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A strategy for computing the �c c anomalous dimension at the fixed point in infrared-conformal gauge

theories from lattice simulations is discussed. The method is based on the scaling of the spectral density of

the Dirac operator or rather its integral, the mode number. It is relatively cheap, mainly for two reasons:

(a) the mode number can be determined with quite high accuracy, and (b) the �c c anomalous dimension is

extracted from a fit of several observables on the same set of configurations (no scaling in the Lagrangian

parameters is needed). As an example the �c c anomalous dimension has been computed in the SU(2)

theory with 2 Dirac fermions in the adjoint representation of the gauge group and has been found to be

�� ¼ 0:371ð20Þ. In this particular case, the proposed strategy has proved to be very robust and effective.
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I. INTRODUCTION

Non-Abelian gauge theories with minimally coupled
Dirac fermions generally produce spontaneous chiral sym-
metry breaking if the number of fermions (or flavors) is not
too large. When the number of flavors is increased [1],
chiral symmetry is restored and the beta function develops
a non-Gaussian infrared fixed point [2], indicating that an
approximate dilatation symmetry is realized at large
distances. Gauge theories in this phase are usually referred
to as infrared-conformal gauge theories (IR-CGTs).
Deformed (with relevant operators) IR-CGTs have been
proposed in the past years as interesting models for
strongly coupled physics beyond the standard model, for
instance in walking or conformal technicolor scenarios
(see [3–12], and references therein). The anomalous
dimension �� of the fermion mass operator �c c at the
IR-fixed point plays a very important role in all those
models. Being constrained to be in between 0 (as in the
perturbative Bank-Zaks fixed point [2]) and 2 (from the
unitarity bound [13,14]), it is required to be about 1 for
interesting models. In this regime the IR-CGT is strongly
coupled and a determination of �� from first principles can
be obtained only by means of lattice simulations.

The theory considered in this paper is the SU(2) gauge
theory with 2 Dirac fermions in the adjoint representation
of the gauge group [SUð2Þ þ 2 adj]. It is IR-conformal as
confirmed by a relatively large literature and several com-
plementary analysis strategies [15–34]. Although it is not
clear whether this theory will be useful for building real-
istic technicolor models, it represents the ideal playground
for testing new analysis methods. The �c c anomalous
dimension has been already estimated using different tech-
niques. The first very rough estimate 0:05 � �� � 0:20
was published in [20] using finite-size scaling of mesonic
observables (similar to the one given in [35]). A somewhat
larger value �� ¼ 0:22ð6Þ was found in [19], fitting a

power of the fermion mass to the string tension. These first
estimates must be taken with a grain of salt, since the
systematic errors were still not well understood at that
time. Using the Schrödinger functional renormalization
scheme, the authors of [30] quote 0.31(6) and the authors
of [29] quote 0:05 � �� � 0:56. As discussed in [29] large
systematic errors are expected with this technique, because
of the difficulty in localizing the IR-fixed point.
Monte Carlo renormalization methods [32] have similar
problems leading to a very wide allowed range �0:6 �
�� � 0:6. A more sophisticated analysis of the finite-size
scaling of mesonic masses and decay constants [34] yields
�� ¼ 0:51ð16Þ. The central value is larger than any other
determination, but the error is also quite large (about 30%).
The method proposed in this paper to measure �� is

based on the observation that the spectral density � of the
Dirac operator is a power of the eigenvalue!. Its exponent
is related to the anomalous dimension through the relation
[36–38]

�ð!Þ ¼ �̂0�
4��=ð1þ��Þ!ð3���Þ=ð1þ��Þ þ � � � ; (1)

at the leading order for small eigenvalues (� is the renor-
malization scale and �̂0 is a dimensionless constant). When
scale invariance is broken by a small mass for fermions
[mass-deformed IR-conformal gauge theory (IR-mCGT)],
Eq. (1) is valid only in an intermediate range of eigenval-
ues, that is not known a priori and must be determined
empirically.
In principle this method is limited by the need to have a

reliable infinite-volume extrapolation and to be close
enough to the chiral limit. However we will see that the
fermion mass does not need to be too small in order to see a
power law in the spectral density for a wide range of
eigenvalues. This surprising empirical observation, com-
bined with the fact that the spectral density (or rather its
integral) can be computed with high accuracy, will lead to a
quite precise determination of the anomalous dimension,
that is anticipated to be �� ¼ 0:371ð20Þ. Although this
result is obtained for a particular theory, the method can*agostino.patella@cern.ch
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be exported with no modifications to any other gauge group
or matter content. A precursor of the presented strategy can
be found in [38]. While this work was being finalized, an
analysis of the Dirac spectral density in the SU(3) theory
with 12 fermions in the fundamental representation ap-
peared in [39], although very few eigenvalues were con-
sidered there. In this work the 50 lowest eigenvalues have
been discarded on a 64� 243 lattice, and about 2000
eigenvalues have been considered in order to extract the
�c c anomalous dimension.

II. SPECTRAL DENSITY

The validity of Eq. (1) is discussed in this introductory
section. The eigenvalue density of the massless Dirac
operator 6D (or Dirac spectral density) is defined as

�ð!Þ ¼ lim
V!1

1

V

X
k

h�ð!�!k½A�Þi; (2)

where i!k½A� is the kth eigenvalue of 6D at fixed gauge
configuration, in a finite box of volume V. At the root of
Eq. (1) is the fact proved in [40], that both the eigenvalue!
and the Dirac spectral density �ð!Þ renormalize multi-
plicatively. If �ðgÞ is the �c c anomalous dimension at a
given coupling g, the Dirac spectral density �ð!Þ has
anomalous dimension �ðgÞ, while the eigenvalue ! has
anomalous dimension ��ðgÞ.

An IR-CGT is characterized by the existence of an IR-
fixed point for the running coupling g ¼ g�. The leading
behavior in Eq. (1) is obtained from the renormalization-
group equation exactly at the fixed point [36–38]:

�
ð1þ ��Þ! @

@!
� 3þ ��

�
�ð!Þ ¼ 0; (3)

which depends only on the �c c anomalous dimension
�� ¼ �ðg�Þ at the IR-fixed point. However IR-CGTs are
asymptotically free at high energies and reach the IR-fixed
point only at asymptotically low energies. Hence Eq. (3)
and its solution (1) are valid only for low eigenvalues.

A mass term for fermions destroys scale invariance. If
the mass is small enough, the renormalization flow starts
from the vicinity of the Gaussian fixed point at very high
energy, moves towards the IR-fixed point, stays in its
vicinity for some time, and is eventually driven away
from it by the mass term. A smaller mass corresponds to
a longer time spent in the vicinity of the IR-fixed point. As
long as the renormalization flow stays close to the IR-fixed
point, approximate scale invariance is generated.

Therefore in IR-mCGTs one can identify three regions
for the eigenvalue density:

(1) An intermediate region of eigenvalues
�!IR <!< �!UV.—This region is dominated by
the vicinity of the IR-fixed point. The power law
(1) is valid only in this intermediate range of
eigenvalues.

(2) A region of high eigenvalues !> �!UV.—Around
! ’ �!UV the spectral density begins its transition to
the region dominated by asymptotic freedom, which
will eventually lead to its asymptotic form �ð!Þ /
!3. At these large eigenvalues, the spectral density
is essentially insensitive to the fermion mass; hence,
�!UV has a well-defined nonvanishing chiral limit.

(3) A region of low eigenvalues 0<!< �!IR.—The
spectral density feels the fermion mass and is deter-
mined by the details of the dynamics of the
IR-mCGT. No analytical model is available here
a priori. This region disappears in the chiral limit
( �!IR goes to zero). Since at these low energies the
physics decouples from the UV scale determining
the transition to the asymptotically free regime, and
since eigenvalues have the same scaling dimension
of the mass, the IR scale �!IR must be proportional
to m:

�! IR / m (4)

at the leading order in the chiral limit.

III. METHOD

The proposed method to extract the �c c anomalous
dimension from lattice simulations is described in this
section. Although the Euclidean Dirac operator is diago-
nalizable in the continuum theory, it is not generally so on
the lattice, and one can more conveniently study the
positive-definite operator:

M ¼ ð 6DþmÞyð 6DþmÞ ¼ m2 � 6D2: (5)

Following [40], the mode number per unit volume ��ð�Þ
is defined as the number of eigenvalues ofM lower than�2

divided by the volume:

��ð�Þ ¼ 2
Z ffiffiffiffiffiffiffiffiffiffiffiffi

�2�m2
p

0
�ð!Þd!: (6)

In an intermediate region �!2
IR þm2 <�2 < �!2

UV þm2,
the mode number per unit volume is

��ð�Þ ¼ 2
Z �!IR

0
�ð!Þd!þ 2

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p

�!IR

�ð!Þd!: (7)

The first term will be named ��0ðmÞ. It is an unknown
additive constant, independent of �, that depends only
on the mass m (remember that �!IR / m). As discussed in
Sec. II, in the second integral the spectral density can be
approximatively replaced by the power law in Eq. (1).
Putting it all together,

��ð�Þ ’ ��0ðmÞ þ 1
2ð1þ ��Þ�̂0�

4��=ð1þ��Þð�2 �m2Þ2=ð1þ��Þ:

(8)

Notice that the prefactor and the exponent of the power law
do not depend on the fermion mass, while the additive
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constant ��0 does (and, in particular, vanishes in the chiral
limit). Since the mode number per unit volume is
renormalization-group invariant [40] and has the dimen-
sion of a mass to the 4th power, the additive constant must
scale like

�� 0ðmÞ / M4
PS; (9)

whereMPS is the mass of the isotriplet pseudoscalar meson
(or any other particle mass).

All formulas written so far are expressed in terms of
renormalized quantities. In order to compare Eq. (8) to
lattice data, one has to trade the renormalized quantities
with the bare ones. This can be done by replacing (see [40]
for details)

� ! �

ZP

; m ! m

ZP

¼ ZA

ZP

mPCAC; (10)

where ZA and ZP are the renormalization constants of the
isovector axial current A� and the isovector pseudoscalar

density Pa, respectively, and mPCAC is the quark mass as
defined from the bare PCAC (partially conserved axial
current) relation

@�A
a
� ¼ mPCACP

a: (11)

The mode number does not need to be redefined, since it is
renormalization-group invariant. Putting everything to-
gether, the mode number per unit volume in lattice units
as a function of the bare eigenvalue � becomes

a�4 ��ð�Þ ’ a�4 ��0 þ A½ða�Þ2 � ðamÞ2�2=ð1þ��Þ; (12)

for a suitable definition of the dimensionless constant A.
The parameter m appearing in the previous formula is
related to the bare PCAC mass through the relation

m ¼ ZAmPCAC: (13)

The proposed strategy consists in computing the mode
number per unit volume by means of lattice simulations,
and in extracting the �c c anomalous dimension by fitting

Eq. (12) to the lattice data. Since the validity range ��IR <

�< ��UV of Eq. (12) is not known a priori, it has to be
determined by studying quality and stability of the fit
procedure.

The mode number per unit volume can be computed
essentially in two ways.

(1) The eigenvalues of M can be explicitly computed
starting from the lowest one using the Chebyshev
accelerated subspace iteration method described in
detail in [41]. Since the number of eigenvalues
below some fixed value �2 grows linearly with the

volume, this method is unpractical for large
volumes.

(2) Alternatively (following Ref. [40]) one can define
the projector Pð�Þ over the eigenspaces of M cor-
responding to lower eigenvalues than �2, in terms
of which the mode number per unit volume is

��ð�Þ ¼ lim
V!1

1

V
htrPð�Þi: (14)

The projector can be approximated by a suitable
rational function:

P ð�Þ ’ hðXÞ4; X ¼ 1� 2�2�
Mþ�2�

; (15)

where hðxÞ is a polynomial and�� is a parameter of
order � defined in Eq. (A5). The trace in Eq. (14)
can be estimated stochastically. The error due to the
approximation in Eq. (15) can be estimated
a posteriori, once the spectral density is recon-
structed by means of the fit procedure (see the
appendix). This technique is more effective for
larger volumes and is described in detail in [40].

IV. ANALYSIS AND RESULTS

In order to illustrate the proposed technique, let us
consider the SUð2Þ þ 2 adj theory, which is in the confor-
mal window.
Numerical simulations have been performed at fixed

� ¼ 2:25 with Wilson fermions. I have used three sets
(Table I) of configurations generated with the HiRep
code [17] and already used in previous works to compute
the mass spectrum (mesons, glueballs and string tension)
[18–21,23]. The first set (S1) corresponds to bare mass
am0 ¼ �1:15 on a 64� 243 lattice and includes 25 well-
decorrelated configurations. The second set (S2) corre-
sponds to the same bare mass am0 ¼ �1:15 but on the
larger 64� 323 lattice and includes 20 well-decorrelated
configurations. The third set (S3) corresponds to a lighter
bare mass am0 ¼ �1:18 on a 64� 243 lattice and includes
20 well-decorrelated configurations.
The �c c anomalous dimension will be extracted by

fitting Eq. (12) to the mode number per unit volume

TABLE I. Summary of the three sets, used for computing the
mode number. The PCAC and isotriplet pseudoscalar meson
masses have been published in the cited papers and are given
here just for the reader’s convenience.

Set Lattice am0 amPCAC aMPS Reference

S1 64� 243 �1:15 0.118 44(63) 0.641 4(41) [23]

S2 64� 323 �1:15 0.117 90(36) 0.638 6(15) [23]

S3 64� 243 �1:18 0.055 07(89) 0.337 4(63) [21]
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obtained from sets S1 and S3. Set S2 will be used to check
that the finite-volume effects are under control at least for
the higher mass. Moreover the stability of the fitting pro-
cedure will be checked against the introduction of a sub-
leading term in Eq. (12).

Before moving to the details of the analysis, the results
of the following subsections are anticipated and summa-
rized in Table II for the reader’s convenience. The �c c
anomalous dimensions in Table II are all compatible;
however, the first one �� ¼ 0:371ð20Þ obtained from set
S1 is quoted as the final results. This choice is dictated by
the fact that the finite-volume effects have been explicitly
checked for set S1. Even considering the weighted average
between the two determinations obtained in the same range
0:091 � a� � 0:18, one would get the very similar result
�� ¼ 0:365ð19Þ.

A. Set S1: Determination of ��
The lowest 200 eigenvalues of M are explicitly com-

puted. This allows us to reconstruct the mode number per
unit volume up to a� ¼ 0:1604. Above this eigenvalue,
the projector method is used. Results are listed in Table III.

For a� ’ 10 the mode number per unit volume saturates
at the value 12a�4 (12 is the dimension of the vector space
spanned by the pseudofermions in a single site). The
saturation is a pure lattice artifact, so only values of a�
for which the mode number per unit volume is less than
0:12a�4 are considered (one-hundredth of the total number
of eigenvalues).

Equation(12)isfittedtothelatticedata.AlthoughthePCAC
mass is known, but no determination of ZA is available, the
parameteramwhichdeterminesthemode-numbergapcannot
be reconstructed from Eq. (13) and is considered as a fitting
parameteralongwitha�4 ��0,Aand��.Fromthediscussionin
Sec.IIIit isalsoclearthatthefittingfunctioninEq.(12)canbe
usedonlyinanintermediaterangeofeigenvalues,thatmustbe
determinedbystudying thestabilityandqualityof thefit.

Determination of the fit-range lower end.—The fit works
well with a �2=dof of order 1 in the quite large range
0:08 � a� � 0:4. Choosing the fit-range higher end to be
0.18, the lower end is systematically increased from 0.08 to
0.1 (fits S1:F1 to S1:F7 in Table IV). The fit parameters are

shown as functions of the fit-range lower end in Fig. 1.
Increasing the fit-range lower end, the fit parameters keep
shifting up to a�H ’ 0:91where they reach a plateau. The
latter value is chosen as the fit-range lower end. Notice that

TABLE II. Determinations of the �c c anomalous dimension
from (a) set S1 (am0 ¼ �1:15); (b) set S1 (am0 ¼ �1:15)
including a subleading correction; and (c),(d) set S3 (am0 ¼
�1:18) with two different fit ranges. The three determinations
are compatible, in the sense that the 1� regions overlap. The first
determination is quoted as the final result.

Sec. Set Fitting function Fit range ��
IVA S1 (12) 0:091 � a� � 0:18 0.371(20)

IVB S1 (17) 0:091 � a� � 0:29 0.355(23)

IVD S3 (12) 0:091 � a� � 0:16 0.364(92)

IVD S3 (12) 0:091 � a� � 0:18 0.325(50)

TABLE III. Set S1 (64� 243 � ¼ 2:25 am0 ¼ �1:15). Mode
number per unit volume, computed from the eigenvalues for
a�< 0:11 and with the projector method for a�> 0:11.

a� a�4 ��ð�Þ
0.0800 1:31ð42Þ � 10�6

0.0812 2:62ð64Þ � 10�6

0.0824 0:64ð11Þ � 10�5

0.0836 1:07ð12Þ � 10�5

0.0848 1:52ð13Þ � 10�5

0.0860 2:05ð12Þ � 10�5

0.0872 2:73ð14Þ � 10�5

0.0884 3:39ð16Þ � 10�5

0.0896 4:10ð20Þ � 10�5

0.0908 4:99ð19Þ � 10�5

0.0920 5:91ð21Þ � 10�5

0.0932 6:84ð23Þ � 10�5

0.0944 7:78ð24Þ � 10�5

0.0956 8:94ð26Þ � 10�5

0.0968 1:007ð27Þ � 10�4

0.0980 1:122ð28Þ � 10�4

0.0992 1:252ð28Þ � 10�4

0.1004 1:390ð30Þ � 10�4

0.1016 1:520ð31Þ � 10�4

0.1028 1:669ð31Þ � 10�4

0.1040 1:812ð31Þ � 10�4

0.1052 1:972ð30Þ � 10�4

0.1064 2:141ð33Þ � 10�4

0.1111 2:858ð34Þ � 10�4

0.1163 3:648ð40Þ � 10�4

0.1217 4:767ð55Þ � 10�4

0.1274 6:027ð50Þ � 10�4

0.1333 7:495ð54Þ � 10�4

0.1395 9:144ð73Þ � 10�4

0.1460 1:1093ð73Þ � 10�3

0.1529 1:3622ð67Þ � 10�3

0.1600 1:6221ð79Þ � 10�3

0.1674 1:9448ð67Þ � 10�3

0.1753 2:3011ð99Þ � 10�3

0.1834 2:7354ð95Þ � 10�3

0.2009 3:816ð12Þ � 10�3

0.2201 5:282ð13Þ � 10�3

0.2411 7:217ð16Þ � 10�3

0.2641 9:810ð19Þ � 10�3

0.2894 1:3206ð18Þ � 10�2

0.3170 1:7659ð23Þ � 10�2

0.3472 2:3649ð31Þ � 10�2

0.3804 3:1452ð29Þ � 10�2

0.4167 4:1708ð47Þ � 10�2

0.4564 5:5120ð43Þ � 10�2

0.5000 7:2580ð61Þ � 10�2

0.5477 9:5130ð62Þ � 10�2

0.6000 1:244 98ð63Þ � 10�1
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TABLE IV. Equation (12) is fitted to the mode number per unit volume for sets S1 and S3. The fit range for set S1 (am0 ¼ �1:15) is
systematically explored. In fits S1:F1 to S1:F7, the fit-range higher end is kept fixed at 0.18 while the lower end is varied. In fits S1:F8
to S1:F26, the lower end is kept fixed at 0.091 while the higher end varied. S1:F4 (in bold) has been chosen as the final result. Fits S3:
F1 to S3:F5 correspond to the lighter mass am0 ¼ �1:18. �� obtained from this set is compatible with the heavier-mass result.

Fit Range a�4 ��0 A am �� dof �2=dof

S1:F1 0:08 � a� � 0:18 2:00ð75Þ � 10�6 0.586(12) 8:03ð32Þ � 10�2 0.3431(52) 31 0.68

S1:F2 0:083 � a� � 0:18 0:53ð18Þ � 10�5 0.560(18) 8:11ð52Þ � 10�2 0.3556(86) 28 0.24

S1:F3 0:087 � a� � 0:18 0:67ð35Þ � 10�5 0.553(23) 8:14ð85Þ � 10�2 0.359(12) 25 0.27

S1:F4 0:091�a��0:18 1:31ð78Þ�10�5 0.532(38) 8:26ð16Þ�10�2 0.371(20) 21 0.30

S1:F5 0:094 � a� � 0:18 1:46ð98Þ � 10�5 0.528(41) 8:28ð19Þ � 10�2 0.373(23) 19 0.33

S1:F6 0:096 � a� � 0:18 0:17ð12Þ � 10�4 0.524(43) 8:32ð21Þ � 10�2 0.376(24) 17 0.36

S1:F7 0:1 � a� � 0:18 0:19ð20Þ � 10�4 0.519(53) 8:35ð33Þ � 10�2 0.378(31) 14 0.43

S1:F8 0:091 � a� � 0:105 0:05ð24Þ � 10�4 0.58(31) 8:09ð56Þ � 10�2 0.35(15) 7 0.024

S1:F9 0:091 � a� � 0:115 �0:08ð23Þ � 10�4 1.0(1.8) 7:65ð90Þ � 10�2 0.24(15) 11 0.17

S1:F10 0:091 � a� � 0:12 0:15ð23Þ � 10�4 0.47(60) 8:33ð65Þ � 10�2 0.40(14) 12 0.21

S1:F11 0:091 � a� � 0:125 �0:02ð23Þ � 10�4 0.72(70) 7:88ð77Þ � 10�2 0.30(12) 13 0.21

S1:F12 0:091 � a� � 0:13 �0:03ð31Þ � 10�4 0.73(83) 0:79ð11Þ � 10�1 0.30(12) 14 0.19

S1:F13 0:091 � a� � 0:135 0:10ð21Þ � 10�4 0.57(30) 8:18ð57Þ � 10�2 0.354(78) 15 0.20

S1:F14 0:091 � a� � 0:14 0:19ð11Þ � 10�4 0.490(83) 8:38ð25Þ � 10�2 0.392(40) 16 0.22

S1:F15 0:091 � a� � 0:15 2:44ð100Þ � 10�5 0.449(68) 8:50ð21Þ � 10�2 0.415(37) 17 0.22

S1:F16 0:091 � a� � 0:16 0:13ð10Þ � 10�4 0.533(59) 8:25ð22Þ � 10�2 0.370(29) 19 0.33

S1:F17 0:091 � a� � 0:17 1:26ð83Þ � 10�5 0.535(41) 8:25ð16Þ � 10�2 0.369(22) 20 0.31

S1:F18 0:091 � a� � 0:19 0:76ð81Þ � 10�5 0.561(36) 8:14ð16Þ � 10�2 0.356(19) 22 0.33

S1:F19 0:091 � a� � 0:21 0:38ð72Þ � 10�5 0.579(29) 8:07ð14Þ � 10�2 0.347(15) 23 0.33

S1:F20 0:091 � a� � 0:23 �0:57ð61Þ � 10�5 0.620(21) 7:87ð12Þ � 10�2 0.327(11) 24 0.45

S1:F21 0:091 � a� � 0:25 �0:82ð54Þ � 10�5 0.630(15) 7:82ð10Þ � 10�2 0.3223(78) 25 0.45

S1:F22 0:091 � a� � 0:27 �1:19ð51Þ � 10�5 0.641(13) 7:74ð94Þ � 10�2 0.3166(66) 26 0.50

S1:F23 0:091 � a� � 0:29 �0:85ð41Þ � 10�5 0.6326(75) 7:81ð72Þ � 10�2 0.3212(42) 27 0.52

S1:F24 0:091 � a� � 0:39 0:26ð38Þ � 10�5 0.6122(27) 8:01ð68Þ � 10�2 0.3331(21) 30 0.84

S1:F25 0:091 � a� � 0:5 1:64ð35Þ � 10�5 0.5968(15) 8:23ð61Þ � 10�2 0.3444(15) 33 2.4

S1:F26 0:091 � a� � 0:6 3:58ð52Þ � 10�5 0.5805(13) 8:54ð83Þ � 10�2 0.3584(18) 35 10

S3:F1 0:091 � a� � 0:13 �0:04ð16Þ � 10�3 0.85(31) 0:12ð45Þ � 10�1 0.25(18) 6 1.4

S3:F2 0:091 � a� � 0:14 0:02ð11Þ � 10�3 0.81(30) 0:37ð34Þ � 10�1 0.27(14) 8 1.1

S3:F3 0:091 � a� � 0:15 0:06ð12Þ � 10�3 0.67(24) 0:50ð33Þ � 10�1 0.33(12) 9 1.0

S3:F4 0:091 � a� � 0:16 0:10ð10Þ � 10�3 0.59(17) 0:57ð27Þ � 10�1 0.364(92) 10 0.95

S3:F5 0:091�a��0:18 0:54ð73Þ�10�4 0.667(98) 0:48ð22Þ�10�1 0.325(50) 11 0.87
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FIG. 1. Parameters in Eq. (12), fitted to set S1 in the range a�L � a� � 0:18 for various values of the lower end a�L. While the fit
range is reduced the fit parameters shift and reach plateaux for a�L ’ 0:091.
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at the lower end of the fit range ��ð0:092=aÞ * 3 ��0, and the
additive constant becomes soon negligible for larger
eigenvalues.

Determination of the fit-range higher end.—The fit-
range higher end is also systematically investigated.
Equation (12) is fitted to the data in the range 0:091 �
a� � a�H, where the higher end a�H is gradually
lowered from 0.6 to 0.1 (fits S1:F8 to S1:F26 in Table IV).
Although the �2=dof becomes less than 1 at about a�H ’
0:4, the fit parameters keep shifting up to a�H ’ 0:18
where they reach a plateau (see plots in Fig. 2). The latter
value is chosen as the fit-range higher end.

Summarizing, the chosen fit range is 0:091 � a� �
0:18 (fit S1:F4 in Table IV), which yields a mode number
per unit volume of the form (Fig. 3)

a�4 ��ð�Þ ’ 1:31ð78Þ � 10�5 þ 0:532ð38Þ½ða�Þ2
� 0:0826ð16Þ2�2=½1þ0:371ð20Þ�: (16)

The �c c anomalous dimension is determined to be �� ¼
0:371ð20Þ. Notice that the chosen range fit corresponds to
about 2000 eigenvalues on the 64� 243 lattice.

B. Set S1: Corrections to the leading power

It is interesting to check the stability of the fit result (16)
against the introduction of a subleading power-law contri-
bution in Eq. (12), which becomes

a�4 ��ð�Þ ’ a�4 ��0 þ A½ða�Þ2 � ðamÞ2�2=ð1þ��Þ

þ B½ða�Þ2 � ðamÞ2��: (17)

Since Eq. (16) describes very well the data in the range
0:091 � a� � 0:18, one needs to enlarge the fit range in
order to discriminate the subleading contribution. Fitting
the data to Eq. (17) in the range 0:091 � a� � 0:29, one
obtains

a�4 ��ð�Þ ’ �0:06ð68Þ � 10�5 þ 0:529ð49Þ½ða�Þ2
� 0:0798ð14Þ2�2=½1þ0:355ð23Þ� þ 0:16ð11Þ½ða�Þ2
� 0:0798ð14Þ2�0:926ð90Þ: (18)

Notice that by including the subleading contribution, the
estimate for the �c c anomalous dimension in this
range has increased from �� ¼ 0:3212ð42Þ to �� ¼
0:355ð23Þ, becoming compatible with the determination
of the previous subsection (in the sense that the 1� regions
overlap).

C. Set S2: Finite-volume effects

As analyzed in [23], meson masses computed on the
set S1 (am0 ¼ �1:15 on 64� 243) are identical to
the ones computed on the set S2 (am0 ¼ �1:15 on
64� 323), within the statistical errors that are of the
order of 0.5%. It is reasonable to expect that finite-
volume effects are under control also for the mode
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0.4

0.5
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0.080

0.085
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0.4
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0.1 0.2 0.3 0.4 0.5 0.6
aΩH

0

a-4
ν 0

4×10-5

2×10-5

-2×10-5

-4×10-5

FIG. 2. Parameters in Eq. (12), fitted to set S1 in the range
0:091 � a� � a�H for various values of the higher end a�H .
While the fit range is reduced the fit parameters shift and reach
plateaux for a�H ’ 0:18.

1.010.0 1

[ (aΩ)
2
 - (am)

2
 ]
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1×10-1

1×10-2
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1×10-4

1×10-5
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 [ ν

(Ω
) 

- 
ν 0]

64x24
3
 am0=-1.15

FIG. 3 (color online). Mode number per unit volume for the set
S1 (am0 ¼ �1:15 on a 64� 243 lattice): lattice data and fit
result in log-log scale. The reference fit is S1:F4 in Table IV. The
parameters in the axis labels have been chosen to be a�4 ��0 ¼
1:31� 10�5 and am ¼ 0:0826 (best-fit results). The black
points are the data computed by numerical simulations. The
red line is the best fit to Eq. (12), while the orange band
corresponds to the 1� region. The blue dashed lines delimit
the data used for the fit.
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number. However this is explicitly checked by comput-
ing the mode number per unit volume using the projec-
tor method for few values of a�. The agreement is
always within 1� as shown in Table V. Since larger
finite-volume effects are expected for lower eigenvalues,
we can conclude that the finite-volume effects for the set
S1 are always negligible with respect to the statistical
errors for a� � 0:086.

D. Set S3: Lighter mass

The set S3 (am0 ¼ �1:18 on 64� 243) is used to
check the stability of the �c c anomalous dimension
while going closer to the chiral limit. For this set no
detailed investigation of finite-volume effects is avail-
able. However the isotriplet pseudoscalar meson is ex-
pected to be about 10% lighter than in infinite volume
(see analysis in [23]). Similarly one has to expect
sizable finite-volume effects also for the spectral density
at low eigenvalues, while for larger eigenvalues the
finite-volume effects become smaller. I will work under
the assumption that the finite-volume effects are com-
parable in the two sets S1 and S3 at fixed eigenvalue.
Therefore the analysis is restricted to the safe range
a� � 0:086.

The mode number per unit volume for this set has been
computed using the projector method, and results are listed

in Table VI. Equation (12) has been fitted to the data in the
range 0:091 � a� � a�H, for several values of the right
end a�H (fits S3:F1 to S3:F5 in Table IV). All fits have
�2=dof of order 1 and give compatible results (the 1�
regions overlap). The value of the �c c anomalous dimen-
sion obtained from the largest fit range is �� ¼ 0:325ð50Þ
(fit S3:F5 in Table IV). Both the amplitude A and the
anomalous dimension ��, that are mass-independent, are
compatible with the ones obtained from the heavier mass
(fit S1:F4 in Table IV), in the sense that the 1� regions
overlap.

V. CONCLUSIONS

The �c c anomalous dimension of the SU(2) gauge
theory with 2 Dirac fermions in the adjoint representation
[SUð2Þ þ 2 adj] is extracted from the mode number per
unit volume of the operator M ¼ m2 � 6D2, which is re-
lated to the Dirac spectral density �ð!Þ by

��ð�Þ ¼ 2
Z ffiffiffiffiffiffiffiffiffiffiffiffi

�2�m2
p

0
�ð!Þd!: (19)

The mode number per unit volume is computed by means
of lattice simulations, using the methods described in
[40,41].
In an IR-CGT, the spectral density at small eigenvalues

follows a power law, and so does the mode number. The
exponent is related to the �c c anomalous dimension �� at
the IR-fixed point. If conformality is explicitly broken by a
mass for the fermions, the spectral density is expected to
follow the power law only in an intermediate range of
eigenvalues. In this intermediate region, the mode number
per unit volume (in lattice units) has approximatively the
form

a�4 ��ð�Þ ’ a�4 ��0 þ A½ða�Þ2 � ðamÞ2�2=ð1þ��Þ: (20)

This work proves that it is possible to use the previous
formula to extract the �c c anomalous dimension from
lattice simulations. The strength of this method relies on
the following facts:
(i) The mode number can be obtained with quite high

accuracy through lattice simulations, even with few
configurations (25 configurations have been used for
the higher mass), since it is an extensive quantity. Its
computation does not involve fitting procedures (like
for particle masses).

(ii) Since the finite-volume effects on the mode number
are smaller for larger eigenvalues, useful informa-
tion can be extracted also from not-so-large
volumes.

(iii) The �c c anomalous dimension is extracted from
different observables (i.e. the mode number at dif-
ferent eigenvalues) computed on the same set of
configurations. All the other known methods are
based on the analysis of the scaling of a fixed

TABLE V. The mode number for the set S2 (64� 323 � ¼
2:25 am0 ¼ �1:15), computed with the projector method, is
compared to the mode number for selected points of the set S1
(64� 243 � ¼ 2:25 am0 ¼ �1:15). For all the considered ei-
genvalues, the finite-volume effects are negligible.

a� a�4 ��ð�Þ @ 64� 243 (S1) a�4 ��ð�Þ @ 64� 323 (S2)

0.086 2:05ð12Þ � 10�5 1:974ð65Þ � 10�5

0.092 5:91ð21Þ � 10�5 5:90ð23Þ � 10�5

0.098 1:1122ð28Þ � 10�4 1:1105ð26Þ � 10�4

0.104 1:811ð31Þ � 10�4 1:827ð19Þ � 10�4

TABLE VI. Set S3 (64� 243 � ¼ 2:25 am0 ¼ �1:18). Mode
number per unit volume, computed with the projector method.

a� a�4 ��ð�Þ
0.092 3:567ð52Þ � 10�4

0.098 4:510ð62Þ � 10�4

0.104 5:473ð51Þ � 10�4

0.110 6:834ð60Þ � 10�4

0.116 7:997ð72Þ � 10�4

0.122 9:508ð66Þ � 10�4

0.128 1:123ð87Þ � 10�3

0.134 1:319ð12Þ � 10�3

0.140 1:5146ð77Þ � 10�3

0.150 1:896ð11Þ � 10�3

0.160 2:337ð12Þ � 10�3

0.180 3:423ð16Þ � 10�3

PRECISE DETERMINATION OF THE �c c . . . PHYSICAL REVIEW D 86, 025006 (2012)

025006-7



observable with some parameters in the action
(typically the mass, the volume or both).

It is also surprising to observe that the region controlled by
the power law is already quite wide at some intermediate
mass (aMPS ’ 0:5). This last observation has an empirical
nature and is in principle model-dependent.

The �c c anomalous dimension of the SUð2Þ þ 2 adj is
found to be �� ¼ 0:371ð20Þ at fixed � ¼ 2:25. The
stability of this result has been checked by lowering
the fermion mass and by including a subleading power
in the fitting function. An analysis of the continuum
limit will be attempted in the future. It is worth recalling
again that, even though the presented result is obtained
for a particular theory, the method can be exported with
no modifications to any other gauge group or matter
content.
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APPENDIX: PROJECTOR-APPROXIMATION
ERROR ESTIMATE

It is worth recalling a few essential facts about the
procedure for the approximation of the projector Pð�Þ
(for details the reader should refer to [40]). Let PðxÞ be

the min-max polynomial of degree n that minimizes the
deviation

� ¼ max
	�y�1

j1� ffiffiffi
y

p
PðyÞj; (A1)

and define the function

hðxÞ ¼ 1
2½1� xPðx2Þ�: (A2)

The polynomial PðxÞ approximates the function x�1=2 in
the range 	 � x � 1, while hðxÞ approximates the function

ð�xÞ in the range ffiffiffi

	
p � jxj � 1. Two degrees of approxi-

mation have been used in this paper (depending on the
required precision): (a) a polynomial of degree 32, with
	 ¼ 10�2 and � ’ 4:35� 10�4; (b) a polynomial of
degree 100, with 	 ¼ 10�3 and � ’ 5:20� 10�4.
The error due to the approximation of the projector

Pð�Þ with the rational function hðXÞ4 has the following
spectral representation:

� ¼
Z 1

0
d!½
ð��!Þ � hðx!Þ�a�4 ��0ð!Þ; (A3)

x! ¼ 1� 2��
!2 þ��

: (A4)

The quantity �� is defined as

�

��
¼

�
1� ffiffiffi

	
p

1þ ffiffiffi
	

p
�
1=2 þ

Z ffiffi
	

p

� ffiffi
	

p dx
1þ x

ð1� x2Þ3=2 hðxÞ
4: (A5)

The error � in Eq. (A3) has been estimated by using the
functional form of the mode number per unit volume
obtained from the best fit:

a�4 ��ð�Þ ’
�
a�4 ��0 þ 0:532½ða�Þ2 � 0:08262�2=1:371 for am0 ¼ �1:15

a�4 ��0 þ 0:667½ða�Þ2 � 0:0482�2=1:325 for am0 ¼ �1:18:
(A6)

In all cases the error � has been checked to be smaller that the statistical error on a�4 ��ð�Þ.
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