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We consider a theory of massless reduced quantum electrodynamics (RQEDd�;de ), e.g., a quantum field

theory where the Uð1Þ gauge field lives in d�-space-time dimensions while the fermionic field lives in a

reduced space-time of de dimensions (de < d�). In the case where d� ¼ 4 such RQEDs are renormaliz-

able while they are super-renormalizable for d� < 4. The 2-loop electromagnetic current correlation

function is computed exactly for a general RQEDd�;de . Focusing on RQED4;3, the corresponding

�-function is shown to vanish which implies the scale invariance of the theory. Interaction correction

to the 1-loop vacuum polarization, �1, of RQED4;3 is found to be � ¼ �1ð1þ 0:056�Þ where � is the

fine structure constant. The scaling dimension of the fermion field is computed at 1-loop and is shown to

be anomalous for RQED4;3.
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I. INTRODUCTION

Reduced quantum electrodynamics (RQEDd�;de) [1] is a

quantum field theory (QFT) describing the interaction of
an Abelian Uð1Þ gauge field living in d� space-time di-

mensions with a fermion field living in a reduced space-
time of de dimensions (de � d�). In the particular case

where gauge and fermion fields live in the same space-
time, d� ¼ de, RQEDs correspond to the usual QEDs.

QED4 is the simplest and most well-established renorma-
lizable QFT which presently exists; see textbooks [2]. In
dimensions lower than 3þ 1, such theories are super-
renormalizable. QED2, also known as the Schwinger
model, is a celebrated exactly solvable model [3].
QED3 was considered as a toy model to study confinement
[4], infrared divergences [5] and chiral symmetry
breaking [6]. In condensed matter physics, nonrelativistic
2þ 1-dimensional gauge field theories away from the
charge neutral point, where the gauge field is generated
by site occupation constraint, are used to model copper
oxides; see e.g., Refs. [7,8], and references therein.

Motivations for the study of reduced theories came from
interest in branes [1,9] as well as potential applications to
condensed matter physics, see Refs. [10] for early studies
related to planar superconductivity. It is indeed quite usual
that nonrelativistic electrons may be restricted to a plane
(de ¼ 2þ 1), e.g., graphene, or a line (de ¼ 1þ 1), e.g.,
quantum wires, while interacting through a bulk gauge
field (d� ¼ 3þ 1). In the case of graphene, see [11,12]

for reviews, low-energy excitations are massless Dirac
fermions with a Fermi velocity much smaller than the
velocity of light, vF=c � 1=300, and interacting via
the long-range instantaneous Coulomb interaction. The
strength of the later is measured by a fine structure con-
stant, �g ¼ e2=4��ℏvF, which may be of the order of

unity unless the substrate is a high-� dielectric.
Nevertheless, electronic properties of graphene were com-
puted via perturbation theory and, in some cases, different
results were found [13]. Moreover, it has been claimed that
the system flows towards a Lorentz covariant fixed point in
the infrared, cf., [14] for a recent review.
In the present paper, we compute radiative corrections in

massless RQEDd�;de with a special focus on electromag-

netic current correlations. The derived formulas are applied
to the case of RQED4;3 which is an ultrarelativistic version

of graphene, i.e., pair creation is restricted to a plane.
Feynman diagrams with noninteger indices appear which
originate from the fact that the reduced theory is nonlocal.
The diagrams are computed using advanced multiloop
techniques [15–17]. In the following we will follow the
notations of Ref. [15].
The paper is organized as follows. In Sec. II, the model

of massless RQEDd�;de is presented. In Sec. III, the reduced

Feynman rules and the renormalization scheme are pre-
sented. In Sec. IV, 1-loop corrections to vacuum polariza-
tion and fermion self-energy are presented and applied to
RQED4;3. In Sec. V, 2-loop corrections to the vacuum

polarization are presented and applied to RQED4;3.

Finally, in Sec. VI we summarize our results and conclude.
In the following, we work in units where ℏ ¼ c ¼ 1.

II. MODEL

Massless RQEDd�;de is described by

Sd�;de ¼
Z

dd�xLd�;de ;

Ld�;de ¼ �c ðxÞi��eD�e
c ðxÞ�ðd��deÞðxÞ � 1

4
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where F�	 ¼ @�A	 � @	A� is the field stress tensor,

D� ¼ @� þ ieA� is the gauge covariant derivative and a

is a gauge fixing parameter. Equation (1) displays two
kinds of indices where the zero index refers to time.
Matter indices, �e ¼ 0; 1; . . . ; de � 1, are related to the
first term in the Lagrangian which is a boundary term
describing a fermion field c . Gauge indices, �� ¼
0; 1; . . . ; de � 1; de; . . . ; d� � 1, are related to the bulk

gauge field A�. The minimal coupling of the gauge field

to the fermion current, j�A
�, only involves fermionic

indices so that the conserved current can be defined as

j�ðxÞ ¼
8<
:
e �c ðxÞ��c ðxÞ�ðd��deÞðxÞ � ¼ �e;

0 � ¼ de; . . . ; d� � 1:

(2)

For general de and d� the dimensions of the fields are

given by

½A�� ¼ 1� "�; ½c � ¼ 3

2
� "e � "�; ½e� ¼ "�;

(3a)

"� ¼ 4� d�
2

; "e ¼
d� � de

2
; (3b)

where the variables "� and "e will be useful later on. From

Eq. (3), we see that for a four-dimensional gauge field
(d� ¼ 4) the coupling constant is dimensionless whatever

space the fermion field lives in. This includes the standard
case of QED4 (de ¼ d� ¼ 4) but also RQED4;3 (d� ¼ 4

and de ¼ 3) and RQED4;2 (d� ¼ 4 and de ¼ 2) and sug-

gests that all these theories are renormalizable quantum
field theories. This is in agreement with the counting of
ultraviolet (UV) divergences. Indeed, the superficial de-
gree of divergence (SDD) of an RQEDd�;de diagram is

given by

D ¼ de þ
d� � 4

2
V � d� � 2

2
N� � de � 1

2
Ne; (4)

where V is the number of vertices, N� the number of

external gauge lines andNe the number of external fermion
lines. From Eq. (4) we see that for d� ¼ 4 the SDD does

not depend on the number of vertices whatever value de
takes. This is in marked contrast with super-renormalizable
theories which have coupling constants with dimensions of
positive power of the mass. Going to higher orders, one
accumulates negative powers of momentum in order to
compensate for the dimensionality of the coupling con-
stant. Such theories are therefore UV finite. Infrared (IR)
divergences may however force the breakdown of the loop
expansion for massless theories cf., Refs. [5] for the case of
QED3.

Concerning RQEDs, we see from Eq. (4) that amongst
the most superficially divergent amplitudes, the fermion

self-energy (Ne ¼ 2, N� ¼ 0) and the fermion-gauge ver-

tex (Ne ¼ 2,N� ¼ 1) of all RQED4;des have the same SDD

as in QED4: De ¼ 1 and De�� ¼ 0, respectively. Because

the fermion self-energy may only depend on 6p, the degree
of divergence is actually reduced to De ¼ 0 so that both of
these amplitudes are logarithmically divergent in RQEDs.
On the other hand, the SDD of the photon self-energy

(Ne ¼ 0, N� ¼ 2) is reduced in RQEDs: D� ¼ 1 for

RQED4;3 and D� ¼ 0 for RQED4;2, with respect to

QED4 (where D� ¼ 2). Because of current conservation,

this electromagnetic current correlation function:
��	ðx� yÞ ¼ hj�ðxÞj	ðyÞi where the current is given by
Eq. (2), is constrained to have the general form:

��	ðqÞ ¼ ðg�	q2 � q�q	Þ�ðq2Þ; (5)

where g�	 ¼ diagð1;�1;�1;�1Þ is the metric tensor and
q2 ¼ q�q

�. This constraint further reduces the degree of

divergence to: D� ¼ 0 for QED4, D� ¼ �1 for RQED4;3

and D� ¼ �2 for RQED4;2. This dimensional analysis

therefore suggests that while �ðq2Þ logarithmically di-
verges in QED4 it is finite in RQEDs.
The fact that the coupling constant of massless

RQED4;de is dimensionless implies scale invariance at the

classical level; see Ref. [18] for a review. Scale invariance
may however be broken by quantum corrections [18] if the
latter diverge order by order in perturbation theory. This is
because a cutoff has to be introduced in order to remove the
divergences. Scale invariance is, for example, lost in QED4

where the coupling constant diverges in the ultraviolet.
This is encoded in the beta function of the theory which
describes the dependence of the coupling constant on the
energy scale:

�ð�ð�ÞÞ ¼ d log�ð�Þ
d log�

; (6)

and �> 0 for QED4. The above dimensional analysis
suggests that massless RQED4;de , with de < 4, may remain

scale invariant when radiative corrections are included
with a possible anomalous scaling dimension for the fer-
mion field. We will check this in the following by an
explicit computation of the 1-loop anomalous scaling di-
mension of the fermion field and of the 2-loop beta func-
tion. Results will be applied to RQED4;3.

III. FEYNMAN RULES AND
RENORMALIZATION SCHEME

Keeping the space-time dimensions of the fermion field
de, and gauge-field d�, arbitrary for the moment, we

proceed on deriving the Feynman rules of massless
RQEDd�;de . The free massless fermionic propagator reads

S0ðpeÞ ¼ i 6pe

p2
e þ i�

; (7)
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where pe ¼ p0; . . . ; pde�1 lies in the reduced matter space

and i� ¼ i0þ is the convergence factor of this Feynman-
type propagator. On the other hand, the free bulk gauge
field propagator reads

D
��	�

0 ðq�Þ ¼ �i

q2� þ i"

�
g��	� � 


q
��
� q

	�
�

q2� þ i"

�
; (8)

where 
 ¼ 1� a and q� ¼ q0; . . . ; qd��1 lives in the bulk

d�-dimensional space-time. In the following we will often

omit the convergence factor in order to simplify notations
but they are implied. Because we are interested in the
properties of the system in the reduced space where the
fermion field is living we may integrate over the d� � de
bulk gauge degrees of freedom. This yields an effective
reduced gauge-field propagator:

~D
�e	e

0 ðqeÞ ¼ i

ð4�Þ"e
�ð1� "eÞ
ð�q2eÞ1�"e

�
g�e	e � ~


q�e
e q	e

e

q2e

�
; (9)

where ~
 ¼ 
ð1� "eÞ and "e was defined in Eq. (3b). This
propagator can be separated in longitudinal and transverse
parts which read

~D 0kðq2Þ ¼ i

ð4�Þ"e
�ð1� "eÞ
ð�q2Þ1�"e

~a;

~D0?ðq2Þ ¼ i

ð4�Þ"e
�ð1� "eÞ
ð�q2Þ1�"e

:

(10)

In the case of RQED4;3, "e ¼ 1=2, the reduced propagator

has a square root branch-cut whereas for RQED4;2, "e ¼ 1,
it is logarithmically divergent. The latter may be cured by
giving a small width to the wire [1]. In both cases the
reduced QFT is nonlocal. In the following we will focus on
general formulas directly applicable to the cases of QED4,
QED3 and RQED4;3. Feynman rules for these massless

QEDs are summarized in Fig. 1.
Perturbation theory is implemented in the usual way by

considering the Dyson equation for the fermion and gauge
field propagators. The former reads

SðpÞ ¼ S0ðpÞ þ S0ðpÞð�i�ðpÞÞSðpÞ; (11)

where it is understood that p is in the fermion space and �
is the fermion self-energy. The solution of this equation
reads

SðpÞ ¼ i

6p
1

1��Vðp2Þ ; (12)

where the expression of the fermion self-energy suited to
the massless case has been adopted [15]:

�ðpÞ ¼ 6p�Vðp2Þ: (13)

On the other hand, the Dyson equation for the reduced
gauge field propagator reads

~D�e	eðqeÞ ¼ ~D�e	e

0 ðqeÞ
þ ~D�e�e

0 ðqeÞi��e�e
ðqeÞ ~D�e	eðqeÞ:

Iterating this equation, using Eqs. (5) and (9) and dropping
subindices to simplify notations yields

~D�	ðqÞ ¼ ~DkðqÞ q
�q	

q2
þ ~D?ðqÞ

�
g�	 � q�q	

q2

�
;

where only the transverse part gets corrections:

~D kðq2Þ ¼ ~D0kðq2Þ;
~D?ðq2Þ ¼ ~D0?ðq2Þ 1

1� ~D0?ðq2Þiq2�ðq2Þ :
(14)

Finally, the dressed vertex reads

� ie��ðp; p0Þ ¼ �ie�� � ie��ðp; p0Þ; (15)

where ��ðp; p0Þ includes all radiative corrections.
In order to make sense of eventual diverging integrals in

the perturbation series we will use dimensional regulariza-
tion [19]. Loop integrals will depend on de which may be
expressed as a function of "� and "e, de ¼ 4� 2"� � 2"e
from Eq. (3). After computing the loop integrals for arbi-
trary values of the parameters we will fix "e, e.g., "e ¼ 1=2
for RQED4;3, and perform an expansion in "�, e.g., "� ! 0

for RQED4;3. Diverging Feynman diagrams then appear as

meromorphic functions in "�. Subtracting divergences

corresponds to subtracting poles in 1="�. This can be

done by relating the bare fields and parameters of the
theory to renormalized quantities as

c ¼ Z1=2
c c r; ~A ¼ Z1=2

A
~Ar;

~a ¼ ZA~ar; e ¼ Z1=2
� er;

(16)

where ~A is a reduced gauge field and Zc , ZA and Z� are

dimensionless renormalization constants. We shall be us-

ing an improved minimal subtraction scheme (MS) where
these constants reduce to unity in a finite QFT and take the
form of Laurent series in "� in the presence of divergences.

Moreover, in order to restore the canonical dimensions of
the fields and parameters one needs to introduce a renor-
malization scale � which has dimension of mass. In the

MS scheme we therefore define a dimensionless renormal-
ized coupling constant � via the equation:FIG. 1. Feynman rules for massless RQED.
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�ð�Þ
4�

¼ ��2"�
e2

ð4�Þd�=2 Z
�1
� ð�ð�ÞÞe��"� ; (17)

where the ��2"� factor compensates for the dimension of
e2, Eq. (3). Equivalently, from Eq. (17), the bare coupling
constant e can be expressed via the renormalized coupling
constant �ð�Þ.

From the above arguments, the relation between the bare
and renormalized fermion propagators reads:

SðpÞ ¼ Zc ð�ð�Þ; arð�ÞÞSrðp;�Þ; (18)

where all singularities are in Zc and Sr is finite. Similarly,

the gauge field propagator,

~D�	ðqÞ ¼ ZAð�ð�ÞÞ ~Dr
�	ðq;�Þ; (19)

separates into a renormalized longitudinal part which is all
contained in the renormalization of the effective gauge
fixing term: ~arð�Þ ¼ Z�1

A ð�ð�ÞÞ~a, and a renormalized

transverse part which may receive radiative corrections:
~Dr
?ðq2;�Þ ¼ Z�1

A ð�ð�ÞÞ ~D?ðq2Þ.
Finally, one may introduce another constant, Z�, for the

vertex: �� ¼ Z��
�
r where ��

r is finite. Because both re-
normalized electron charge and vertex are finite, there is a
constraint among the constants:

Z� ¼ ðZ�Zc Þ�2Z�1
A : (20)

In the following we will compute these constants and
deduce the anomalous scaling dimensions of the fields:

�ið�ð�Þ; arð�ÞÞ ¼ d logZið�ð�Þ; arð�ÞÞ
d log�

: (21)

IV. PERTURBATION THEORY: ONE-LOOP

The results we shall derive in this section are expressed
in terms of a one-loop massless propagator diagram [15]:

Z ddek

ð2�Þde
1

D	1

1 D	2

2

¼ i

ð4�Þde=2 ð�q2Þðde=2Þ�	1�	2Gð	1; 	2Þ; D1 ¼ �ðkþ qÞ2; D2 ¼ �k2; (22)

where 	1 and 	2 are arbitrary indices labeling the diagram, the power of�q2 follows from dimensionality andGð	1; 	2Þ is
a dimensionless function which reads

Gð	1; 	2Þ ¼ �ð�de=2þ 	1 þ 	2Þ�ðde=2� 	1Þ�ðde=2� 	2Þ
�ð	1Þ�ð	2Þ�ðde � 	1 � 	2Þ ; (23)

or, equivalently, in terms of "� and "e by using de ¼ 4� 2"� � 2"e from Eq. (3). Straightforward dimensional analysis
shows that a pole in the first gamma function of the numerator ofGð	1; 	2Þ signals an ultraviolet divergence while a pole in
the two other gamma functions of the numerator signals an infrared divergence.

The one-loop diagrams, see Fig. 2, are defined by

i�
�	
1 ðqÞ ¼ �

Z ddek

ð2�Þde Tr
�
ð�ie��Þ ið6kþ 6qÞ

ðkþ qÞ2 ð�ie�	Þ i6k
k2

�
; (24a)

�1ðpÞ ¼
Z ddek

ð2�Þde ð�ie��Þ ið6pþ 6kÞ
ðpþ kÞ2 ð�ie�	Þ i

ð4�Þ"e
�ð1� "eÞ
ð�k2Þ1�"e

�
g�	 � ~


k�k	

k2

�
; (24b)

�ie�
�
1 ¼

Z ddek

ð2�Þde
i

ð4�Þ"e
�ð1� "eÞ
ð�k2Þ1�"e

�
g	� � ~


k	k�

k2

�
ð�ie�	Þ i6k

k2
ð�ie��Þ i6k

k2
ð�ie��Þ; (24c)

where, for our purposes, it is enough to compute the vertex
correction for p ¼ p0 ¼ 0. In order to perform the trace
one has to specify the dimensionality of gamma matrices.
For even de the dimensionality of the gamma matrices is
fixed and equals de. On the other hand, for odd de there is
an ambiguity. In particular, for de ¼ 3 we may either
consider a two-dimensional or a four-dimensional repre-
sentation of the gamma matrices; see e.g., Ref. [6]. For the

sake of generality, we will work with d-dimensional
gamma matrices. This will also give to us a control over
the final calculations. Indeed, the parameter d is equivalent
to a number of fermion species. Going to large d is equiva-
lent to performing a large N approximation in which
correlation functions significantly simplify, cf., Ref. [20]
for a review. With these conventions, some useful trace
identities read

g��¼��
�¼de; Tr½1�¼d; Tr½���	�¼dg�	; Tr½�������

��¼�dðde�2Þg��; (25a)

Tr½���
��	�

������	�
�¼dg��g�
ð4�deÞðde�2Þ�dg��g�
ð8�deÞðde�2Þþdg�
g��ð4�deÞðde�2Þ: (25b)

Such identities can be applied to Eq. (5) in order to relate �ðq2Þ to a contracted form of the gauge field self-energy:
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�ðq2Þ ¼ ���
�ðqÞ

ðde � 1Þð�q2Þ : (26)

Similarly, using Eq. (13),

�Vðp2Þ ¼ 1

d
Tr½6p�ðpÞ�: (27)

Using the above identities and computing the one-loop integrals yields, after some algebra,

�1ðq2Þ ¼ �d
e2ð�q2Þ�"��"e

ð4�Þde=2
1� "� � "e
3� 2"� � 2"e

Gð1; 1Þ; (28a)

�V1ðp2Þ ¼ � e2�ð1� "eÞð�p2Þ�"�

ð4�Þd�=2
�
2ð1� "� � "eÞ2
2� 2"� � "e

� 
ð1� "� � "eÞ
�
Gð1; 1� "eÞ; (28b)

�
�
1 ¼ e2�ð1� "eÞm�2"�

ð4�Þd�=2 ��

�
2ð1� "� � "eÞ2
2� "� � "e

� ~


�
�ð"�Þ
�ð2"eÞ ; (28c)

where G is the massless one-loop propagator of Eq. (23),
and a mass,m, has been introduced as an infrared regulator
in the expression of the vertex correction. Equations (28)
can be expressed in terms of the renormalized coupling
constant by using Eq. (17) at one-loop [Z� ¼ 1þOð�Þ].

Equation (28) applies to the well-known cases of QED4,
see Ref. [15], andQED3, see Refs. [5]. In order to facilitate
the comparison with RQED4;3 we give the 1-loop results of

these well-known theories. In the case of QED4 we have to
fix "e ¼ 0 and take the limit "� ! 0 in Eqs. (28). This

yields

ZAð�Þ ¼ 1� d

3

�

4�"�
þOð�2Þ; (29a)

Dr
?ðq2;�Þ ¼ i

�q2

�
1þ d

3

�

4�

�
Lq � 5

3

�
þOð�2Þ

�
: (29b)

�Að�Þ ¼ 2d

3

�

4�
þOð�2Þ; (29c)

where Lq ¼ log�q2

�2 . Equation (29c) shows that the gauge

field has an anomalous scaling dimension. Similarly,

Zc ð�; aÞ ¼ 1� �a

4�"�
þOð�2Þ; (30a)

Z�ð�; aÞ ¼ 1þ �a

4�"�
þOð�2Þ; (30b)

�i 6pSrðp;�Þ ¼ 1þ �a

4�
ðLp � 1Þ þOð�2Þ; (30c)

�c ð�; aÞ ¼ 2a
�

4�
þOð�2Þ; (30d)

where Lp ¼ log�p2

�2 . Equation (30d) shows that the fer-

mion field has an anomalous scaling dimension. On the
other hand, for QED3 we first have to fix "e ¼ 0 and then
take the limit "� ! 1=2. The theory is then found to be

finite: ZA ¼ Zc ¼ Z� ¼ 1þOð�2Þ. The 1-loop expres-

sions for the vacuum polarization and fermion self-energy
read

�1ðq2Þ ¼ �d

2

1

16

e2ffiffiffiffiffiffiffiffiffiffi�q2
p ; (31a)

�V1ðp2Þ ¼ � e2a

16
ffiffiffiffiffiffiffiffiffiffi�p2

p ; (31b)

where the coupling constant, e2, has dimension of mass,
cf., Eq. (3). All the above results agree with dimensional
analysis.
We now focus on RQED4;3 ("e ¼ 1=2 and "� ! 0).

From Eq. (28a) and in accordance with dimensional analy-
sis, the vacuum polarization of the layer is finite at one-
loop and the reduced gauge field propagator essentially
remains free:

FIG. 2. One-loop diagrams: (a) gauge field self-energy,
(b) fermion self-energy, and (c) fermion-gauge field vertex.
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�1ðq2Þ ¼ �d

2

�

4�

�2ffiffiffiffiffiffiffiffiffiffi�q2
p ; (32a)

ZA ¼ 1þOð�2Þ; �A ¼ Oð�2Þ (32b)

~D?ðq2Þ ¼ i

2
ffiffiffiffiffiffiffiffiffiffi�q2

p 1

1þ d
4

e2

16

: (32c)

The square-root branch cut structure of Eq. (32a) is typical
of 2þ 1-dimensional QFTs, cf., Eq. (31) for QED3. It
yields an imaginary part for q2 > 0 corresponding to a
continuum of single pair (particle-antiparticle) excitations.
Because RQED4;3 is renormalizable, the exact �ðq2Þ also
scales as ð�q2Þ�1=2. This is in contrast with the case of
QED3 where the coupling constant is dimensionful and
higher negative powers of �q2 will appear in the loop
expansion, see Eq. (44). In the case of RQED4;3, higher

order corrections will therefore affect �ðq2Þ only through
numerical coefficients. The 2-loop interaction correction
numerical coefficient will be derived in the next section,
see Eq. (45a).

On the other hand, the fermion self-energy of RQED4;3

is affected by an ultraviolet pole coming from the first
gamma function in the numerator of Gð1; 1=2Þ, cf.,
Eq. (23). It is therefore divergent in accordance with naive
power counting. Performing the "�-expansion in Eq. (28b)

yields the following results:

Zc ð�; aÞ ¼ 1� 3a� 1

3

�

4�"�
þOð�2Þ; (33a)

�c ð�; aÞ ¼ 2ð3a� 1Þ
3

�

4�
þOð�2Þ; (33b)

�i 6pSrðp;�Þ ¼ 1þ �

4�

10� 3 ~Lp þ 9að ~Lp � 2Þ
9

þOð�2Þ;
(33c)

where ~Lp ¼ Lp þ logð4Þ contains all the momentum

dependence.
Finally, from Eq. (28c) we see that the 1-loop vertex

correction is also divergent for RQED4;3. The expression of

the corresponding constant reads:

Z� ¼ 1þ 3a� 1

3

�

4�"�
þOð�2Þ: (34)

Comparing Eqs. (34) and (33a), we see that the Ward
identity: Z�Zc ¼ 1, is satisfied at one-loop [this is also

the case for QED4, cf., Eqs. (30a) and (30b) and, trivially,
for QED3]. From Eq. (20) we deduce that the charge
renormalization constant is determined by the gauge field
renormalization constant. Together with Eqs. (6) and (17),
this implies that the beta function is determined by the
anomalous dimension of the gauge field:

�ð�ð�ÞÞ ¼ �2"� þ �Að�ð�ÞÞ: (35)

Because RQED4;3 has no anomalous gauge field scaling

dimension, the charge renormalization constant is finite at

one-loop, Z� ¼ 1þOð�2Þ, and the beta function
vanishes:

�ð�Þ ¼ Oð�2Þ: (36)

V. PERTURBATION THEORY: TWO-LOOP

The results we shall derive in this section are expressed
in terms of a two-loop massless propagator diagram,
cf., Ref. [15]:

Z ddek1
ð2�Þde

ddek2
ð2�Þde

1

D	1

1 D	2

2 D	3

3 D	4

4 D	5

5

¼ � 1

ð4�Þde ð�q2Þ
de�

P
i

	i

Gð	1; 	2; 	3; 	4; 	5Þ;

D1 ¼ �ðk1 þ qÞ2; D2 ¼ �ðk2 þ qÞ2;
D3 ¼ �k21; D4 ¼ �k22; D5 ¼ �ðk1 � k2Þ2;

(37)

where the 	is are arbitrary indices labeling the diagram,
the power of �q2 follows from dimensionality and
Gð	1; 	2; 	3; 	4; 	5Þ is a dimensionless function. An ex-
plicit expression for this function is difficult to derive in the
general case. A class of such massless 2-loop diagrams has
been computed by Kotikov [17]. We will apply these
results to the computation of the 2-loop vacuum polariza-
tion, cf., Fig. 3. For simplicity, we will work in the
Feynman gauge and set a ¼ 1� 
 ¼ 1 from now on.
Moreover, we will assume that Eq. (35) still holds, i.e.
that the Ward identity, Z�Zc ¼ 1, is satisfied at 2 loops.

There are 2 distinct 2-loop diagrams for the gauge-field
self energy. The total 2-loop vacuum polarization reads

�
�	
2 ðqÞ ¼ ðg�	q2 � q�q	Þ�2ðq2Þ;

�2ðq2Þ ¼ 2�2aðq2Þ þ�2bðq2Þ;
(38)

FIG. 3. 2-loop diagrams contributing to the vacuum polariza-
tion (k12 ¼ k1 � k2).
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where the first, a, diagram appears twice, cf., Fig. 3(a). These contributions are defined as

i�
�	
2a ðqÞ ¼ �

Z ddek

ð2�Þde Tr
�
ð�ie�	Þ ið6kþ 6qÞ

ðkþ qÞ2 ð�ie��Þ i6k
k2

ð�i6k�Vðk2ÞÞ i6k
k2

�
; (39a)

i�
�	
2b ðqÞ ¼ �

Z ddek1
ð2�Þde

ddek2
ð2�Þde Tr

�
ð�ie�	Þ ið6k2 þ 6qÞ

ðk2 þ qÞ2 ð�ie��Þ ið6k1 þ 6qÞ
ðk1 þ qÞ2 ð�ie��Þ

� i6k1
k21

ð�ie��Þ i6k2
k22

ig��
ð4�Þ"e

�ð1� "eÞ
ð�ðk1 � k2Þ2Þ1�"e

�
; (39b)

where �V is the one-loop fermion self-energy given by Eq. (28b). With the help of the latter, as well as Eq. (26) and the
2-loop trace identity Eq. (25b), the first contribution reads

�2aðq2Þ ¼ �d
e4�ð1� "eÞð�q2Þ�2"��"e

ð4�Þðdeþd�=2Þ
4ð1� "� � "eÞ4

"�ð3� 2"� � 2"eÞð2� 2"� � "eÞG2ð"eÞ; (40a)

G2ð"eÞ ¼ Gð1; 1� "eÞGð1; "�Þ: (40b)

In Eq. (40a), the appearance of the dimensionless function G2, Eq. (40b), translates the fact that this massless 2-loop
diagram is actually a product of 2 massless 1-loop diagrams, cf., Eq. (23).

The second contribution, b, is a truly 2-loop diagram, cf., Fig. 3(b). After some tedious algebra, it reads

�2bðq2Þ¼�d
e4�ð1�"eÞð�q2Þ�2"��"e

ð4�Þðdeþd�=2Þ
1�"e�"�
3�2"e�2"�

½G2ð"eÞN bð"e;"�ÞþGð1;1;1;1;1�"eÞMbð"e;"�Þ�; (41a)

N bð"e;"�Þ¼4

�
"eþ"�þ 2"e

2�"e�2"�
�2ð2�2"e�3"�Þ

"�
�"eð3�"e�3"�Þ

ð2�"e�2"�Þ2

�ð1�"�Þð1�"e�3"�Þð2�2"e�3"�Þ
"�ð1�"e�2"�Þð2�"e�2"�Þ þð2þ"eþ"�Þð1�"e�3"�Þð2�2"e�3"�Þ

"�ð1�"e�2"�Þ
�
; (41b)

Mbð"e;"�Þ¼�2

�
1� "�ð1�"�Þ

ð1�"e�2"�Þð2�"e�2"�Þþ
"�ð2þ"eþ"�Þ
1�"e�2"�

�
: (41c)

In Eq. (41a), G2 is given by Eq. (40b) while the diagram Gð1; 1; 1; 1; 1� "eÞ has been computed by Kotikov [17] and
involves a 3F2 hypergeometric function. As quoted by Grozin [15], this diagram reads

Gð1; 1; 1; 1; 1� "eÞ ¼ 2�ð1� "e � "�Þ�ð�"�Þ�ð"e þ 2"�Þ

�
� ��ð1� "e � "�Þ
ð1þ "�Þ�ð2� "eÞ�ð1� 2"e � 3"�Þ 3F2

�
1 2� 2"e � 2"� 1þ "�

2� "e 2þ "�

��������1

�

þ � cot�ð"e þ 2"�Þ
�ð2� 2"e � 2"�Þ

�
: (42)

Equations (40) and (41) apply to the well-known cases of QED4 and QED3. For the sake of completeness we give the
results for QED4 ("e ¼ 0 and "� ! 0):

ZAð�Þ ¼ 1� d

3

�

4�"�
� d"�

2

�
�

4�"�

�
2 þOð�3Þ; (43a)

Dr
?ðq2Þ ¼

i

�q2

�
1þ d

3

�
Lq � 5

3

�
�

4�
þ d

�
4�3 � 55

12
þ Lq þ d

9

�
Lq � 5

3

�
2
��

�

4�

�
2 þOð�3Þ

�
; (43b)

�Að�Þ ¼ 2d

3

�

4�
þ 2d

�
�

4�

�
2 þOð�3Þ; (43c)

�ð�Þ ¼ 2d

3

�

4�
þ 2d

�
�

4�

�
2 þOð�3Þ; (43d)
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where Lq ¼ log�q2

�2 and the renormalized gauge field
propagator has been expanded up to second order in �;
see also Ref. [15]. From Eq. (43b), we notice that in the
large-d limit the expansion of the gauge field propagator
corresponds to a geometric series. This is equivalent to a
large-N approximation where radiative corrections reduce
to the 1-loop vacuum polarization. On the other hand
QED3 ("e ¼ 0 and "� ! 1=2) is finite at 2 loops: ZA ¼
1þOð�3Þ. Adding the 1-loop result, Eq. (31a), the total
vacuum polarization of QED3 up to 2 loops reads

�ðq2Þ ¼ �d

2

1

16

e2ffiffiffiffiffiffiffiffiffiffi�q2
p � d

2

1

16

10� �2

2�2

e4

�q2
þOðe6Þ;

(44)

where the bare coupling constant, e2, has dimension of
mass, cf., Eq. (3). Focusing now on RQED4;3 ("e ¼ 1=2
and "� ! 0) we find, in agreement with dimensional
analysis as well as the 1-loop results of the last section,
that the vacuum polarization of the layer is finite at 2 loops:

�2ðq2Þ ¼ �d

2

�
�

4�

�
2 2�2ð92� 9�2Þ

9
ffiffiffiffiffiffiffiffiffiffi�q2

p ; (45a)

ZA ¼ 1þOð�3Þ; �A ¼ Oð�3Þ (45b)

~D?ðq2Þ ¼ i

2
ffiffiffiffiffiffiffiffiffiffi�q2

p
�
1� d�2

4

�

4�
þ

�
� 46d�2

9
þ dð8þ dÞ�4

16

��
�

4�

�
2 þOð�3Þ

�
; (45c)

where the reduced gauge field propagator, Eq. (45c), has
been expanded up to second order in �. Just as in the case
of QED4, we note that in the large-d limit the expansion of
the gauge field propagator, Eq. (45c), corresponds to a
geometric series. This implies that radiative corrections
reduce to the 1-loop vacuum polarization, in agreement
with large-N approximations. Together with Eq. (35) and
(45b), implies the vanishing of the 2-loop beta function of
RQED4;3:

�ð�Þ ¼ Oð�3Þ: (46)

Adding the 1-loop contribution Eq. (32a) to Eq. (45a) the
total, up to 2 loops, gauge-field self-energy may be written
as

�ðq2Þ ¼ �1ðq2Þð1þ �C� þOð�2ÞÞ;

C� ¼ 92� 9�2

18�
;

(47)

where C� � 0:056 is an interaction correction numerical
constant, cf., discussion below Eq. (32a).

VI. CONCLUSION

Abrief account on the computation of radiative corrections
inRQEDd�;de has been given with a special focus on electro-

magnetic current correlations and applications to RQED4;3.

In the latter case, the fermions are strictly 2þ1-dimensional
while the gauge field is 3þ1-dimensional. Such a theory has
been contrasted with usual QED4 and QED3 where both the
fermions and the gauge field live in spaces of the same
dimensionality, 3þ 1-dimensional and 2þ 1-dimensional,

respectively. It can also be contrasted with QED with
anisotropic fermion dispersion relation and gauge cou-
plings, see Ref. [21], which interpolates between QED4

and RQED4;3. Concerning RQED4;3, our main results con-

cern the vanishing of the beta function of the theory up to
two loops, which implies the scale invariance of the theory
up to this order, together with the presence of a nontrivial
anomalous scaling dimension for the fermion field already
at one-loop, Eqs. (33). In the condensed matter literature
these results are reminiscent of the 1þ 1-dimensional
Tomonaga-Luttinger model; see Ref. [22], the beta function
of which has been shown to vanish to all orders. Actually,
RQED4;2 is a kind of Tomonaga-Luttinger model with

additional (four-dimensional) long-range retarded interac-
tions and shares the same feature. These 1þ 1-dimensional
models, together with the Schwinger model, are exact
at 1-loop and therefore do not display any nontrivial
multiloop corrections to the polarization diagram contrary
to their higher dimensional counterparts. As a matter of
fact, in the case of RQED4;3, the two-loop result allowed

us to access the interaction correction numerical constant,
cf., Eq. (47) and Refs. [13] in the nonrelativistic case.
The smallness of this constant is an indication of the fact
that, even if the fine structure constant is large, e.g., of the
order of unity, the perturbative approach seems to be
justified, at least as far as the 2-loop contribution is
concerned.
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