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It is possible to formulate fluid dynamics in terms of group-valued variables. This is particularly suited

to the cases where the fluid has non-Abelian charges and is coupled to non-Abelian gauge fields. We

explore this formulation further in this paper. An action for a fluid of relativistic particles (with and

without spin) is given in terms of the Lorentz and Poincaré (or de Sitter) groups. Considering the case of

particles with flavor symmetries, a general fluid action which also incorporates all flavor anomalies is

given. The chiral magnetic and chiral vorticity effects as well as the consequences of the mixed gauge-

gravity anomaly are discussed.
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I. INTRODUCTION

The description of fluid dynamics, especially for sys-
tems made of particles carrying non-Abelian charges, has
become an important research topic with the discovery of
the state of unconfined quarks and gluons, the quark-gluon
plasma, in heavy ion collisions. Field theoretic analyses,
augmented with Boltzmann-type kinetic equations, can be
used to ‘‘derive’’ the equations of fluid dynamics, but are
generally limited to dilute systems near equilibrium.
However, the basic equations can be formulated using
general principles and therefore have a regime of validity
significantly beyond the context of the derivation based on
kinetic equations. The question of a derivation based on
symmetry principles generalizing the usual equations of
magnetohydrodynamics to include non-Abelian charges
and fields is interesting in its own right, but has enhanced
relevance after the discovery of the quark-gluon plasma.
Such an approach was developed in [1,2], where the fluid
degrees of freedom were shown to be naturally described
by the elements of a Lie group. The method applies to
ordinary hydrodynamics as well, but becomes particularly
useful for incorporating non-Abelian symmetries and cou-
pling to non-Abelian fields.

A new impetus to such analyses has come from the
recent work on the chiral magnetic effect [3]. The specific
case of interest has been the charge separation and a
corresponding electromagnetic current induced by the ax-
ial anomaly, which can be demonstrated by the standard
diagrammatic techniques. An interesting question to ask is
then: Is there an effective description of the anomalies and
how they affect the fluid dynamics? A related question is
one of generalization to all flavor anomalies, even though
they may not be of immediate relevance to the quark-gluon

plasma. Symmetries are obviously front and center in
analyzing anomalies and so our approach to fluid dynamics
based on group-valued variables would seem tailor-made
for these questions. This is exactly the subject of the
present paper.
The chiral magnetic effect, we may note, has led to a

significant body of literature on related topics. The possi-
bility of describing the chiral magnetic effect using
hydrodynamics and thermodynamics is explored in [4].
Transport in arbitrary dimensions induced by anomalies
has also been discussed in [5]. Since there is considerable
evidence that the quark-gluon plasma can be described as a
strongly coupled fluid, the holographic correspondence
can provide another method towards its analysis. The
description of the chiral magnetic effect using holographic
approaches such as the AdS/CFT correspondence or the
Sakai-Sugimoto model is given in [6]. There is also an
attempt to understand the chiral magnetic effect [7] using
the fluid/gravity correspondence of [8]. For completeness,
we also note that there have been many lattice simulations
of the chiral magnetic effect [9].
The focus in most of the literature has been on the

computation of transport coefficients or the modifications
of the energy-momentum tensor and the currents, and then
the subsequent incorporation of these in the equations of
motion of fluid dynamics. Our approach will be to write an
effective action for anomalies directly in the fluid lan-
guage, in other words, we obtain the fluid version of the
Wess-Zumino (WZ) term for anomalies. The action-based
approach gives a simple starting point for all flavor anoma-
lies. We also discuss some aspects of the mixed gauge-
gravity anomaly in the standard model. (The mixed
anomalies, and the possibility of a chiral vortex effect,
are also considered from the point of view of Kubo for-
mulas and transport coefficients in [10].) On the negative
side, the action-based approach will not include dissipative
effects; they have to be added on after the equations
of motion have been obtained by the variational principle.
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We note that an effective action approach has been given in
two dimensions [11], although the formulation is still very
different from ours.

In Sec. II, we give a brief resume of the formulation of
ordinary, nonrelativistic or relativistic, fluid dynamics in
terms of group variables. We then describe how non-
Abelian internal symmetries are included to obtain a
non-Abelian magnetohydrodynamics. In Sec. III, we
follow a similar approach to construct the action for a fluid
of spinning particles in terms of the Lorentz group or
Poincaré (or de Sitter) groups, the latter being adaptable
to the spinless case as well. The fluid description for the
quarks in the standard model is given in Sec. IV, taking a
fluid of the up, down and strange quarks as an example.
The full fluid action for these degrees of freedom including
anomalies is given in this section. The standard chiral
magnetic effect, the chiral vorticity effect and mixed
gauge-gravity anomalies are discussed in this framework
in Sec. V.

II. LAGRANGIANS AND PERFECT FLUIDS:
A SHORT RESUME

We start with a recapitulation of the formulation of
hydrodynamics in terms of group theory. We will be brief,
since this is reviewed in detail in [1,2]. Ordinary fluid
dynamics can be viewed as a Poisson bracket system with

½F;G� ¼
Z �

�F

��
@i

�
�G

�vi

�
� �G

��
@i

�
�F

�vi

�
�!ij

�F

�vi

�G

�vj

�

(1)

for F, G which are functions of the density � and fluid
velocity vi. The Hamiltonian,

H ¼
Z

d3x

�
1

2
�v2 þ Vð�Þ

#
(2)

is then easily verified, via the brackets (1) to lead to the
continuity and Euler equations, the fluid pressure being
P ¼ � @V

@� � V.

The difficulty with this framework is also well known.
The helicity C, defined by,

C ¼ 1

8�

Z
�ijkvi@jvk (3)

is seen to Poisson commute with all observables, i.e.
½F;C� ¼ 0 for all F. Viewing this from a quantum point
of view, we see that the values of C are superselected. It is
therefore necessary to specify a value for C and consider
the restricted Hamiltonian dynamics for that sector itself.
Alternatively, if we think of the Poisson brackets to be
written as ½�a; �b� ¼ Kab, for � being � and vi, then the
symplectic structure is obtained as the inverse of Kab.
(Usually in starting from a Lagrangian, we obtain the
symplectic structure and invert it to obtain the Poisson
brackets.) Since C commutes with all observables, we

see that (�C=�vi) is a zero mode for K and hence we
cannot relate Eqs. (1) and (2) to a symplectic structure or
Lagrangian description without first restricting the value of
C. Thus, to obtain a Lagrangian description we must first
fix C and then seek a parametrization for vi which does not
further change the value of C. This is given by the Clebsch
parametrization,

vi ¼ @i�þ �@i� (4)

for an arbitrary functions �, �, �. In this case C ¼ 0 if
�, �, � are single-valued nonsingular functions vanishing
at infinity. (They are known as the Monge potentials.) A
suitable action for fluid dynamics is then [2,12]

S ¼
Z

� _�þ �� _��
�
1

2
�v2 � V

�
: (5)

We note that ð�; �Þ, ð��;�Þ form two sets of canonically
conjugate pairs.
Now we introduce an element g of the group SUð1; 1Þ

which may be parametrized in general as,

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �uu

p 1 u

�u 1

" #
ei�=2 0

0 e�i�=2

" #
(6)

where u is a complex variable. Direct calculation shows
that

�iTrð	3g
�1dgÞ ¼ d�þ �d�; � ¼ �uu

1� �uu
;

� ¼ ð�i=2Þ ln
�
u

�u

�
: (7)

The �-direction in g corresponds to the compact direction,
the Uð1Þ subgroup generated by 1

2	3, while � and �

parametrize SUð1; 1Þ=Uð1Þ. The action (5) can now be
written as,

S ¼ �i
Z

j
 Trð	3g
�1@
gÞ �

Z �
jiji
2�

þ V

�
(8)

where we denote j0 ¼ �. The elimination of ji in (8) leads
to the version (5).
The relativistic generalization of fluid dynamics and the

action (8) is also very straightforward. It is given by

S ¼ �i
Z

j
 Trð	3g
�1@
gÞ � FðnÞ (9)

where FðnÞ is a function of the variable n, which is defined
by j
j
 ¼ n2. Equivalently

j
 ¼ nu
 (10)

where u
 is a four-vector obeying u
u
 ¼ 1. It may be

considered as the four-velocity of the fluid and n identified
as the invariant density. The energy-momentum tensor for
(9) has the perfect fluid form

T
� ¼ nF0u
u� � g
�ðnF0 � FÞ (11)
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identifying the pressure as P ¼ nF0 � F. The function F is
thus the enthalpy.

We have obtained a group theoretic formulation of
ordinary fluid dynamics. The existence of a compact di-
rection, namely, the Uð1Þ direction of the SUð1; 1Þ, may
seem a little puzzling at first, since at the level of the
classical Clebsch parametrization, this was not a require-
ment. The Poisson bracket obtained from (8) or (9) gives

½�ðfÞ; gðxÞ� ¼ �igðxÞ	3

2
fðxÞ: (12)

This means that in the quantum theory

UygU ¼ gei�	3 ¼ �g (13)

for U ¼ exp½�2�i
R
��. Since all observables involve

even powers of g, they are invariant under the action
of U. This means that we can set U ¼ 1, giving

R
� ¼ N

for some integer N. The existence of the compact direction
thus requires the quantization of

R
� in the quantum

theory; this is equivalent to saying that the fluid is made
of particles with � being the particle density [13]. Thus,
rather than a defect of the group-theoretic parametrization
(7) in comparison to the classical Clebsch parametrization
(4), we view this as a good feature of the description in (8)
and (9). [If vorticity were also quantized we would use
SUð2Þ in place of SUð1; 1Þ.]

It is now easy enough to obtain the generalization to
carrying non-Abelian gauge charges, corresponding to a
compact Lie group G.

First consider SUð2Þ. At the particle level, the dynamics
of a particle carrying SUð2Þ charges is given by the Wong
equations which have the action [14,15]

S ¼
Z �

1

2
m _x2 þ Aa

i Q
a _xi � iwTrð	3g

�1 _gÞ
�

(14)

where Qa ¼ Trðg	3g
�1taÞ, ta ¼ 1

2	
a.

The last term in (14) is the coadjoint orbit action which
describes the dynamics of the gauge charges and which,
upon quantization, gives the Hilbert space corresponding
to one unitary irreducible representation (UIR) of SUð2Þ
corresponding to the highest weight w=2, hence of
dimension wþ 1. Qa then become operators realizing the
charge algebra

½Qa;Qb� ¼ ifabcQc: (15)

Under g ! g expði	3�=2Þ, the change in the action is given
by�S ¼ w��. Thus single-valuedness of eiS when� traces
out a closed path in SUð2Þ leads to the quantization ofw. The
crucial co-adjoint orbit term, when generalized to several
particles, becomes

S ¼ �i
Z

dt
X



w
 Trð	3g
�1

 _g
Þ (16)

where we have a separate g for each 
, and likewise for w,
with 
 indexing the particles. The continuum limit of (16)

may be taken, as one does for the Lagrange approach to
fluids, by 
 ! x,

P

 ! R

d3x=v, w
=v ! �ðxÞ. This
leads to

S ¼ �i
Z

d4x�Trð	3g
�1 _gÞ (17)

where g ¼ gðx; tÞ. Taking this as the leading term, namely,
as the term responsible for the symplectic structure, we can
write an action

S ¼ �i
Z

d4xj
 Trð	3g
�1D
gÞ �

Z
FðnÞ þ SYM (18)

where D
g ¼ @
gþ A
g, A
 ¼ �itaAa

, t

a ¼ 	a=2.

The velocity for the transport of the non-Abelian charge
can be introduced via j
 ¼ nu
, u2 ¼ 1. The current
which couples to the SUð2Þ gauge field Aa


 is given by

Ja
 ¼ Trð	3g
�1tagÞj
 ¼ Qaj
 (19)

which is in the Eckart form [16]. Starting with the action,
one can easily verify the following [1,2]:
(1) The equations of motion for (18) do give the appro-

priate magnetohydrodynamics.
(2) The canonical quantization of (18) leads to the

expected current algebra. In particular, one finds
the equal-time rules

½�aðx; tÞ; �bðy; tÞ� ¼ ifabc�cðx; tÞ�3ðx� yÞ: (20)

The charge density, considered as a matrix in
the fundamental representation, transforms as
� ! h�1�h, h 2 SUð2Þ, � ¼ �ata. We can thus
pick a specific SUð2Þ transformation g which diag-
onalizes �,

� ¼ g�diagg
�1 (21)

so that �a ¼ nTrðg	3g
�1taÞ. This identifies the

dynamical variable gðx; tÞ as part of the charge
density. The eigenvalues of � are gauge-invariant
and represented by n. Their flow is given by u
.

For a general gauge group G, the action is given by

S ¼ �i
Z X

s

j
s Trðqsg�1D
gÞ

�
Z

Fðn1; n2; . . .Þ þ SYMðAÞ (22)

where qs are the diagonal generators of G and j


s js
 ¼ n2s ,

s ¼ 1; 2; . . . ; rankðGÞ.

III. FLUIDS AND GRAVITY

We now go back to the case of the fluid with no non-
Abelian internal degrees of freedom. As noted before, this
case is described by the action (8) [or its relativistic version
(9)]. Nevertheless, there is something not completely
satisfactory about this. The group element g belongs to
SUð1; 1Þ and this group has no particular meaning in the
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relativistic theory. We would like to analyze the effect of
gravitational or mixed anomalies on the fluid equations.
The anomalies, as is well known, can be formulated in
terms of the Lorentz group which acts on the tangent space
or in terms of diffeomorphisms. The former point of
view requires identifying a Lorentz group action, while
the latter can be related to Poincaré group action. The
SUð1; 1Þ description does not immediately lead to an easily
identifiable action of the Lorentz or Poincaré groups. For
this reason, we seek a generalization of the action (9); the
particles underlying the fluid description may or may not
have spin.

A. Fluids with spin

We start by considering an action similar to (9) but with
the group element g 2 SUð1; 1Þ replaced by an element of
the Lorentz group, say, �, in some finite dimensional
matrix representation [17]. The appropriate action is

S½e;!;j;��¼
Z
dete½�ij
TrðS12��1D
ð �!ðeÞÞ�Þ

�FðnÞ�� 1

32�G
�abcd

Z
ea^eb^Rcdð!Þ:

(23)

We have added the Einstein-Hilbert action for gravity
as well, written in terms of the frame field one-form
ea ¼ ea
dx


 and the spin connection !ab ¼ !ab

 dx
. Rab

is the curvature two-form given by

Rab ¼ d!ab þ!ac ^!cb ¼ 1

2
Rab

�dx


 ^ dx�

¼ 1

2
ea�ðe�1Þb�ðR
�Þ��dx


 ^ dx�: (24)

�!ðeÞ is the torsion free spin connection derived entirely
from the metric or equivalently the frame fields. It is taken
as understood that the contraction of the tangent space
indices is done with the flat Minkowski metric �ab.
Coordinate indices are contracted, as needed, using the
metric g
� ¼ ea
e

b
��ab, so that n2 ¼ j
j�g
�. Further, in

(23), S12 is a matrix corresponding to the third component
of the spatial spin, i.e., equal to the corresponding Lorentz
generator in the representation corresponding to �. By
considering the right translations of � by an element of
the form expðiS12�12Þ, we can see that j
 is a covariantly
conserved current. Under the local Lorentz transformation
�, the transformation rules for the various quantities are
as follows:

ea ! e0a ¼ �a
be

b;

!a
b ! !0a

b ¼ �a
c!

c
dð��1Þdb � ðd���1Þab;

Ra
b ¼ �a

cR
c
dð��1Þdb:

(25)

The variation of the action (23) with respect to the spin
connection ! gives the torsion free condition,

D ^ e ¼ 0: (26)

This can be solved to determine ! as a function of e; we
denote the solution as �!ðeÞ. It corresponds to the spin
connection derived from the metric via the Christoffel
symbols and is explicitly given by !
 ¼ �i!ab


 Sab with

�!ab

 ¼ ðe�1Þ�a@½
eb�� � ðe�1Þ�b@½
ea��

� ðe�1Þ�aðe�1Þ	b@½�ec	�e
c: (27)

In the action (23), ! occurs only in the last term; in the
covariant derivative for � we use �! directly, so that

ð��1D
�Þab ¼ ð��1@
�þ��1 �!
�Þab: (28)

If we had used ! in this term, the condition for vanishing
torsion, namely, Eq. (26), would be altered. The use of the
solution �! is similar to what is done for coupling gravity to
spin- 12 particles, preserving the Riemannian or torsion-

free condition.
In addition to the equation for !, there are equations of

motion for �, j
 and ea
. The last one corresponds to the

field equations for gravity. For the variation of �, we
can use

�ð��1D
�Þ ¼ ���1����1D
�þ��1D
ð��Þ
¼ ��1@
ð����1Þ�þ��1ð!
����1

� ����1!
Þ�
¼ ��1ðD
�Þ�:

where � ¼ ð����1Þ. This leads to the equation of
motion,

1ffiffiffi
g

p D
ð ffiffiffi
g

p
j
QabÞ ¼ 0 (29)

where Qab ¼ TrðS12��1Sab�Þ is the spin density. Notice
that the derivative involved in this divergence is Levi-
Civita covariant and also covariant with respect to the
Lorentz group action on the tangent space. Similarly, right
translations of � in the S12 direction gives

1ffiffiffi
g

p @
ð ffiffiffi
g

p
j
Þ � r
j


 ¼ 0: (30)

The equation of motion for j
 becomes

j
 ¼ � n

F0 iTrðS12��1D
�Þ: (31)

The variation of the action with respect to the metric g
�

(or equivalently, the frame fields ea
) gives the standard

terms except for the the variation due to �!. The result is
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�S ¼ 1

2

Z ffiffiffi
g

p
�g
�

�
TðfÞ

� � 1

8�G

�
R
� � 1

2
g
�R

��

þ �Sextra

TðfÞ

� ¼ nF0u
u� � g
�ðnF0 � FÞ

�Sextra ¼ �
Z ffiffiffi

g
p

j
Qab� �!
ab (32)

where we have used (31). The last term can be simplified
using

ð� �!
Þab ¼ ðe�1Þ�b ðr��e
;a �r
�e�;aÞ
� ðe�1Þ�a ðr��e
;b �r
�e�;bÞ
� ðe�1Þ�a ðe�1Þ�b ðr��e� �r��e�Þmen
�mn:

(33)

Here r denotes the derivative covariant with respect to the
tangent space and the Levi-Civita connection. With partial
integrations and using (29), this can be simplified as

�Sextra ¼
Z ffiffiffi

g
p

�g
�r�ðj
Q�
� þ j�Q

�

Þ (34)

where Q�� ¼ Qabðe�1Þ�a ðe�1Þ�b . Thus the energy-

momentum tensor is not quite of the perfect fluid form

TðfÞ

�; rather it is

T
� ¼ TðfÞ

� þ 2r�ðj
Q�

� þ j�Q
�

Þ: (35)

The conservation law becomes

r
T
ðfÞ
� � 2ðR��Þ�
j
Q�� ¼ 0 (36)

where we have used (29) and identities on the Riemann
tensor. The fluid has a spin density and the extra term
in (36) is very reminiscent of the coupling of spin and
curvature which appears at the point-particle level in the
Mathisson-Papapetrou equations [18]. We may regard (36)
as the fluid generalization of the latter.

B. Spinless fluids

As mentioned before, the basic reason for the descrip-
tion given above in terms of the Lorentz group is to
incorporate easily the gravitational anomalies in the fluid
language. Since such anomalies, when they occur, are due
to fields with spin, we may regard the action (23) as
adequate for our needs. Nevertheless, it is interesting at
this point to consider an action for a fluid of spinless
particles so that the energy-momentum tensor has no extra
term depending on the spin density. Notice also that, from
(31), it is the transport of spin which is described by the
current j
 and not particle number or mass; in other words,
we have a fluid of spin carriers, spin being their only
attribute. It would be useful to consider the flow arising
from transport of mass. The natural object for this would
be the Poincaré group, in particular, the translations,
since spinless particles do have transport of energy and

momentum. Since we will need matrix representations and
traces, it is easier to consider the Poincaré group as
obtained from the de Sitter group SOð4; 1Þ via a group
contraction. In addition to the Lorentz generators Sab, we
then have Pa ¼ Sa5=R which are the translations (on de
Sitter space) with

½Pa; Pb� ¼ i
Sab
R2

: (37)

The limit R ! 1 corresponds to the group contraction and
reduces the algebra to the Poincaré algebra. A specific
matrix realization of the SOð4; 1Þ algebra is provided by
the Dirac � matrices �ab and �a�5.
If g denotes an element of SOð4; 1Þ, then the frame fields

for the coset space are given by ea ¼ �iTrðSa5g�1dgÞ,
and the metric is given by

ds2 ¼ �TrðSa5g�1dgÞTrðSa5g
�1dgÞ: (38)

The action for a point-particle is thus

I½g� ¼ �m
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�TrðSa5g�1 _gÞTrðSa5g�1 _gÞ

q

¼ � 1

2

Z
dt

�
m2�� ðTrðSa5g�1 _gÞÞ2

�

�
(39)

where, in the second line, we have used a world-line metric
as an auxiliary field. We can further reduce this as

I½g� ¼
Z

dt

�
jað�iTrðSa5g�1 _gÞÞ þ�ðjaja �m2Þ

2

�
: (40)

The similarity with the fluid actions we have discussed is
evident. This suggests that, for spinless fluids, we can use
the action

S ¼
Z

d4x
ffiffiffi
g

p ½�ija
 TrðSa5g�1@
gÞ � FðnÞ�: (41)

Coupling to gravity is introduced by @
g ! D
g ¼
ð@
 þ �!
Þg, where �! is the torsion-free spin connection

as before. The full action is thus

S ¼
Z

dete½�ija
 TrðSa5g�1D
gÞ � FðnÞ�

� 1

32�G
�abcd

Z
ea ^ eb ^ Rcdð!Þ: (42)

The derivation of the equations of motion will
proceed as before. The terms involving g will give the
energy-momentum tensor of the perfect fluid form, except
for the term coming from the variation of �!; in other
words,

T
� ¼ TðfÞ

� þ 2r�ðja
Q�

�a þ ja�Q
�

aÞ (43)

whereQ��
c ¼ TrðgSc5g�1SabÞðe�1Þ�a ðe�1Þ�b . Since Sc5 and

Sab are orthogonal with the trace, Q��
c vanishes unless

gSc5g
�1 generates a term proportional to the Lorentz
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generator Sab. This can only be done via the commutator
½Sc5; Sd5� for terms in g which are of the form

expðiSd5�d5 þ � � �Þ. As a result, Q��
c is of order 1=R2

and vanishes in the contraction limit. The energy-
momentum tensor then has the perfect fluid form. Thus,
the action (42) can describe spinless fluids in terms of the
Poincaré group realized as the contraction limit of the de
Sitter group.

IV. STANDARD MODEL

We are now in a position to apply this to the standard
model and a fluid or plasma phase of the same. For spe-
cificity consider the quark-gluon plasma phase for three
flavors of quarks, u, d, s. In other words, we consider a
phase with thermalized u, d, s quarks, so that they must be
described by fluid variables while the heavier quarks are
described by the field corresponding to each species. The
flavor symmetries, for the moment, will be taken to be
gauged. We will also neglect the quark masses so that we
have the full flavor symmetry Uð3ÞL �Uð3ÞR. Thus the
group G to be used in (22) is

G ¼ SUð3Þc �Uð3ÞL �Uð3ÞR (44)

with individual flows corresponding to the charges. In this
discussion our focus is on the flavor transport, so we will
drop SUð3Þc from the equations to follow. Of course, the
flavor symmetry is not fully preserved even in the absence
of masses due to anomalies. On this question, we then have
a rerun of the old ’t Hooft argument [19].

Assume all flavor symmetries are gauged with anoma-
lies canceled by a set of spectator fermions. In the fluid

phase where u, d, s are replaced by fluid variables, we must
then have a term in the fluid action which can reproduce the
anomalies so that the cancellation with spectator fermions
still remains valid. (In the usual case where the phase
being considered is one of confinement and chiral symme-
try breaking, this term is the Wess-Zumino term con-
structed in terms of the pseudoscalar meson fields.) In
the present case, since we already have a description of
the fluid in terms of group elements, it is easy enough to
adapt the usual Wess-Zumino term. Thus our fluid action is
given by

S ¼
Z �

�ij
3 Tr

�

3

2
g�1
L D
gL

�
� ij
8 Tr

�

8

2
g�1
L D
gL

�

� ij


0 Trðg�1

L D
gLÞ � ik


3 Tr

�

3

2
g�1
R D
gR

�

� ik


8 Tr

�

8

2
g�1
R D
gR

�
� ik



0 Trðg�1

R D
gRÞ

� Fðn3; n8; m3m8Þ þ SYMðAÞ þ �WZðAL; AR; gLg
y
RÞ
�

(45)

where j


0;3;8 apply to Uð3ÞL and k



0;3;8 apply to Uð3ÞR and

gL 2 Uð3ÞL, gR 2 Uð3ÞR. The last term is the usual
gauged WZ term �WZðAL; AR;UÞ given in terms of AL,
AR and the meson fields U 2 Uð3Þ, and gauged in a way
that preserves the vector symmetries, but, for our purpose,

U is replaced by gLg
y
R. Explicitly �WZ is given byWitten in

[20] as

�WZ¼� iN

240�2

Z
TrðdUU�1Þ5þ iN

48�2

Z
TrðALdALþdALALþA3

LÞdUU�1þ iN

48�2

Z
TrðARdARþdARARþA3

RÞU�1dU

� iN

96�2

Z
Tr½ðALdUU�1Þ2�ðARU

�1dUÞ2�� iN

48�2

Z
Tr½ALðdUU�1Þ3þARðU�1dUÞ3�

� iN

48�2

Z
TrðdALdUARU

�1�dARdU
�1ALUÞ� iN

48�2

Z
TrðARU

�1ALUðU�1dUÞ2�ALUARU
�1ðdUU�1Þ2Þ

þ iN

48�2

Z
TrððdARARþARdARÞU�1ALU�ðdALALþALdALÞUARU

�1Þþ iN

48�2

Z
TrðALUARU

�1ALdUU�1

þARU
�1ALUARU

�1dUÞ� iN

48�2

Z
TrðA3

RU
�1ALU�A3

LUARU
�1þ1

2
UARU

�1ALUARU
�1ALÞ: (46)

One of the main results of this paper is that the action
given above incorporates all the flavor anomalies in fluid
dynamics. Once we have obtained (46), we can restrict
the gauge fields AL, AR to what is needed for the
standard model, namely, the SUð2Þ �Uð1Þ group of
electroweak interactions. It is straightforward to verify
that (46) does indeed lead to the usual chiral magnetic
effect.

V. CURRENTS FROM ANOMALIES

A. The chiral magnetic and chiral vorticity effects

For the chiral magnetic effect, we have only a back-
ground electromagnetic field turned on, so that AL ¼ AR ¼
�iQA, where Q is the quark charge matrix given by Q ¼
diagð23 ;� 1

3 ;� 1
3Þ. The contribution of the anomaly to the

electromagnetic current following from (46) has been
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given in [21]. The electromagnetic current for the action
(45) and (46) is then given by

J
 ¼ J
3 þ e

16�2
�
��� Tr½Qð@�UU�1@�UU�1@�UU�1Þ

þ ðU�1@�UU�1@�UU�1@�UÞ�

þ i
e2

4�2
�
���@�A� Tr

�
Q2ð@�UU�1 þU�1@�UÞ

þ 1

2
ðQ@�UQU�1 �QUQ@�U

�1Þ
�

(47)

where J
3 is the contribution from the nonanomalous part

of the action and we have set N ¼ 3. For the main points
we want to illustrate, it is sufficient to consider a reduction
to the SUð2Þ subgroup; in other words, we will consider
basically the up and down quarks. In this case, we can take

U ¼ ei�
V 0
0 1

� �
(48)

where V is a 2� 2 matrix which is an element of SUð2Þ.
We take it to be of the form V ¼ gLg

y
R, where gL and gR

are now elements of SUð2Þ. The nonanomalous part of the
current can then be written as

J
3 ¼ � 1

4
½n3u
3L Trð	3g

�1
L 	3gLÞ

þm3u


3R Trð	3g

�1
R 	3gRÞ� (49)

Simplifying (47) with the choice of U we have made,

J
 ¼ J
3 þ e

48�2
�
��� TrðI�I�I�Þ

þ i
e2

16�2
�
���@�A� Tr½ð�3L þ�3RÞI�� þ J



�

J
� ¼ � e2

4�2
�
���@�A�@��

�
2þ 1

4
Trð�3L�3R � 1Þ

�

(50)

where I� ¼ g�1
L @�gL � g�1

R @�gR and �3L ¼ g�1
L 	3gL,

�3R ¼ g�1
R 	3gR. In simplifying (47) to this form, we

have used the fact that there is no rank-3 symmetric
invariant tensor for SUð2Þ.

When gL ¼ gR, the last term in (50), namely, J
� ,
reduces to

J


� ¼ � e2

2�2
�
���ð@�A�Þ@��: (51)

This is the chiral magnetic effect discussed in [3]. The
quantity r� is related to the fluid current for the transport
of the Uð1ÞA axial charge. And, correspondingly, in a
medium in equilibrium, with chiral asymmetry for such
charges, we may replace _� by 1

2 ð
L �
RÞ, where the

chemical potentials are for the left and right axial charges.
Notice, however, that the expression for J
� has added

terms when gL and gR are independent matrices.

The other terms in (50) can be simplified further.
First of all, using the Maurer-Cartan equations
dðg�1dgÞ þ ðg�1dgÞ2 ¼ 0, we can simplify

�
��� Trðg�1@�gg
�1@�gg

�1@�gÞ
¼ iTrð	3g

�1@�gÞ@�½iTrð	3g
�1@�gÞ�: (52)

We can use this to simplify the term �
��� TrðI�I�I�Þ
in (50). Further, from the equation of motion for
j


3 and k



3 , we find

iTrð	3g
�1
L @
gLÞ ¼ �2

@F

@n3
u


3L ¼ � 2

n3

@F

@n3
j


3

iTrð	3g
�1
R @
gRÞ ¼ �2

@F

@m3

u
3R ¼ � 2

m3

@F

@m3

k
3

(53)

where u
3L and u
3R are the flow velocities for the left and

right isospin. Using these results, the current finally takes
the form

J
 ¼ J


3 þ J



� þ i

e2

16�2
�
���@�A� Tr½ð�3L þ�3RÞI��

þ 1

16�2
�
���@� Trðg�1

L @�gLg
�1
R @�gRÞ

þ e

12�2
�
���

��
@F

@n3

�
2
u3L�@�u3L�

�
�
@F

@m3

�
2
u3R�@�u3R�

�
: (54)

The last term of this expression involves the vorticity of the
flow velocities. This equation is thus an expression of the
chiral vorticity effect.

B. Mixed gauge-gravity anomaly

In addition to the flavor anomalies, it is also possible to
consider the mixed gauge-gravity anomaly in the standard
model. The six-form index density which leads to this via
the descent equations is

I6 ¼ i

384�3
ðTrFÞTrðR ^ RÞ (55)

where the field strength is the one corresponding to the
weak hypercharge Uð1ÞY . The trace of the hypercharge
vanishes for each generation of quarks by itself, so that
this anomaly is zero. The possibility of a contribution
arises when we consider a plasma where some of the
quarks, say, the up, down and strange quarks, are in the
fluid phase while others, say, charm, is to be described by
the standard fermion Lagrangian. In this case, for the fluid
part we would need an effective description.
There are two choices on how this anomaly can be

displayed; we can choose to regard this as an anomaly
in the hypercharge current or as an anomaly in local
Lorentz transformations. For the first point of view, the
index density leads, via the descent equations to the effec-
tive action
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�WZ ¼ i
N

192�2

Z
Trðd�ÞTr

�
!d!þ 2

3
!3

�
: (56)

The hypercharge current has the conservation law

@
J

 ¼ �i

N

768�2

�
���

ffiffiffi
g

p TrðR
�R��Þ: (57)

Further, if we choose to regard ! as an independent
quantity, then the torsion-free condition is modified by
the Lorentz Chern-Simons term, when this term is added
to the Einstein-Hilbert action. The more canonical thing to
do would be to consider ! in (56) to be the solution �!. In
this case, with ! ! �!, we find for the correction to the
energy-momentum tensor,

T�	�corr ¼ �i
N

192�2

1ffiffiffi
g

p r
½Trð@
�ÞðR��Þ
	

� �
��� þ ð� $ 	Þ�: (58)

The remaining trace is over the hypercharge values. If we
replace _� by the chemical potentials, as can be done for the
chiral magnetic effect,

Tr ð _�Þ ! 1

2

�
1

3
ð
u

L þ
d
L þ
s

LÞ þ
2

3
ð
d

R þ
s
R � 2
u

RÞ
�
:

(59)

More generally, we can replace @
� by its expression from

the equation of motion giving a term involving the deriva-
tive of the enthalpy function, similar to what was done in
(54). (Since the derivative of the enthalpy at fixed entropy
and pressure is the chemical potential, this includes the
previous case as well.) Thus, depending on the properties
of the enthalpy function of the fluid, the corrections dis-
played in (58) can be nonzero even when 
i ¼ 0.

The other possibility is to consider the index density as
leading to anomalies in local Lorentz transformations. We
can use an element of the Lorentz group, identified as the
fluid variable � of Sec. III, to write the Wess-Zumino
term. The transformation of fields of the relevant fields is
given by

e!eg¼ge; �!�g¼g�

!!!g¼g!g�1�dgg�1; R!Rg¼g!g�1: (60)

The Wess-Zumino term may then be written as

�WZ ¼ i
N

192�2

Z
TrðFÞ

�
Tr

�
!d!þ 2

3
!3

�

� Tr

�
�d�þ 2

3
�3

��

¼ i
N

192�2

Z �
TrðFÞTrðd���1!Þ

þ 1

3
TrðFÞTrðd���1Þ3

�
(61)

where � ¼ ��1½d�þ!��. Once again, if we regard
! as independent, then this leads to a nonzero torsion
proportional to the spin-density. The equation of motion
for!, starting from (23) and adding (61), can be reduced to
the form

���
�

4�G
ðT
�Þa¼ðM�Þabðe�1Þ�b �ðM�Þabðe�1Þ�b

þðM�Þcdðe�1Þ�c ðe�1Þ�d ea�
ðM�Þcd¼� N

192�2
�
����abcdTrðF
�Þ

�Trð@����1SabÞ (62)

where ðT
�Þa ¼ ðD
e�Þa � ðD�e
Þa is the torsion tensor.

In the case when we use �! in place of ! in (61), we get
corrections to the equation of motion. For variations cor-
responding to the right translations of � by a term propor-
tional to S12, we find

1ffiffiffi
g

p D
ð ffiffiffi
g

p
j
ÞTrðS212Þ ¼ � N

192�2

�
���

ffiffiffi
g

p TrðF
�Þ@�
� TrðS12��1D��Þ: (63)

The equation for the left translations of � by an arbitrary
infinitesimal Lorentz transformation is

1ffiffiffi
g

p D
½ ffiffiffi
g

p
j
�S12�

�1�¼ N

192�2

�
���

ffiffiffi
g

p TrðF
�Þ

�½R���D�ðD����1Þ�: (64)

(Of course, the two equations, (63) and (64), are not
completely independent.)
The variation of (61) with respect to the frame field ea	

will yield the correction to the energy-momentum tensor.
This is given by

T	
a�corr¼� 1ffiffiffi

g
p iN

96�2
e
;ar� ½TrðF
�Þ

�ðTrð@����1S�	Þ�
��


þTrð@����1S�
Þ�
��	Þ�� 1ffiffiffi
g

p iN

96�2

�e
;ar� ½TrðF
�ÞTrð@����1S
	Þ�
���� (65)

where S�� ¼ Sabðe�1Þ�a ðe�1Þ�b . The terms in the first line

of this equation lead to a symmetric energy-momentum
tensor when written in terms of the coordinate components,
by multiplying with ðe�1Þ�a. The term in the second line
leads to an antisymmetric term. This is to be expected. We
know that a symmetric energy-momentum tensor is neces-
sary for the conservation of the current corresponding to
the Lorentz transformations. In the present case, the anom-
aly implies that this current is not conserved. The antisym-
metric term is a manifestation of this property. Since the
Einstein tensor R
� � 1

2g
�R is symmetric, this leads to a

problem with the Einstein equations. The proper way to
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understand this is to realize that there is another term in
T
� due to the quarks we have neglected, say the charm

quark in the example we have been using. Since the latter
field by itself also leads to a mixed anomaly, the full energy

momentum tensor which is the sum of TðfÞ

�, T
� from (65)

and T
� from charm will together be symmetric, the

anomaly part from the charm quark canceling the antisym-
metric piece of (65).

VI. DISCUSSION

We have obtained a very general formalism for incor-
porating the effects of anomalies in hydrodynamics. As
mentioned in the introduction, being a formalism based on
symmetries rather than calculations specific to any particu-
lar assembly of material particles, this is quite general and
is expected to be valid beyond weak coupling or near
equilibrium conditions. The specific choice of the fluid
will be reflected in the choice of the enthalpy functions.

A few clarifying comments are in order. It is important
to realise that in any fluid where the particles which con-
stitute it carry a variety of quantum numbers, we can have a
number of different flow velocities. This is evident from
the action (22) where we have flow velocities for each
diagonal generator of the group. This point seems not to
be adequately emphasized in the literature. It is also useful
to visualize this as follows. Consider two quarks and two
antiquarks in a fluid. We could have them forming a color
singlet and moving in the same direction. This gives a
mass/energy flow but no color flow. We could visualize a
q �q pair forming an octet state and moving together in
a certain direction while the other q �q pair forms a singlet.
This gives a nonzero color transport rate different from the
mass/energy flow. We could also envisage subsets of par-
ticles forming different spin states giving a spin flow
velocity, possibly different from the mass and color flows.
When we consider massless quarks, the L, R quantum
numbers are independent quantum numbers with indepen-
dent velocities possible.

Specifically for the flavor part, we can have independent
u3L and u3R. These need not coincide even when gL ¼ gR

for two reasons: The local charge representation is deter-
mined by n3,m3 and these need not be the same even when
gL ¼ gR. Secondly, the enthalpies can be different as well.
If a calculation is carried out in a specific medium, the

results obtained would be for the appropriate enthalpy
function. For example, if we take a massless field, then
the relation between pressure and energy density corre-

sponds to an enthalpy function F� n4=3. In this case, ðF0Þ2
is of the form n2=3. Notice that for the vorticity term in (54)
there is a prefactor proportional to this. If, in addition, we
take n� T3, as is appropriate for a relativistic gas, then the
prefactor gives a T2 term. This may give a point of corre-
spondence with the results in [10]. However, we should
expect a contribution even at zero temperature, since the
structure of the anomaly has to be reproduced correctly in
the fluid language; this is evident from Sec. VB. The
derivative of the enthalpy function is also related to the
chemical potentials, when the latter is introduced. Our
formula (54) is thus similar to the results in [22] as well.
Regarding the use of the Wess-Zumino term for anoma-

lies, the specific choice of �WZ specifies the nature of the
currents being discussed. (This point is moot for our dis-
cussion in Secs. II and III, since we have not introduced
anomalies yet.) We have used the form (46) which gives
expressions invariant under the nonanomalous vector
gauge symmetries.
The Wess-Zumino term was also used to obtain

anomalies for chiral superfluids in [23], although the for-
malism is very different from ours and the emphasis was on
baryonic and axial currents. (This article came to our
attention after this paper was completed. We thank the
author for correspondence on this.) However, we may
note that Eq. (58) of [23] is similar to our (54) if our u3L
and u3R are related to the different superfluid velocities
introduced in that paper.
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