersion equations determine dispersion relations
of quasiparticle excitations. Below we write down the
dispersion equations of quasigluons, quasifermions, and
quasiscalars.

A. Gluons

Since the equation of motion of the gluon field A
�
a ðkÞ

can be written in the form

½k2g�� � k�k� ����ðkÞ�A�ðkÞ ¼ 0; (11)

where color indices are dropped, ���ðkÞ is the retarded
polarization tensor, and k � ð!;kÞ is the four-momentum,
the general gluon dispersion equation is

det½k2g�� � k�k� ����ðkÞ� ¼ 0: (12)

Strictly speaking, one should consider the equation of
motion not of the gluon field but of the gluon propagator.
Then, Eq. (12) determines the poles of the propagator.
Because of the transversality of ��� [k��

��ðkÞ ¼ 0],

which is required by the gauge covariance, not all compo-
nents of ��� are independent from each other, and
consequently the dispersion equation (12) can be much
simplified by expressing the polarization tensor through
the dielectric tensor "ijðkÞ which is the 3� 3 not 4� 4
matrix.

B. Fermions

The fermion field c iðkÞ obeys the equation
½6k� �ðkÞ�c ðkÞ ¼ 0; (13)

where any indices are neglected and �ðkÞ is the retarded
fermion self-energy. The dispersion equation thus is

det½6k��ðkÞ� ¼ 0: (14)

Further on we assume that the spinor structure of �ðkÞ is
�ðkÞ ¼ ����ðkÞ: (15)

Then, substituting the expression (15) into Eq. (14) and
computing the determinant as explained in Appendix 1 of
[23], we get

½ðk� � ��ðkÞÞðk� ���ðkÞÞ�2 ¼ 0: (16)
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C. Scalars

The scalar field�AðkÞ obeys the Klein-Gordon equation
½k2 þ PðkÞ��ðkÞ ¼ 0; (17)

where PðkÞ is the retarded self-energy of the scalar field
and any indices are dropped. The dispersion equation is

k2 þ PðkÞ ¼ 0: (18)

As seen, the whole dynamical information about plasma
medium is contained in the self-energies which are com-
puted perturbatively in the next section.

V. SELF-ENERGIES

We compute here the self-energies which enter the
dispersion equations (12), (14), and (18). The vertices of
N ¼ 4 super Yang-Mills, which are used in our perturba-
tive calculations, are listed in Appendix A. The plasma is
assumed to be homogeneous (translationally invariant),
locally colorless but the momentum distribution is, in
general, different from the equilibrium one. Therefore,
we adopt the Keldysh-Schwinger or real-time formalism
which allows one to describe both equilibrium and non-
equilibrium many-body systems. The free Green’s func-
tions, which are labeled with the indicesþ,�,>,<, sym,
are collected in Appendix B. What concerns the Keldysh-
Schwinger formalism we follow the conventions explained
in [23]. The computation is performed within the hard loop
approach (see the reviews [24–26]), which was generalized
to anisotropic systems in [27].

A. Polarization tensor

The gluon polarization tensor ��� can be defined by
means of the Dyson-Schwinger equation

iD��ðkÞ ¼ iD��ðkÞ þ iD��ðkÞi��	ðkÞiD	�ðkÞ; (19)

where D�� and D�� are the interacting and free gluon
propagator, respectively. The lowest order contributions to
gluon polarization tensor are given by six diagrams shown
in Fig. 1. The curly, plain, dotted, and dashed lines denote,
respectively, gluon, fermion, ghost, and scalar fields.

Using the vertices given in Appendix A, the contribution
to the contour polarization tensor of Keldysh-Schwinger
formalism, which comes from the fermion loop corre-
sponding to the graph in Fig. 1(a), is immediately written
down in the coordinate space as

ðaÞ�
��
ab ðx; yÞ ¼ �ig2Nc�abTr½��Sijðx; yÞ��Sjiðy; xÞ�;

(20)

where the trace is taken over spinor indices. The factor
ð�1Þ due to the fermion loop is included and the relation
facdfbcd ¼ �abNc is used here.
We are interested in the retarded polarization tensor

which is expressed through �
<
> as

�þðx; yÞ ¼ �ðx0 � y0Þð�>ðx; yÞ ��<ðx; yÞÞ: (21)

The polarization tensors �
<
> are found from the contour

tensor (20) by locating the argument x0 on the upper
(lower) and y0 on the lower (upper) branch of the contour.
Then, one gets

ððaÞ�<
>ðx; yÞÞ��

ab ¼ �ig2Nc�abTr½��S
<
>
ijðx; yÞ��S

>
<
jiðy; xÞ�:

(22)

As already mentioned, the system under study is as-
sumed to be translationally invariant. Then, the two-point
functions as Sðx; yÞ effectively depend on x and y only
through x� y. Therefore, we put y ¼ 0 and we write
Sðx; yÞ as SðxÞ and Sðy; xÞ as Sð�xÞ. Then, Eq. (22) is

ððaÞ�<
>ðxÞÞ��

ab ¼ � i

2
g2Nc�abTr½��S

<
>
ijðxÞ��S

>
<
ji ð�xÞ�:

(23)

Since

S�ðxÞ ¼ ��ð�x0ÞðS>ðxÞ � S<ðxÞÞ (24)

the retarded polarization tensor �þðxÞ is found as

ððaÞ�þðxÞÞ��
ab ¼ � i

2
g2Nc�abTr½��Sþij ðxÞ��Ssymji ð�xÞ

þ ��Ssymji ðxÞ��S�ij ð�xÞ�; (25)

which in the momentum space reads

ððaÞ�þðkÞÞ��
ab ¼ � i

2
g2Nc�ab

�
Z d4p

ð2�Þ4 Tr½��Sþij ðpþ kÞ��Ssymji ðpÞ
þ ��Ssymji ðpÞ��S�ij ðp� kÞ�: (26)

Further on the indexþ is dropped and�þ is denoted as
�, as only the retarded polarization tensor is discussed.
Substituting the functions S�, Ssym given by Eqs. (B13),
(B15), and (B14) into the formula (26), one findsFIG. 1. Contributions to the gluon self-energy.
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ðaÞ�
��
ab ðkÞ ¼ �4g2Nc�ab

Z d3p

ð2�Þ3
2nfðpÞ � 1

Ep

�
�
2p�p� þ k�p� þ p�k� � g��ðk � pÞ

ðpþ kÞ2 þ isgnððpþ kÞ0Þ0þ

þ 2p�p� � k�p� � p�k� þ g��ðk � pÞ
ðp� kÞ2 � isgnððp� kÞ0Þ0þ

�
;

(27)

where p� � ðEp;pÞ with Ep � jpj, the traces of gamma

matrices are computed, and it is taken into account that
p2 ¼ 0. We also note that after performing the integration
over p0, the momentum p was changed into �p in the
negative energy contribution.

In the hard loop approximation, when p � k, we have

1

ðpþ kÞ2 þ i0þ
þ 1

ðp� kÞ2 � i0þ

¼ 2k2

ðk2Þ2 � 4ðk � pÞ2 � isgnðk � pÞ0þ

� � 1

2

k2

ðk � pþ i0þÞ2 ; (28)

1

ðpþ kÞ2 þ i0þ
� 1

ðp� kÞ2 � i0þ

¼ 4ðk � pÞ
ðk2Þ2 � 4ðk � pÞ2 � isgnðk � pÞ0þ

� k � p
ðk � pþ i0þÞ2 : (29)

We note that ðpþ kÞ0 > 0 and ðp� kÞ0 > 0 for p � k.
With the formulas (28) and (29), Eq. (27) gives

ðaÞ�
��
ab ðkÞ

¼ 4g2Nc�ab

Z d3p

ð2�Þ3
2nfðpÞ � 1

Ep

� k2p�p� � ðk�p� þ p�k� � g��ðk � pÞÞðk � pÞ
ðk � pþ i0þÞ2 ;

(30)

which has the well-known structure of the polarization
tensor of gauge bosons in ultrarelativistic QED and QCD
plasmas. As seen, �ðkÞ is symmetric with respect to
Lorentz indices ðaÞ�

��
ab ðkÞ ¼ ðaÞ�

��
ab ðkÞ and transverse

k�ðaÞ�
��
ab ðkÞ ¼ 0, as required by the gauge invariance. In

the vacuum limit, when the fermion distribution function
nfðpÞ vanishes, the polarization tensor (30) is still nonzero
(actually infinite). As we will see, the vacuum contribution
to the complete polarization tensor exactly vanishes due to
the supersymmetry.

In analogy to the fermion-loop expression (26), one finds
the gluon-loop contribution to the retarded polarization
tensor shown in Fig. 1(b) as

ðbÞ�
��
ab ðkÞ¼�i

g2

4
Nc�ab

Z d4p

ð2�Þ4
Z d4q

ð2�Þ4D
symðpÞ

�½ð2�Þ4�ð4Þðkþp�qÞM��ðk;q;pÞDþðqÞ
þð2�Þ4�ð4Þðk�pþqÞM��ðk;�q;�pÞD�ðqÞ�;

(31)

where the gluon Green’s functions D� and Dsym are given
by Eqs. (B1) and (B4), the combinatorial factor 1=2 is
included, and

M��ðk; q; pÞ � ��	�ðk;�q; pÞ�	
�
�ðq;�k;�pÞ (32)

with

����ðk;p;qÞ�g��ðk�pÞ�þg��ðp�qÞ�þg��ðq�kÞ�:
(33)

Within the hard loop approximation the tensor (32) is
computed as

M��ðk; p� k;�pÞ � �2g��ðk � pÞ þ 10p�p�

� 5ðk�p� þ p�k�Þ; (34)

where we have taken into account that p2 ¼ 0.
Substituting the expressions (34) into Eq. (31), using

the explicit form of the functions D� and Dsym given by
Eqs. (B1) and (B4), and applying the hard loop approxi-
mation (28) and (29), we get

ðbÞ�
��
ab ðkÞ

¼g2

4
Nc�ab

Z d3p

ð2�Þ3
2ngðpÞþ1

Ep

�5k2p�p��2g��ðk �pÞ2�5ðk�p�þp�k�Þðk �pÞ
ðk �pþ i0þÞ2 :

(35)

The gluon-tadpole contribution to the retarded polariza-
tion tensor, which shown in Fig. 1(c), equals

ðcÞ�
��
ab ðkÞ ¼ �g2

2

Z d4p

ð2�Þ4 �
���
abcc�D

<ðpÞ; (36)

where the combinatorial factor 1=2 is included and ����	
abcd

equals

�
���	
abcd � fabefecdðg�	g�� � g��g�	Þ

þ facefedbðg��g�	 � g��g�	Þ
þ fadefebcðg��g�	 � g�	g��Þ: (37)

With the explicit form of the function D<ðpÞ given by
Eq. (B3), the formula (36) provides

ðcÞ�
��
ab ðkÞ ¼

3

2
g2Nc�abg

��
Z d3p

ð2�Þ3
2ngðpÞ þ 1

Ep

: (38)
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The ghost-loop contribution to the retarded polarization
tensor, which is shown in Fig. 1(d), equals

ðdÞ�
��
ab ðkÞ ¼ i

g2

2
Nc�ab

Z d4p

ð2�Þ4 G
symðpÞ

� ½ðpþ kÞ�p�Gþðpþ kÞ
þ p�ðp� kÞ�G�ðp� kÞ�; (39)

where the factor ð�1Þ is included as we deal with the
fermion loop. Using the explicit form of the functions
G� and Gsym given by Eqs. (B9) and (B12), the formula
(39) is manipulated to

ðdÞ�
��
ab ðkÞ¼�g2

4
Nc�ab

Z d3p

ð2�Þ3
2ngðpÞþ1

Ep

� k2p�p��ðk�p�þp�k�Þðk �pÞ
ðk �pþ i0þÞ2 ; (40)

which holds in the hard loop approximation.
As already mentioned, the quark-loop contribution to the

polarization tensor is symmetric and transverse with re-
spect to Lorentz indices. The same holds for the sum of
gluon-loop, gluon-tadpole, and ghost-loop contributions
which gives the gluon polarization tensor in pure gluo-
dynamics (QCD with no quarks). The sum of the three
contributions equals

ðbÞþðcÞþðdÞ�
��
ab ðkÞ

¼g2Nc�ab

Z d3p

ð2�Þ3
2ngðpÞþ1

Ep

�k2p�p�þg��ðk �pÞ2�ðk�p�þp�k�Þðk �pÞ
ðk �pþ i0þÞ2 : (41)

To our best knowledge this is the first computation of
the QCD polarization tensor in hard loop approximation
performed in the Keldysh-Schwinger (real-time) formal-
ism which explicitly demonstrates the transversality of
the tensor. In Refs. [27,28], where the equilibrium and
nonequilibrium anisotropic plasmas were considered,
respectively, the transversality of ���ðkÞ was actually
assumed. In the case of imaginary time formalism, the
computation of the gluon polarization tensor in hard loop
approximation is the textbook material [29,30].

The contribution to the polarization tensor coming from
the scalar loop depicted in Fig. 1(e) is given by

ðeÞ�
��
ab ðkÞ ¼ �i

g2

2
�abNc�

AA
Z d4p

ð2�Þ4
� ½ð2pþ kÞ�ð2pþ kÞ��þðpþ kÞ�symðpÞ
þ ð2p� kÞ�ð2p� kÞ��symðpÞ��ðp� kÞ�;

(42)

which changes into

ðeÞ�
��
ab ðkÞ ¼ 3g2Nc�ab

Z d3p

ð2�Þ3
2nsðpÞ þ 1

Ep

� k2p�p� � ðp�k� þ k�p�Þðk � pÞ
ðk � pþ i0þÞ2 (43)

when the functions �� and �sym given by Eqs. (B18) and
(B21) are used and the hard loop approximation is adopted.
The contribution to the polarization tensor coming from

the scalar tadpole depicted in Fig. 1(f) is

ðfÞ�
��
ab ðkÞ¼�1

2
2ig2�abNc�

AAg��
Z d4p

ð2�Þ4�
<ðpÞ; (44)

where the combinatorial factor 1=2 is included. With the
function �< given by Eq. (B20) we have

ðfÞ�
��
ab ðkÞ ¼ 3g2Nc�abg

��
Z d3p

ð2�Þ3
2nsðpÞ þ 1

Ep

: (45)

We get the complete contribution from a scalar field to
the polarization tensor by summing up the scalar loop and
scalar tadpole. Thus, one finds

ðeþfÞ�
��
ab ðkÞ

¼ 3g2Nc�ab

Z d3p

ð2�Þ3
2nsðpÞ þ 1

Ep

� k2p�p� � ðp�k� þ k�p� � g��ðk � pÞÞðk � pÞ
ðk � pþ i0þÞ2 ;

(46)

which has the structure corresponding to the scalar QED.
Then, it is not a surprise that the polarization tensor (46) is
symmetric and transverse.
After summing up all contributions, we get the final

expression of gluon polarization tensor

�
��
ab ðkÞ¼g2Nc�ab

Z d3p

ð2�Þ3
fðpÞ
Ep

� k2p�p��ðk�p�þp�k��g��ðk �pÞÞðk �pÞ
ðk �pþ i0þÞ2 ;

(47)

where

fðpÞ � 2ngðpÞ þ 8nfðpÞ þ 6nsðpÞ (48)

is the effective distribution function of plasma constituents.
We observe that the coefficients in front of the distributions
functions ngðpÞ, nfðpÞ, nsðpÞ equal the numbers of degrees

of freedom (except colors) of, respectively, gauge bosons,
fermions, and scalars (cf. Table I). This is obviously a
manifestation of supersymmetry. Another effect of the
supersymmetry is vanishing of the tensor (47) in the vac-
uum limit when fðpÞ ¼ 0. Needless to say, the polarization
tensor (47) is symmetric and transverse in Lorentz indices
and thus it is gauge independent.
In the case of QCD plasma, one gets the polarization

tensor of the form (47) after the vacuum contribution is
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subtracted. For the QGP with the number Nf of massless

flavors, the effective distribution function equals

fQGPðpÞ � 2ngðpÞ þ
Nf

Nc

ðnqðpÞ þ n �qðpÞÞ; (49)

where nqðpÞ, n �qðpÞ are the distribution functions of quarks
and antiquarks which contribute differently to the polar-
ization tensor than fermions of the N ¼ 4 super Yang-
Mills. This happens because (anti)quarks of QCD belong
to the fundamental representation of SUðNcÞ while the
fermions belong to the adjoint representation.

B. Fermion self-energy

The fermion self-energy � can be defined by means of
the Dyson-Schwinger equation

iSðkÞ ¼ iSðkÞ þ iSðkÞð�i�ðkÞÞiSðkÞ; (50)

where S and S are the interacting and free propagator,
respectively. The lowest order contributions to fermion
self-energy are given by diagrams shown in Fig. 2. The
curly, plain, and dashed lines denote, respectively, gluon,
fermion, and scalar fields.

The contribution to the fermion self-energy correspond-
ing to the graph depicted in Fig. 2(a) is given by

ðaÞ�
ij
abðkÞ ¼

i

2
g2Nc�ab�

ij
Z d4p

ð2�Þ4
� ½��S

þðpþ kÞ��DsymðpÞ
þ ��S

symðpÞ��D�ðp� kÞ�: (51)

With the functions D�, Dsym and S�, Ssym given by
Eqs. (B1), (B4), (B13), and (B16), one obtains

ðaÞ�
ij
abðkÞ¼g2Nc�ab�

ij
Z d3p

ð2�Þ3
ngðpÞþnfðpÞ

Ep

6p
k �pþ i0þ

;

(52)

where the traces over gamma matrices are computed and
the hard loop approximation is applied. Equation (52) has
the well-known form of electron self-energy in QED.

Since there are scalar and pseudoscalar fields Xp and Yp,

there are two contributions to the fermion self-energy cor-
responding to the graphs depicted in Figs. 2(b) and 2(c).
The first one corresponding to the Xp field equals

ðbÞ�
ij
abðkÞ ¼ i

g2

2
Nc�

ab�p
ik�

p
kj

Z d4p

ð2�Þ4
� ½Sþðpþ kÞ�symðpÞ þ SsymðpÞ��ðp� kÞ�:

(53)

Because of the relations (3), one finds that�p
ik�

p
kj ¼ �3�ij.

Using the result and substituting the functions S�, Ssym and
��,�sym given by Eqs. (B13), (B16), (B18), and (B21) into
Eq. (53), one obtains the following result:

ðbÞ�
ij
abðkÞ ¼

3

2
g2Nc�ab�

ij
Z d3p

ð2�Þ3
nfðpÞ þ nsðpÞ

Ep

� 6p
k � pþ i0þ

; (54)

which holds in the hard loop approximation.
The contribution due to the pseudoscalar field Yp is

ðcÞ�
ij
abðkÞ ¼ i

g2

2
Nc�

ab�p
ik�

p
kj

Z d4p

ð2�Þ4
� ½�5S

þðpþ kÞ�5�
symðpÞ

þ �5S
symðpÞ�5�

�ðp� kÞ�: (55)

Because �p
ik�

p
kj ¼ �3�ij, ���5 ¼ ��5��, and �2

5 ¼ 1,

we again obtain the result (54).
Summing up all the contributions, we get the final ex-

pression for the fermion self-energy

�ij
abðkÞ ¼

g2

2
Nc�ab�

ij
Z d3p

ð2�Þ3
fðpÞ
Ep

6p
k � pþ i0þ

; (56)

which, as the polarization tensor (47), depends on the
effective distribution function (48).

C. Scalar self-energy

The scalar self-energy PðkÞ can be defined by means of
the Dyson-Schwinger equation

i~�ðkÞ ¼ i�ðkÞ þ i�ðkÞiPðkÞi~�ðkÞ; (57)

where ~� and � are the scalar interacting and free propa-
gator, respectively. The lowest order contributions to the
scalar self-energy are given by the diagrams shown in
Fig. 3. The curly, plain, and dashed lines denote, respec-
tively, gluon, fermion, and scalar fields.
Since there are scalar (Xp) and pseudoscalar (Yp) fields,

we have to consider separately the self-energies of Xp and

Yp. However, one observes that only the coupling of scalars

to fermions differs for Xp and Yp. The self-interaction and

the coupling to the gauge field are the same. Therefore,
only the fermion-loop contribution to the scalar self-
energy, which is shown in the diagram Fig. 3(a), needs to
be computed separately for the Xp and Yp fields.

In the case of the scalar Xp field, the diagram Fig. 3(a)

provides

FIG. 2. Contributions to the fermion self-energy. FIG. 3. Contributions to the scalar self-energy.
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ðaÞP
pq
abðkÞ ¼ i

g2

4
Nc�

ab�p
ij�

q
ji

Z d4p

ð2�Þ4
� Tr½Sþðpþ kÞSsymðpÞ þ SsymðpÞS�ðp� kÞ�;

(58)

where the symmetry factor 1=2 and the extra minus sign
due to the fermionic character of the loop are included.
With the explicit form of the functions S�; Ssym given by
Eqs. (B13) and (B16) and the identity �p

ij�
q
ji ¼ �4�pq

which follows from the relations (3), one finds

ðaÞP
pq
abðkÞ ¼ �4g2Nc�ab�

pq
Z d3p

ð2�Þ3
2nfðpÞ � 1

Ep

: (59)

The result holds in the hard loop approximation. For
the pseudoscalar Yp we obtain the same expression

because �p
ij�

q
ji ¼ �4�pq, �5�� ¼ ����5, and �2

5 ¼ 1.

Therefore, we replace the indices p, q by A, B and wewrite
down the result (59) as

ðaÞP
AB
ab ðkÞ ¼ �4g2Nc�ab�

AB
Z d3p

ð2�Þ3
2nfðpÞ � 1

Ep

: (60)

The contribution represented by the graph depicted in
Fig. 3(b) equals

ðbÞP
AB
ab ðkÞ ¼ �i

1

2
g2Nc�ab�

AB
Z d4p

ð2�Þ4
� ½ðpþ 2kÞ2�þðpþ kÞDsymðpÞ
þ ðpþ kÞ2�symðpÞD�ðp� kÞ�; (61)

which after the substitution of the functions D�, Dsym and
��, �sym in the form (B1), (B4), (B18), and (B21) leads to

ðbÞP
AB
ab ðkÞ ¼

1

2
g2Nc�ab�

AB
Z d3p

ð2�Þ3
4ngðpÞ � 2nsðpÞ þ 1

Ep

(62)

within the hard loop approximation.
The contributions coming from the gluon tadpole shown

in Fig. 3(c) and the scalar tadpole from Fig. 3(d) equal,
respectively,

ðcÞP
AB
ab ðkÞ ¼ �2g2Nc�ab�

AB
Z d3p

ð2�Þ3
2ngðpÞ þ 1

Ep

; (63)

ðdÞP
AB
ab ðkÞ ¼ �5g2Nc�ab�

AB
Z d3p

ð2�Þ3
2nsðpÞ þ 1

2Ep

: (64)

In both cases the symmetry factor 1=2 is included.
Summing up all contributions we obtain the final for-

mula of scalar self-energy

PAB
ab ðkÞ ¼ �2g2Nc�ab�

AB
Z d3p

ð2�Þ3
fðpÞ
Ep

; (65)

which depends, as � and �, only on the effective distri-
bution function (48).

VI. EFFECTIVE ACTION

The hard loop approach can be formulated in an elegant
and compact way by introducing the effective action which
was first derived for equilibrium plasmas in [31–33] within
the thermal field theory. It was also rederived in terms of
quasiclassical kinetic theory [34,35]. Later on a generaliza-
tion of the action to anisotropic systemswas given in [36,37].
A structure of the effective action is constrained by the

form of respective self-energies. Since the self-energy of a
given field is the second functional derivative of the action
with respect to the field, one writes

L
ðAa

�Þ
2 ðxÞ ¼ 1

2

Z
d4yAa

�ðxÞ���
ab ðx� yÞAb

�ðyÞ; (66)

L
ð�a

i Þ
2 ðxÞ ¼

Z
d4y ��a

i ðxÞ�ij
abðx� yÞ�b

j ðyÞ; (67)

L
ð�a

A
Þ

2 ðxÞ ¼
Z

d4y�a
AðxÞPAB

ab ðx� yÞ�b
BðyÞ; (68)

where the self-energies are given by the formulas (47), (56),
and (65), respectively. The subscript ‘‘2’’ indicates that the
above effective actions generate only two-point functions.
To generate n-point functions these actions need to be
modified to a gauge invariant form. In the non-Abelian
gauge theory studied here, the actions (66)–(68) require
a simple change—the ordinary derivatives should be re-
placed by the covariant ones in the final expressions.
Repeating the calculations described in detail in [37], one
finds the hard loop effective action of the N ¼ 4 super
Yang-Mills as

LHL ¼ �1
4F

��
a Fa

�� þ i

2
��a
i ð 6D�iÞa þ 1

2ðD��AÞaðD��AÞa
þL

ðAa
�Þ

HL þL
ð�a

i Þ
HL þL

ð�a
A
Þ

HL ; (69)

where

L A
HL ¼ g2Nc

Z d3p

ð2�Þ3
fðpÞ
Ep

Fa
��ðxÞ

�
p�p�

ðp �DÞ2
�
ab
Fb�
� ðxÞ;

(70)

L�
HL ¼ g2Nc

Z d3p

ð2�Þ3
fðpÞ
Ep

��a
i ðxÞ

�
p � �
p �D

�
ab
�b

i ðxÞ; (71)

L�
HL ¼ �2g2Nc

Z d3p

ð2�Þ3
fðpÞ
Ep

�a
AðxÞ�a

AðxÞ; (72)

where fðpÞ is, as previously, the effective distribution func-
tion of plasma constituents.
The actions (70)–(72) are obtained from the self-energies

but the reasoning can be turned around. As argued in
[32,33], the actions of gauge bosons (70), fermions (71),
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and scalars (72) are of unique gauge invariant form.
Therefore, the structures of hard loop self-energies of gauge
bosons, fermions, and scalars are unique. Consequently, the
self-energies computed in the previous section and those
corresponding to the fundamental N ¼ 2 hypermultiplet
can be inferred from the known QED and QCD results with
some help of supersymmetry arguments. However, explicit
computations, as those presented in Sec. V, seem to be still
needed to determine, at least, numerical coefficients.

VII. COLLECTIVE MODES

When the self-energies computed in Sec. V are substi-
tuted into the dispersion equations presented in Sec. IV,
collective modes can be found as solutions of the equa-
tions. Below we briefly discuss the gluon, fermion, and
scalar excitations.

(i) The structure of polarization tensor (47) is such as of
a gluon polarization tensor in QCD plasma. It has
also an analogical form as in both usual and super-
symmetric QED plasma. Therefore, the spectrum
of collective excitations of gauge bosons is in all
cases the same. In equilibrium plasma we have the
longitudinal (plasmon) mode and the transverse one
which are discussed in, e.g., the textbook [29]. When
the plasma is out of equilibrium there is a whole
variety of possible collective excitations. In particu-
lar, there are unstable modes (see, e.g., the review
[38]), which exponentially grow in time and strongly
influence the system’s dynamics.

(ii) The form of Majorana fermion self-energy (56)
happens to be the same as the quark self-energy in
QCD plasma. It also coincides with the electron
self-energy in both nonsupersymmetric and super-
symmetric QED plasma. Therefore, we have an
identical spectrum of excitations of fermions in all
these systems. In equilibrium plasma there are two
modes of opposite helicity over chirality ratio (see
in, e.g., the textbook [29]). One mode corresponds
to the positive energy fermion; another one, some-
times called a plasmino, is a specific medium effect.
In nonequilibrium plasma the spectrum of fermion
collective excitations changes but no unstable
modes have been found even for an extremely
anisotropic momentum distribution [39,40].

(iii) The scalar self-energy (65) is independent of
momentum; it is negative and real. Therefore,
PðkÞ can be written as PðkÞ ¼ �m2

eff where meff

is the effective scalar mass. Then, the solutions of

dispersion equation (17) are Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

eff þ p2
q

.

We conclude this section by saying that the gauge boson
and fermion excitations of SYMP are the same as in
ultrarelativistic QED and QCD plasma. The scalar excita-
tions are of the form of a free massive relativistic particle.

VIII. COLLISIONAL CHARACTERISTICS

We consider here characteristics of the N ¼ 4 super
Yang-Mills plasma which are driven by collisions of
plasma constituents. We start with a review of elementary
processes and then we discuss transport coefficients.

A. Elementary processes

The elementary processes, which occur at the lowest
nontrivial order of the coupling constant g, are binary
interactions, the cross sections of which are proportional
to g4. Table II gives the respective matrix elements squared
summed over all internal degrees of freedom of interacting
particles. G, F, S denote a gluon, fermion, and scalar,
respectively. The matrix elements, which were first com-
puted in [10], are expressed through the Mandelstam
invariants s, t, and u defined in the standard way. For a
process symbolically denoted as 1þ 2 ! 3þ 4, we have

s � ðp1 þ p2Þ2; t � ðp1 � p3Þ2;
u � ðp1 � p4Þ2; (73)

where p1, p2, p3, p3 are the four-momenta of particles 1, 2,
3, 4, respectively. For a given process, the differential cross
section, which is summed over the internal degrees of free-
dom of final state particles and averaged over the internal
degrees of freedom of initial state particles, is expressed
through the matrix element squared from Table II as

d	

dt
¼ 1

16�s2
1

Ndof
1

1

Ndof
2

X jMj2; (74)

where Ndof
1 and Ndof

2 are the numbers of internal degrees
of freedom of initial state particles given in Table I. The
collisional processes listed in Table II determine transport
properties of the plasma.

TABLE II. Elementary processes in N ¼ 4 super Yang-Mills
plasma.

n0 Process 1
g4

1
N2

c ðN2
c�1Þ

P jMj2

1 GG $ GG 8
�
s2þu2

t2
þ u2þt2

s2
þ t2þs2

u2
þ 3

�
2 GF $ GF 32

�
s2þu2

t2
� u

s � s
u

�
3 GG $ FF 32

�
t2þu2

s2
� u

t � t
u

�
4 GS $ GS 24

�
s2þu2

t2
þ 1

�
5 GG $ SS 24

�
t2þu2

s2
þ 1

�
6 GF $ SF �96

�
u
s þ s

u þ 1
�

7 GS $ FF �96
�
u
t þ t

u þ 1
�

8 FS $ FS �96
h
2us
t2

þ 3
�
u
s þ s

u

�
þ 1

i
9 SS $ FF �96

h
2ut
s2

þ 3ðut þ t
uÞ þ 1

i
10 SS $ SS 72

�
s2þu2

t2
þ u2þt2

s2
þ t2þs2

u2
þ 3

�
11 FF $ FF 128

�
s2þu2

t2
þ u2þt2

s2
þ t2þs2

u2
þ 3

�
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B. Transport coefficients

Transport coefficients of weakly coupled QGP, which
include baryon and strangeness diffusion, electric charge
and heat conductivity, shear and bulk viscosity and color
conductivity, have been studied in detail (see [41–44] and
references therein). The shear viscosity of SYMP has been
computed in [10] and the bulk viscosity is identically zero
because of exact conformality of the system. Other transport
coefficients of SYMP have not been studied but one expects
the coefficients to be qualitatively similar to those of QGP.

Since the temperature is the only dimensional parameter,
which characterizes the equilibrium plasma of massless
constituents, one finds that, for example, the shear viscos-
ity �must be proportional to T3 and the color conductivity
	c to T. It appears that the dominant contributions to both
transport coefficients of QGP come from the binary colli-
sions driven by a one-gluon exchange which correspond to
the matrix elements squared diverging as t�2 for t ! 0.
The analyses presented in [41,44], respectively, show that
at the leading order �	 T3=g4 lng�1 and 	c 	 T= lng�1.
The factor 1= lng�1 appears due to the infrared singularity
of the Coulomb-like interaction which is regulated by the
gluon self-energy. Actually the physics behind the two
formulas is rather different. The viscosity is governed by
collisions with the momentum transfer of the order of gT
while for the color conductivity the softer collisions with
the momentum transfer of the order g2T play a crucial role.

One expects the same parametric form of �, 	 and other
transport coefficients in the case of SYMP and QGP be-
cause, similarly to QGP, there are the Coulomb-like binary
interactions for every constituent of SYMP (see Table II).
The analysis [10] indeed proves that the shear viscosity
coefficients of QGP and SYMP differ only by numerical
factors which mostly reflect different numbers of degrees
of freedom in the two plasmas. The viscosity is strongly
dominated by the Coulomb-like interactions, and conse-
quently it does not much matter that the sets of elementary
processes in the two plasma systems are different.

In the paper [16] we considered two transport character-
istics of the N ¼ 1 QED plasma which are not so con-
strained by dimensional arguments and seemed to strongly
depend on the elementary process under consideration.
Specifically, we computed the collisional energy loss and
momentum broadening of a particle traversing the equilib-
rium plasma. The latter quantity determines a magnitude of
radiative energy loss of a highly energetic particle in a
plasma [45]. The dimensional argument does not work
here because the two quantities depend not only on the
plasma temperature but on the energy of the test particle
as well. We computed the energy loss and momentum
broadening due to the processes which, like the Compton
scattering on selectrons, are independent of momentum
transfer. Such processes are qualitatively different from
the Coulomb-like interactions dominated by small momen-
tum transfers. We managed to obtain the exact formulas

of the energy loss and momentum broadening due to
the momentum-independent scattering. In the limit of
the high energy of test particle, which is important in the
context of jet suppression phenomenology in nucleus-
nucleus collisions, the energy loss and momentum broad-
ening appeared to be very similar (at the leading order) to
those driven by the Coulomb-like interactions.
The result can be understood as follows. One estimates

the energy loss dE
dx as h�Ei=�, where h�Ei is the typical

change of a particle’s energy in a single collision and � is the
particle’s mean free path given as ��1 ¼ �	 with �	 T3

being the density of scatterers and 	 denoting the cross
section. For the differential cross section, which is indepen-
dent of momentum transfer, the total cross section is
		 e4=s. When a highly energetic particle with energy E
scatters on a massless plasma particle, s	 ET and conse-
quently 		 e4=ðETÞ. The inverse mean free path is thus
estimated as ��1 	 e4T2=E. When the scattering process is
independent of momentum transfer, h�Ei is of order E and
we finally find � dE

dx 	 e4T2. In the case of Coulomb inter-

action we have h�Ei 	 �e2T, ��1 ¼ e2T which provide
the same estimate of the energy loss. The energy transfer in a
single collision is thus much smaller in the Coulomb inter-
action than in the momentum-independent scattering but the
cross section is bigger in the same proportion. Consequently,
the two interactions corresponding to very different differ-
ential cross sections lead to very similar energy losses.
We expect an analogous situation in SYMP. There

are various elementary process but the energy loss and
momentum broadening of highly energetic particles do
not much differ from those in QGP.

IX. CONCLUSIONS

QCD is obviously rather different from N ¼ 4 super
Yang-Mills theory. Nevertheless QGP and SYMP are
surprisingly similar in the weak coupling regime (at the
leading order). The form of gluon collective excitations is
identical and the same is true for the fermion (quark) modes.
The scalar modes in SYMP are as of a massive relativistic
particle. The sets of elementary processes are different in
QGP and SYMP but the transport coefficients, which are
dominated by the Coulomb-like interactions, are quite simi-
lar. The energy loss and momentum broadening of a highly
energetic test particle are also rather similar in the two
plasma systems. The differences mostly come from different
numbers of degrees of freedom in both plasmas which need
to be taken into account for a quantitative comparison.
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APPENDIX A: VERTICES OF
N ¼ 4 SUPER YANG-MILLS

We collect here the vertex functions which are inferred
from the Lagrangian (2). Since all fields of the N ¼ 4
super Yang-Mills are, except the ghosts, real, there are no
arrows orienting the lines. However, one should remember
that the momentum of every gluon in the three-gluon cou-
pling is assumed to enter the vertex. In the case of the gluon
coupling to scalars, the momentum of one scalar enters the
vertex and the momentum of the other one leaves it.

1 �gfabc½g��ðk� qÞ�
þ g��ðq� pÞ� þ g��ðp� kÞ��

2 �ig2½fabefcdeðg��g�� � g��g��Þ
þfacefbdeðg��g�� � g��g��Þ
þfadefcbeðg��g�� � g��g��Þ�

3 gfabc�ij��

4 gfabcq�

5 gfabc�ABðpþ qÞ�

6 2ig2g��fabefcde�AB

7 �ig2½fabefcdeð�AC�BD � �AD�BCÞ
þfacefbdeð�AB�CD � �AD�BCÞ
þfadefcbeð�AD�CB � �AB�DCÞ�

8 �igfabc�p
ij

9 gfabc�p
ij�5

APPENDIX B: GREEN’S FUNCTIONS
OF N ¼ 4 SUPER YANG-MILLS

We present here the retarded, advanced, and unordered
free Green’s functions of the Keldysh-Schwinger formal-
ism which are usually labeled with the indicesþ,�,>,<,
respectively. The system is assumed to be translationally
invariant and locally colorless. The functions of gluons are
given in the Feynman gauge.

1. Gluons

The functions of interest of the free gluon field are of
the form

ðD�ðpÞÞ��
ab ¼ g���abD

�ðpÞ ¼ � g���ab

p2 � isgnðp0Þ0þ
;

(B1)

ðD>ðpÞÞ��
ab ¼ g���abD

>ðpÞ
¼ g���ab

i�

Ep

ð�ðEp � p0Þ½ngðpÞ þ 1�

þ �ðEp þ p0Þngð�pÞÞ; (B2)

ðD<ðpÞÞ��
ab ¼ g���abD

<ðpÞ
¼ g���ab

i�

Ep

ð�ðEp � p0ÞngðpÞ

þ �ðEp þ p0Þ½ngð�pÞ þ 1�Þ; (B3)

ðDsymðpÞÞ��
ab � ðD>ðpÞÞ��

ab þ ðD<ðpÞÞ��
ab

¼ g���abD
symðpÞ

¼ g���ab

i�

Ep

ð�ðEp � p0Þ½2ngðpÞ þ 1�

þ �ðEp þ p0Þ½2ngð�pÞ þ 1�Þ; (B4)

where Ep � jpj and ngðpÞ is the distribution function of

gluons which are assumed to be unpolarized. The function
is normalized in such a way that the gluon density is
given as

�g ¼ 2ðN2
c � 1Þ

Z d3p

ð2�Þ3 ngðpÞ; (B5)

where the factor of 2 takes into account two gluon spin
states.
One checks that the functions (B1)–(B3) obey the

required identity

D>ðpÞ �D<ðpÞ ¼ DþðpÞ �D�ðpÞ: (B6)

Indeed, the left-hand side of Eq. (B6) equals

ðD>ðpÞÞ��
ab � ðD<ðpÞÞ��

ab

¼ i�g���ab

Ep

ð�ðEp � p0Þ � �ðEp þ p0ÞÞ

¼ 2i�g���ab�ðp2Þð�ðp0Þ ��ð�p0ÞÞ: (B7)

Using the well-known relation
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1

x� i0þ
¼ P

1

x

 i��ðxÞ; (B8)

one immediately shows that the right-hand side of Eq. (B6)
equals the expression (B7).

2. Ghosts

The functions of the free ghost field are

G�
abðpÞ ¼ �abG

�ðpÞ ¼ � �ab

p2 � isgnðp0Þ0þ
; (B9)

G>
abðpÞ ¼ �abG

>ðpÞ
¼ �ab

i�

Ep

ð�ðEp � p0Þ½ngðpÞ þ 1�

þ �ðEp þ p0Þngð�pÞÞ; (B10)

G<
abðpÞ ¼ �abG

<ðpÞ
¼ �ab

i�

Ep

ð�ðEp � p0ÞngðpÞ

þ �ðEp þ p0Þ½ngð�pÞ þ 1�Þ; (B11)

Gsym
ab ðpÞ � G>

abðpÞ þG<
abðpÞ ¼ �abG

symðpÞ
¼ �ab

i�

Ep

ð�ðEp � p0Þ½2ngðpÞ þ 1�

þ �ðEp þ p0Þ½2ngð�pÞ þ 1�Þ; (B12)

where ngðpÞ is the distribution function of gluons. The

functions (B9)–(B11) obey the identity analogous to the
relation (B6).

3. Fermions

The Green’s functions of the free massless fermion
field equal

S�ij ðpÞ ¼ �ijS
�ðpÞ ¼ �ij 6p

p2 � isgnðp0Þ0þ
; (B13)

S>ij ðpÞ ¼ �ijS
>ðpÞ

¼ �ij

i�

Ep

6pð�ðEp � p0Þ½nfðpÞ � 1�

þ �ðEp þ p0Þnfð�pÞÞ; (B14)

S<ij ðpÞ ¼ �ijS
<ðpÞ

¼ �ij

i�

Ep

6pð�ðEp � p0ÞnfðpÞ

þ �ðEp þ p0Þ½nfð�pÞ � 1�Þ; (B15)

S
sym
ij ðpÞ � S>ij ðpÞ þ S<ij ðpÞ ¼ �ijS

symðpÞ
¼ �ij

i�

Ep

6pð�ðEp � p0Þ½2nfðpÞ � 1�

þ �ðEp þ p0Þ½2nfð�pÞ � 1�Þ; (B16)

where nfðpÞ is the distribution function of fermions. The

distribution function is normalized in such a way that the
fermion density equals

�f ¼ 2ðN2
c � 1Þ

Z d3p

ð2�Þ3 nfðpÞ; (B17)

where the factor of 2 takes into account two spin states of
each fermion. The functions (B13)–(B15) are checked to
obey the identity S>ðpÞ � S<ðpÞ ¼ SþðpÞ � S�ðpÞ.

4. Scalars

The Green’s functions of the free massless scalar
field are

��
abðpÞ ¼ �ab�

�ðpÞ ¼ �ab

p2 � isgnðp0Þ0þ
; (B18)

�>
abðpÞ ¼ �ab�

>ðpÞ
¼ ��ab

i�

Ep

ð�ðEp � p0Þ½nsðpÞ þ 1�

þ �ðEp þ p0Þnsð�pÞÞ; (B19)

�<
abðpÞ ¼ �ab�

<ðpÞ
¼ ��ab

i�

Ep

ð�ðEp � p0ÞnsðpÞ

þ �ðEp þ p0Þ½nsð�pÞ þ 1�Þ; (B20)

�sym
ab ðpÞ � �>

abðpÞ þ�<
abðpÞ ¼ �ab�

symðpÞ
¼ ��ab

i�

Ep

ð�ðEp � p0Þ½2nsðpÞ þ 1�

þ �ðEp þ p0Þ½2nsð�pÞ þ 1�Þ; (B21)

where nsðpÞ is the distribution function of scalars. The
function is normalized in such a way that the scalar density
equals

�s ¼ ðN2
c � 1Þ

Z d3p

ð2�Þ3 nsðpÞ: (B22)

The functions (B18)–(B20) obey the identity such as the
relation (B6).
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