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Within the superfield formalism, we study the dynamical generation of mass to the gauge superfield in

the noncommutative two-dimensional supersymmetric Schwinger model. We show that the radiatively

generated mass for the gauge superfield does not depend on the noncommutative parameter � up to one-

loop order.
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I. INTRODUCTION

In the last years, field-theory models constructed in
lower dimensions of space-time have been intensively
discussed, because, through AdS/CFT correspondence
[1], they could be related to more elaborated theories in
higher dimensions. The supersymmetric gauge theories in
lower dimensions considered as candidates to describe
M2-branes [2–4] attract main attention. Currently, a large
number of papers is devoted to the study of several aspects
of these theories, such as effective potential calculations
[5–7], dualities [8–11], and generation of mass through the
spontaneous symmetry-breaking mechanism [12–16]. The
Schwinger model, i.e. quantum electrodynamics in two
dimensions of space-time, is of the special interest among
the low-dimensional gauge theories since it possesses the
interesting feature of dynamical generation of mass and is
known as an example of a confining model in the commu-
tative [17] and noncommutative space-time [18]. It is
worth it to mention that the two-dimensional noncommu-
tative supersymmetric (SUSY) quantum electrodynamics
is finite to all loop orders in perturbation theory [19], with
the same conclusion being true for the three-dimensional
commutative SUSY QED [20].

Throughout this paper, we are using the superfield for-
malism; it is the more convenient way to evaluate Feynman
diagrams in SUSY models. In addition, the superfield
formalism preserves a manifest supersymmetry in all
stages of calculations, avoiding potential problems, such
as, for example, the lack of a supersymmetric renormal-
ization presented in Ref. [21] is not a problem when super-
graph techniques are used [22]. The present paper is
organized as follows. In Sec. II, we introduce the model
and evaluate the quadratic part of the effective action for
the gauge superfield, in order to observe the dynamical
generation of mass to the noncommutative supersymmetric
Schwinger model. We demonstrate that this effect is inde-

pendent of the noncommutative parameter �, up to one-
loop order, just as the nonsupersymmetric version of
present model [23]. In Sec. III, we present our last com-
ments and remarks.

II. NONCOMMUTATIVE SUSY
SCHWINGER MODEL

A. Pure gauge theory

Our starting point is the classical action of the non-
commutative SUSY Schwinger model,

S ¼
Z

d2xd2�

�
1

2
W� �W� � 1

4�
D���D

2D���

þ 1

2
�cD�ðD�c� ie½��; c��Þ

�
; (1)

whereW�¼1
2D

�D����ie
2 ½��;D������e2

6 ½��;f��;��g���
is the noncommutative gauge superfield strength which
transforms covariantly, W 0

� ¼ eiK �W� � eiK, with K ¼
Kðx; �Þ being a real scalar superfield, and the exponential
is treated in the sense of theMoyal star product. Essentially,
as discussed in Ref. [19], there is no difference between
conventions and notations for supersymmetric models de-
fined in three and two dimensions of space-time. Therefore,
we use the notations and conventions as adopted in
Ref. [24]. The inclusion of a gauge fixing and the corre-
sponding Faddeev-Popov ghosts terms is required to quan-
tize this model.
For later purposes, let us write the quadratic part of the

gauge superfield action, which is given by

S2ðgaugeÞ¼
Z
d2xd2�

�
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8
��D

�D�D�D���
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: (2)
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The propagators obtained from Eq. (1), for the pure
gauge sector, can be cast as

h��ð�p;�1Þ��ðp;�2Þi

¼ i

2

D2

ðp2Þ2 ðD�D���D�D�Þ�12

¼ i

2

ð1þ�ÞC��p
2þð1��Þp��D

2

ðp2Þ2 �12;

hcðp;�1Þ �cð�p;�2Þi¼ i
D2

p2
�12; (3)

where �12 ¼ �2ð�1 � �2Þ.
For simplicity, but without loss of generality, we will

work in the Feynman gauge, i.e. we choose � ¼ 1.
The effective action receives one-loop contributions from

the diagrams drawn in Fig. 1. Performing the D-algebra
manipulations with the help of the MATHEMATICA packet
SusyMath [25],we arrive at the following results. The super-
graph 1(a) is vanishing, while the other contributions can be
cast as

S1ðbÞ ¼ � e2

4

Z d2p

ð2�Þ2 d
2�

Z d2k

ð2�Þ2 �
�ðp; �Þ

� ðp��D
2 þ 2C��k

2Þsin2ðk ^ pÞ
k2ðkþ pÞ2 ��ð�p; �Þ; (4)

S1ðcÞ ¼ � e2

4

Z d2p

ð2�Þ2 d
2�

Z d2k
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�ðp; �Þ

� ðp2 � 2k2ÞC��sin
2ðk ^ pÞ

k2ðkþ pÞ2 ��ð�p; �Þ: (5)

Performing some algebraic manipulations and adding
these two contributions, we have

S1loopðgaugeÞ

¼�e2

4

Z d2p

ð2�Þ2d
2���ðp;�Þðp��D

2þC��p
2Þ��ð�p;�Þ

�
Z d2k

ð2�Þ2
sin2ðk^pÞ
k2ðkþpÞ2 : (6)

Using Feynman representation and trivial transforma-
tions, we can rewrite the integral over k as

I ¼ 1

2

Z d2k

ð2�Þ2
Z 1

0
dx

�
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½k2 þ p2xð1� xÞ�2
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where I1 and I2 are planar and nonplanar contributions.
It is easy to see that

I1 ¼ 1

4�

Z 1

0
dx

1

M2ðxÞ ; (8)

where M2ðxÞ ¼ �p2xð1� xÞ. We note, however, that this
integral diverges both at higher and lower limits, so we
implement the cutoff regularizations on both limits which
yields

I1 reg ¼ 1

4�

Z 1��2

�1

dx
1

M2ðxÞ ; (9)

where, at the end of the calculations, onemust put �1, �2!0.
Applying the results from Ref. [26] and regularizing the

integral in the similar way, we find where p � p �
pm�

mn�nlp
l, which in two dimensions of space-time

can be written as �2p2, once we assume �mn ¼ ��mn.
Thus, we arrive at the final expression for the integral:

Ireg ¼ 1

8�
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FIG. 1. Diagrams which contribute with quadratic part of gauge superfield effective action. In this figure, continuous lines represent
matter superfield propagators, wavy lines gauge superfield propagators, and dashed lines ghost superfield propagators.
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Unfortunately, this integral cannot be more simplified
since the modified Bessel function cannot be expressed in
terms of the elementary functions. However, for our aims,
that is, for studying the mass generation, we can use its
asymptotic behavior for small and large arguments:

K�1ðs ! 0Þ ¼ 1

s
þ csþOðs2Þ;

K	ðs ! 1Þ ¼
ffiffiffiffiffiffi
2

�s

s
e�s;

where c is a constant whose explicit value is not important.
Therefore, in the limit of �2 ! 0, we obtain that the

integral I is of order of �2p2. Taking into account only
two leading terms of the expansion of the modified Bessel
function, we find that the terms singular in the limits �1 ! 0
and �2 ! 0 turn out to be completely cancelled, after which
we can remove the regularization, and the integral over the
Feynman parameter x is trivial. We note that had we used
other regularization, for example, the dimensional one, the
situation could be just the same; that is, the final result would
be free of any singularities. As a result, we find that the
effective action is just given by

SeffðgaugeÞ¼�1

4

Z d2p

ð2�Þ2d
2���ðp;�Þp2

�
C��þ

p��D
2

p2

�
�½1þce2�2p2���ð�p;�Þ: (12)

We conclude that no mass is dynamically generated due
to a self-interacting gauge sector in the small noncommu-
tativity limit.

It is clear that this result differs from that obtained in the
large-noncommutativity limit [27–31] where the noncom-
mutative Uð1Þ model was shown to be equivalent to the
commutative UðNÞ theory in the large-N limit. The reason
is as follows: while the noncommutative QED in the limit
� ! 1 behaves like a UðNÞ Yang-Mills theory in the
large-N limit, in the limit � ! 0, the noncommutative
QED behaves like a free theory. Therefore, the dynamics
of this theory in these two limits radically differs. Hence,
the results for one limit should not be expected to be
reproduced in another limit.

On the other hand, considering the theory in the limit of
�2 ! 1, we obtain that the integral I behaves like I1. To
study dynamical generation of mass, it is enough to evalu-
ate the effective action in the limit p2 ! 0 [23].

Performing the integral
R

d2k
ð2�Þ2

1
k2ðkþpÞ2 with the help of an

infrared regulator and taking p2 ! 0, we obtain the fol-
lowing effective action
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where we find the presence of a massive pole for the pertur-
bative full propagator arisen from the effective action (13),

with M2
� ¼ e2

3
ffiffi
3

p , corroborating the results obtained in non-

supersymmetric models [27–31]. One should notice that the
dynamically generated mass is independent of noncommu-
tative parameter�.

B. Matter superfields in fundamental representation

The form of the matter couplings depends on assumed
noncommutative representation for matter superfields. Let
us first consider matter superfields in the fundamental left
representation. To the action (1), we add the following
matter superfield action:

S ¼
Z

d2xd2�

�
� ��D2�� e2

2
�� � �� � �� ��

þ i
e

2
½D� �� � �� ��� �� � �� �D���

�
; (14)

from which we obtain the matter superfield propagator
given by

h�ðk; �1Þ ��ð�k; �2Þi ¼ �i
D2

k2
�12: (15)

The contributions due to matter coupling, Figs. 1(d) and
1(e), in the fundamental representation, can be cast as

S1ðdþeÞ ¼ � e2

2
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(16)

We can note that the logarithmic divergent terms cancel
between each other, and the contribution to the quadratic
part of effective action for the gauge superfield coming
from the matter sector is given by

S1ðdþeÞ ¼ � e2

8

Z d2p

ð2�Þ2 d
2���ðp; �Þ

�Z d2k

ð2�Þ2

� ðp2C�� � p��D
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�
��ð�p; �Þ: (17)

Summing up the classical and quantum parts of the
effective action in the small noncommutativity limit, we
have
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Seff ¼ � 1
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Performing the integral
R

d2k
ð2�Þ2

1
k2ðkþpÞ2 as was done be-

fore, we obtain

Seff ¼ � 1
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where we find again the presence of a massive pole for the

perturbative full propagator, with M2
� ¼ e2

3
ffiffi
3

p .

Once the diagrams related to the matter contributions
are planar, for matter in fundamental representation, the
correction to the generated mass is valid for both cases,
large and small noncommutativity. Therefore, the effective
action in the limit � ! 1 can be cast as

Seff � 1

4

Z d2p

ð2�Þ2 d
2�

�
��ðp; �Þ

�
C�� þ p��D

2

p2

�

� ½p2 þM02
� ���ð�p; �Þ

�
; (20)

where M02
� ¼ 2M2

�.

C. Matter superfields in adjoint representation

When matter superfields are assumed to be in the non-
commutative adjoint representation, the matter superfield
action turns out to be

S ¼
Z

d2xd2�

�
� ��D2�þ e2

2
½ ��;���� � ½��;���

� ie

2
ðD� �� � ½��;��� � ½ ��;���� �D��Þ

�
: (21)

The vertices of interaction written in terms of noncom-
mutative Moyal phases are given by Eqs. (A6) and (A7).

For the adjoint representation, all couplings vanish in the
commutative limit, and the theory turns to be free. This
sector contributes to effective action with [19]

S1ðdþeÞ ¼ � e2
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2 þ C��p
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� ��ð�p; �Þ
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sin2ðk ^ pÞ
k2ðkþ pÞ2 : (22)

Adding Eq. (22) with the contribution which comes
from the gauge sector (6), the quantum correction to the
quadratic part of the gauge superfield effective action is
given by

S1 loop ¼ � 3

4
e2
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ð2�Þ2 d
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In the limit of� ! 0, one-loop quantum effects (23) do
not change the dynamics of the model when matter super-
fields are in the adjoint representation. Just as the pure
gauge sector, cf. Eq. (12), the one-loop contribution is of
the order�2p2, and no generation of mass is present in this
version of the model up to this order. This is related with
the effect that in the commutative limit, the theory in the
adjoint representation behaves like a free one.
In the opposite case, i.e.� ! 1, the effective action can

be cast as
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where M002
� ¼ 3M2
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FIG. 2. Noncommutative vertices. In this figure, continuous lines represent external matter, wavy lines external gauge, and dashed
lines external ghost superfields.
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III. FINAL REMARKS

In this paper, we have computed the effective action of
the noncommutative gauge superfield in interaction with
matter scalar superfield, both in fundamental and adjoint
representations, in the noncommutative supersymmetric
quantum electrodynamics in two-dimensional space-time,
i.e. the SUSY Schwinger model.

In the limit of small noncommutativity, i.e. �� 0, we
observe that the model, with the matter in noncommuta-
tive fundamental representation, presents a dynamical
generation of mass to the gauge superfield, which is an
effect independent of the noncommutative parameter �,
up to one-loop order. When the matter superfields are in
the noncommutative adjoint representation, the model
does not exhibit such an effect in the small-� limit.

On the other hand, in the limit of large noncommutativ-
ity, i.e. � ! 1, we observe that the model presents a
dynamical generation of mass to the gauge superfield
with or without matter couplings. In respect of the pure
gauge sector, the dynamical generation of mass is an effect
related to the equivalence between the noncommutative
Uð1Þ model and the commutative UðNÞ Yang-Mills theory
in the large-N limit [27–31].

As recently suggested in Ref. [32], we expect that a �
dependence in the generated mass can occur when three-
loop Feynman supergraphs are taken into account.
Actually, this work is in progress. Also, we expect that
this approach can be useful for the study of the non-
Abelian extension of the Schwinger model and for studies
of the three-dimensional noncommutative SUSY QED.
We are going to discuss these problems in forthcoming
papers. Finally, it is well-known that space-time noncom-
mutativity can break unitarity [33]. In principle, this
problem can be solved with use of the approach proposed
in the papers [34,35]. We expect that applying this for-
malism to this model should not give essentially different
results.
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APPENDIX: NONCOMMUTATIVE VERTICES

The interaction vertices of noncommutative extensions
of field theories are characterized by the presence of a

noncommutative phase; that is, a function dependent of
noncommutative parameter �. These noncommutative
vertices, for the model under consideration, are drawn in
Fig. 2, and their respective expressions are presented in the
subsections below.

1. Gauge superfield self-interactions
and ghost couplings

The noncommutative vertices for the gauge superfield
self-interaction and Fadeev-Popov ghost couplings are
given by:

V2ðaÞ ¼e

2
sinðk2^k3ÞD�D���ðk1Þ��ðk2ÞD���ðk3Þ; (A1)

V2ðbÞ ¼ e2

2
sinðk3 ^ k4Þ sin½k2 ^ ðk3 þ k4Þ�

�
�
��ðk1ÞD��

�ðk2Þ��ðk3ÞD���ðk4Þ

þ 2

3
D�D���ðk1Þ��ðk2Þ��ðk3Þ��ðk4Þ

�
; (A2)

V2ðcÞ ¼ e sinðk3 ^ k2Þ �cðk1ÞD�½��ðk2Þcðk3Þ�; (A3)

where a ^ b ¼ a
b	�

	.

2. Matter superfield couplings: fundamental
representation

When matter superfield is in the fundamental left repre-
sentation, the noncommutative vertices can be cast as

V2ðdÞ ¼ ie

2
½eik3^k2D� ��ðk1Þ��ðk2Þ�ðk3Þ

� eik2^k3 ��ðk1Þ��ðk2ÞD��ðk3Þ�; (A4)

V2ðeÞ ¼ � e2

2
ei½k2^ðk3þk4Þþk3^k4���ðk1Þ��ðk3Þ ��ðk2Þ�ðk4Þ:

(A5)

3. Matter superfield couplings: adjoint representation

When matter superfield is in the adjoint representation,
the noncommutative vertices look like

V2ðdÞ ¼ e

2
sinðk2 ^ k3Þ��ðk2ÞD�½ ��ðk1Þ�ðk3Þ�; (A6)

V2ðeÞ ¼ �2e2 sin½k2 ^ ðk3 þ k4Þ� sinðk3 ^ k4Þ ��ðk1Þ��ðk2Þ
� ��ðk3Þ�ðk4Þ: (A7)
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