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We consider N ¼ 2 SQCD with the UðNÞ gauge group and Nf flavors (Nf > N) perturbed by an

N ¼ 2 breaking deformation–a small mass term � for the adjoint matter. We study r-vacua, with the

constraint 2
3Nf < r � N. At large values of the parameter ���m (m is a typical value of the quark

masses) r quark flavors condense, by construction. The effective low-energy theory with the gauge group

UðrÞ � Uð1ÞN�r is at weak coupling. Upon reducing � the original theory undergoes a crossover transition

from weak to strong coupling. As the original theory becomes strongly coupled, at low energies it is

described by a weakly coupled infrared-free dual theory with the gauge group UðNf � rÞ � Uð1ÞN�Nfþr

and Nf light dyon flavors. These dyons condense triggering formation of non-Abelian strings which still

confine monopoles, rather than quarks, contrary to naive duality arguments. ‘‘Instead-of-confinement’’

mechanism for quarks and gauge bosons of the original theory takes place: screened quarks and gauge

bosons of the original theory decay, on curves of the marginal stability (CMS), into confined monopole-

antimonopole pairs that form stringy mesons. Next, we increase the deformation parameter � thus

decoupling the adjoint fields. Then our theory flows to N ¼ 1 SQCD. The gauge group of the dual

theory becomes UðNf � rÞ. We show that the dual theory is weakly coupled if we are sufficiently close to

the Argyres–Douglas point. The ‘‘instead-of-confinement’’ mechanism for quarks and gauge bosons

survives in the limit of large�. It determines low-energy non-Abelian dynamics in the r-vacua ofN ¼ 1

SQCD.
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I. INTRODUCTION

The mechanism of confinement based on the monopole
condensation [1] was shown to work [2,3] in the monopole
vacua of N ¼ 2 supersymmetric QCD. This confinement
per se is essentially Abelian [4–7]. Non-Abelian gauge
group is broken down to an Abelian subgroup by conden-
sation of the adjoint scalars at a high scale, with the
subsequent monopole condensation at a much lower scale,
in a low-energy Abelian theory. Simultaneously, formation
of confining flux tubes (strings) occurs.

In N ¼ 1 supersymmetric QCD there are no adjoint
scalars. One may hope that, starting from N ¼ 2 QCD
and decoupling the adjoint scalars, one can arrive at a
regime with non-Abelian confinement.

Motivated by this idea we recently found [8,9] a novel
non-Abelian duality in the quark vacuum ofN ¼ 2 super-
symmetric QCD with theUðNÞ gauge group and Nf flavors

of fundamental matter (quarks), where N <Nf <
3
2N. The

theory was perturbed [9] by a mass term � for the adjoint
matter. At small � the deformation superpotential reduces
to the Fayet—Iliopoulos (FI) [10] F-term with the effective
FI parameter � determined by ���m, wherem presents a
typical scale of the quark masses. In [8,9] we focused
exclusively on the so-called r ¼ N vacuum in which r ¼
N quarks condense, thus completely Higgsing the UðNÞ
gauge group. A global color-flavor locked symmetry sur-
vives in the limit of equal quark mass terms.

At large � this theory is at weak coupling and supports
non-Abelian flux tubes (strings) [11–14] (for reviews see
also [15–18]). It is the formation of these strings that
ensures confinement of monopoles. Monopoles manifest
themselves as junctions of two different strings. If � �
�2

N¼2, the problem can be treated quasiclassically (here

�N¼2 is the scale of N ¼ 2 SQCD).
Now, what happens if the value of � decreases? Upon

reducing the � parameter, the theory undergoes a crossover
transition [8,19,20] in a strongly coupled regime. Needless
to say, quasiclassical description in terms of the original
theory fails.
At small �, dynamics can be described in terms of a

weakly coupled dualN ¼2 SQCD, with the UðNf�NÞ�
Uð1Þ2N�Nf gauge group andNf flavors of light dyons.

1 This

structure is similar to Seiberg’s duality in N ¼ 1 theories
[22,23] where emergence of the dual SUðNf � NÞ group
was first observed.
The dual theory supports non-Abelian strings due to

condensation of light dyons in much the same way as the
string formation in the original theory is due to condensa-
tion of squarks. Importantly, the strings of the dual theory
confine monopoles, rather than quarks [8]. This is due to
the fact that the light dyons that condense in the dual theory

1This is in perfect agreement with the results obtained in [21]
where the SUðNf � NÞ dual gauge group was identified at the
root of the baryonic Higgs branch in the SUðNÞ gauge theory
with massless (s)quarks.
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carry weightlike chromoelectric charges (in addition to
chromomagnetic charges). In other words, they carry the
quark charges. The strings formed through condensation
of these dyons can confine only the states with the rootlike
magnetic charges, i.e. the monopoles [8]. Thus, our
N ¼ 2 non-Abelian duality is not electromagnetic.

Then, there is no confinement of the chromoelectric
charges; on the contrary, they are Higgs-screened.

At strong coupling where the dual description is
applicable, the quarks and gauge bosons of the original
theory are in what we call ‘‘instead-of-confinement’’
phase. Namely, the quarks and gauge bosons decay into
monopole-antimonopole pairs on the curves of marginal
stability (CMS) [8,19]. The (anti)monopoles forming the
pair are confined. In other words, the original quarks and
gauge bosons evolve in the strong coupling domain of
small � to become stringy mesons with two constituents
being connected by two strings as shown in Fig. 1. These
mesons are expected to lie on Regge trajectories.

Moreover, deep in the non-Abelian quantum regime the
confined monopoles were demonstrated [19] to belong to
the fundamental representation of the global (color-flavor
locked) group. Therefore, the monopole-antimonopole me-
sons can be both, in the adjoint and singlet representation
of this group. This pattern seems to be similar to what we
have in actuality. The role of the ‘‘constituent quarks’’
inside the mesons is played by the monopoles.

The above referred to small values of the deformation
parameter j�j. Next, we increased its value, thus decou-
pling the adjoint fields and sending the original theory to
the limit ofN ¼ 1 SQCD. At large� the dual theory was
demonstrated [9] to be weakly coupled and infrared (IR)
free, with the UðNf � NÞ gauge group and Nf light dyons

DlA, (here l ¼ 1; . . . ; Nf � N is the color index in the dual

gauge group, while A ¼ 1; . . . ; Nf is the flavor index). Our

proof is valid provided that the dyon condensate����m
is small enough which, in turn, requires the quark masses to
be small in the large � limit. Non-Abelian strings (albeit
this time non-BPS saturated) still confine monopoles while
the quark and gauge bosons of original N ¼ 1 SQCD are
presented by stringy mesons built from the monopole-
antimonopoles pairs connected by two non-Abelian
strings, see Fig. 1.

‘‘Instead-of-confinement’’ mechanism is still at work.
In this paper we make a next step by exploring other

vacua of the �-deformed N ¼ 2 theory, with the number

of condensed quarks r smaller than N. Namely, we focus
on the interval

2

3
Nf < r � N: (1.1)

The difference between these r vacua from that with r ¼ N
is that for r < N a U(1) factor of the UðNÞ gauge group
always remains unbroken [24] and therefore residual long-
range forces are present. The theory is not fully Higgsed.
Still we will show that the low-energy physics is rather
similar to that of the r ¼ N case.
Strategically we follow the route similar to the analysis

of [9]. First we study non-Abelian duality at small j�j, not
far from the N ¼ 2 limit, and then increase j�j sending
the theory to N ¼ 1 SQCD. At large � the low-energy
physics is determined by a weakly coupled UðrÞ �
Uð1ÞN�r gauge theory broken by the condensation of
squarks down to U(1).
Upon reducing � the theory goes through a crossover

transition to strong coupling. At small � the low-energy
physics can be described by a dual weakly coupled IR free
theory. The gauge group of the dual theory is

Uð�Þ � Uð1ÞN��; � ¼
8<
: r; r � Nf

2

Nf � r; r >
Nf

2

: (1.2)

Given the constraint (1.1) we focus on the case � ¼ Nf � r.

We will refer to this non-Abelian duality as ‘‘r-duality.’’
Only if r ¼ N our r-duality reduces to Seiberg-like duality
which we had studied in [8,9].
Note, that the presence of the SUð�Þ � Uð1ÞNf�� gauge

groups at the roots of the nonbaryonic branches in massless
(� ¼ 0)N ¼ 2 SUðNÞ SQCDwas first recognized in [21].
Also, the relation between r and � given in Eq. (1.2) was
noted in [25,26], where it was interpreted as a correspon-
dence between ‘‘classical and quantum r-vacua.’’ Our
interpretation is different: we interpret it as a dual descrip-
tion emerging upon reducing � below the crossover tran-
sition line.
Light matter of the dual theory is represented by Nf

flavors of dyons charged with respect to the gauge group
(1.2). We calculate their electric and magnetic charges and
show that they are, in fact, quarklike states with weightlike
electric and rootlike magnetic charges. Upon condensation
of these dyons non-Abelian string are formed. We show
explicitly that these strings confine monopoles, rather than
quarks, in much the same way as in the r ¼ N vacuum.
The distinction between the r < N and r ¼ N vacua is

that one ZN string (let us say, the N-th, there are N ZN

strings altogether) is always absent in the r < N vacua. The
associated flux of the unbroken U(1) gauge factor is not
confined. Instead, it is spread in accordance with the
Coulomb law. As a result, non-Abelian strings become
metastable in the r < N vacua: they can be broken by
monopole-antimonopole pair creation, with monopoles

FIG. 1 (color online). Meson formed by a monopole-
antimonopole pair connected by two strings. Open and closed
circles denote the monopole and antimonopole, respectively.
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being junctions of one of the first r ZN strings and the
would-be N-th string (which is in fact absent). At large
quark masses these monopoles are heavy and strings are
almost stable.

Next, we will increase � thus decoupling the adjoint
matter, together with the U(1) factors of the dual gauge
group (1.2) and singlet dyons. The dual theory then reduces
to a gauge theory with the gauge group

U ð�Þ � Uð1Þunbr (1.3)

and Nf non-Abelian quarklike dyons. Here Uð1Þunbr de-
notes the unbroken U(1) gauge factor. Dyons are neutral
with respect to Uð1Þunbr. We integrate out heavy fields and
present a superpotential for the light dyons. We show that
this theory stays at week coupling as we increase j�j
provided that we stay close enough to the Argyres–
Douglas (AD) point [27] in the quark mass parameter
space. Formation of the non-Abelian strings and monopole
confinement ensue.

Our main results can be summarized as follows.
We found that strongly coupled low-energy dynamics of

N ¼ 1 supersymmetric SQCD in the r-vacua in the range
(1.1) are not what one might naively expect from electro-
magnetic duality. The dual gauge group is Uð�Þ (where
� ¼ Nf � r) with Nf flavors of light quarklike dyons.

Their condensation leads to formation of non-Abelian
strings which still confine monopoles, rather than quarks.
The quarks and gauge bosons of the original theory are in
the ‘‘instead-of-confinement’’ phase: upon crossing CMS
from weak to strong coupling they decay into confined
monopole-antimonopole pairs that form stringy mesons.
For r < N the strings in the stringy mesons depicted in
Fig. 1 can be broken by a pair creation of particular
monopoles which interpolate between the K-th string
(K ¼ 1; . . . ; �) and the would-be N-th string, which is in
fact absent. An example of the meson emerging in this way
is shown in Fig. 2.

The endpoints emit fluxes of the unbroken U(1) gauge
field. This makes this meson a dipolelike configuration.
Note that the non-Abelian fluxes of the SUð�Þ gauge group

are always trapped and squeezed in the non-Abelian
strings. Long-range forces are associated only with the
unbroken U(1) gauge factor. Monopoles inside the dipole
meson cannot annihilate if the overall flavor representation
of the meson is nontrivial, say, the meson is in adjoint.
In a forthcoming publication [28] we will compare the

r-duality with Seiberg’s duality [22,23].
To this end we will consider a generalization [29] of

Seiberg’s duality to r vacua (originally Seiberg’s duality
was formulated for the monopole r ¼ 0 vacua). In the r ¼
N vacuum our dual gauge group Uð� ¼ Nf � rÞ coincides
with Seiberg’s dual groupUðNf � NÞ.Moreover, in this case

Seiberg’s dual superpotential has a classical vacuum.
We will show that, upon integrating out heavy mesonic

M-fields, this superpotential coincides with our dual super-
potential obtained in [9], while Seiberg’s ‘‘dual quarks’’ in
fact reduce to our quarklike dyons DlA.
At the same time, in the window 2

3Nf < r < N vacua our

r duality does not match Seiberg’s duality. Our dual theory
has the Uð�Þ gauge group instead of UðNf � NÞ and a

different superpotential for light matter. Our dual theory
does have a supersymmetric classical vacuum and, in a
certain regime (with small �), stays at weak coupling.
Thus, it is appropriate to speak of triality.
For the r vacua in the range 2

3Nf < r < N Seiberg’s dual

superpotential has no supersymmetric classical vacua if the
quark mass terms are nonvanishing. Integrating out
Seiberg’s ‘‘dual quarks’’ one obtains a continuation of
the Afleck–Dine–Seiberg superpotential [30] to Nf > N.

This superpotential correctly reproduces the quark and
gaugino condensates and gives the correct number of the
quantum vacua [29,31].
We interpret this as follows [28]. In the r vacua in the

range 2
3Nf < r < N the generalized Seiberg dual theory is

in fact in the strong coupling regime and therefore is not
useful in describing low-energy physics in its entirety.
However, it does describe the chiral sector in the sense of
the Veneziano–Yankielowicz effective superpotential [32]
(which is not a genuine low-energy superpotential).
Namely, chiral condensates are correctly reproduced. The
spectrum of excitations is not.
Low-energy physics in the r vacua is described (in the

range 2
3Nf < r < N) by weakly coupled r-dual theory with

the dual gauge group Uð�¼Nf�rÞ rather than UðNf�NÞ.
We also show in [28] that classical supersymmetric

vacua of Seiberg’s dual theory detected in [29,31] corre-
spond to smaller r, namely, to r < ðNf � NÞ. In this range

Seiberg’s dual theory is at weak coupling and hence de-
scribes low-energy physics in full. This range, however, is
beyond the scope of the present paper.
In this paper we only consider the r-vacua in the range

(1.1). The detailed study of the r-vacua with r � 2
3Nf is

left for future work. Still, we make a few qualitative com-
ments about these vacua. Our picture suggests that we have
a conformal window in the r-vacua in the range

2 1 2

M M 1212
MM

2N 2N

FIG. 2. Example of the dipole meson formed as result of
breaking of 2-nd string by pair creation of monopole M2N

(shown by boxes) interpolating between 2-nd string and
would-be N-th string, which is absent. Arrows denote uncon-
fined flux. Circles denote monopoles MKK0 , K;K0 ¼ 1; . . . ; �.
Open and closed circles/boxes denote monopoles and antimono-
poles, respectively.
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1

3
Nf � r � 2

3
Nf: (1.4)

This means that even if we take N ¼ 1 SQCD with
N <Nf <

3
2N, the r-vacua in the range (1.4) are described

by a conformal theory in the IR.
If r < 1

3Nf then Eq. (1.2) gives � ¼ r; therefore, there is

no crossover transition upon reducing �. The dual theory
has the same gauge group UðrÞ as the original one. This
suggests that in the dual theory we have a regular Higgs
phase for quarks, and ‘‘instead-of-confinement’’ mecha-
nism does not work. Quarks and gauge bosons at strong
coupling are just Higgs-screened, rather than transformed
into stringy mesons of the type shown in Fig. 1 or Fig. 2.

A problem for future studies is extrapolating our con-
struction of r duality to r � 2

3Nf and comparing it in this

range with Seiberg’s duality, in particular, of importance is
the range r < ðNf � NÞ where the Seiberg’s dual theory is

at weak coupling.
The paper is organized as follows. In Sec. II we describe

our basic theory, �-deformed N ¼ 2 SQCD.2 In Sec. III,
as a preparation for original explorations, we summarize
what is known about the non-Abelian duality and ‘‘instead-
of-confinement’’mechanism in the r ¼ N vacuum. Then, in
Sec. IV, we proceed to the r-duality. We consider the
Seiberg–Witten curve and derive Eq. (1.2). Section V is
devoted to a thorough study of the r ¼ N � 1 vacuum. In
this particular examplewe describe in detail the low-energy
theory at large � and in the small-� limit. The passage to
still smaller r becomes qualitatively clear. In Sec. VI we
reduce � and calculate the light dyon charges in the dual
theory.Monopole confinement is demonstrated.We present
the action of the dual theory and use exact Seiberg–Witten
curves to calculate the vacuum expectation values (VEVs)
of the dyon fields. In Sec. VII we increase the value of the
deformation parameter �, decouple the adjoint matter and
derive effective superpotential for light non-Abelian dyons.
Section 8 summarizes our conclusions. In Appendices A, B,
C, and D we present calculational details of our analysis.

II. BASIC MODEL: �-DEFORMED N ¼ 2 SQCD

The gauge symmetry of our basic model is UðNÞ ¼
SUðNÞ � Uð1Þ. In the absence of deformation the model
under consideration is N ¼ 2 SQCD with Nf massive

quark hypermultiplets. We assume that Nf > N but Nf <
3
2N. The latter inequality ensures that the dual theory can

be infrared-free.
In addition, we will introduce the mass term � for the

adjoint matter breaking N ¼ 2 supersymmetry down to
N ¼ 1.

The field content is as follows. The N ¼2 vector multi-
plet consists of the U(1) gauge fieldA� and the SUðNÞ gauge
field Aa

�, where a ¼ 1; . . . ; N2 � 1, and their Weyl fermion

superpartners plus complex scalar fields a, and aa and their
Weyl superpartners, respectively. The Nf quark multiplets

of the UðNÞ theory consist of the complex scalar fields qkA

and ~qAk (squarks) and their fermion superpartners—all in the
fundamental representation of the SUðNÞ gauge group. Here
k ¼ 1; . . . ; N is the color index while A is the flavor index,
A ¼ 1; . . . ; Nf. We will treat qkA and ~qAk as rectangular

matrices with N rows and Nf columns.

Let us first discuss the undeformed N ¼ 2 theory. The
superpotential has the form

WN¼2 ¼
ffiffiffi
2

p XNf

A¼1

�
1

2
~qAAqA þ ~qAAaTaqA

þ 1ffiffiffi
2

p mA~qAq
A

�
; (2.1)

where A and Aa are chiral superfields, the N ¼ 2
superpartners of the gauge bosons of U(1) and SUðNÞ,
respectively.
Next, we add a mass term for the adjoint fields which

breaks N ¼ 2 supersymmetry down to N ¼ 1,

W br ¼
ffiffiffiffi
N

2

s
�0

2
A2 þ�

2
ðAaÞ2; (2.2)

where �0 and � is are mass parameters for the chiral
superfields in N ¼ 2 gauge supermultiplets, U(1) and
SUðNÞ, respectively.3 In this paper we will consider the
single-trace perturbation which amounts to choosing �0

such, that the parameter

� ¼ 1�
ffiffiffiffi
2

N

s
�0

�
¼ 0: (2.3)

Clearly, the mass term (2.2) splits the N ¼ 2 supermul-
tiplets, breakingN ¼ 2 supersymmetry down toN ¼ 1.
The bosonic part of the action of our basic theory has the

form (for details see [17])

S¼
Z
d4x

�
1

4g22
ðFa

��Þ2þ 1

4g21
ðF��Þ2þ 1

g22
jD�a

aj2

þ 1

g21
j@�aj2þjr�q

Aj2þjr�
�~qAj2þVðqA; ~qA;aa;aÞ

�
:

(2.4)

Here D� is the covariant derivative in the adjoint repre-

sentation of SUðNÞ, while

r� ¼ @� � i

2
A� � iAa

�T
a (2.5)

acts in the fundamental representation. We suppress the
color SUðNÞ indices of the matter fields. The normalization
of the SUðNÞ generators Ta is as follows

2For a detailed review of this model see [17]. 3Without loss of generality one can assume them to be real.
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Tr ðTaTbÞ ¼ 1

2
�ab:

The coupling constants g1 and g2 correspond to the U(1)
and SUðNÞ sectors, respectively. With our conventions, the

U(1) charges of the fundamental matter fields are �1=2,
see Eq. (2.5).
The scalar potential VðqA; ~qA; aa; aÞ in the action (2.4) is

the sum of D and F terms,

VðqA; ~qA;aa;aÞ¼g22
2

�
1

g22
fabc �abacþ �qAT

aqA� ~qAT
a �~qA

�
2þg21

8
ð �qAqA� ~qA �~q

AÞ2þ2g22

��������~qAT
aqAþ 1ffiffiffi

2
p @W br

@aa

��������2

þg21
2

��������~qAq
Aþ ffiffiffi

2
p @W br

@a

��������2þ1

2

XNf

A¼1

fjðaþ ffiffiffi
2

p
mAþ2TaaaÞqAj2þjðaþ ffiffiffi

2
p

mAþ2TaaaÞ �~qAj2g: (2.6)

Here fabc denote the structure constants of the SUðNÞ
group, mA is the mass term for the A-th flavor, and the
sum over the repeated flavor indices A is implied.

The vacua of the theory (2.4) are determined by the zeros
of the potential (2.6). In general, the theory has a number of
the so-called r-vacua, in which (quasiclassically) r squarks
condense. Later wewill show that this quasiclassical analy-
sis is valid if we require the parameter ���m to be large,
with m being a typical scale of the quark masses. The
overall range of variation of r is r ¼ 0; . . . ; N. Say, the
r ¼ 0 vacua (there are N such vacua) are always at strong
coupling. These are in fact the monopole vacua of [2,3].

III. DUALITY IN THE r ¼ N VACUUM

In this section we will briefly review non-Abelin duality
in the r ¼ N vacua established in [8,9,19]. These vacua
have the maximal possible number of condensed quarks,
r ¼ N. Moreover, the gauge group UðNÞ is completely
Higgsed in these vacua, and, as a result, they support
non-Abelian strings [11–14]. The occurrence of these
strings ensures confinement of the monopoles in these
vacua.

First, we will assume that � is small, much smaller than
the quark masses

� � jmAj; A ¼ 1; . . . ; Nf: (3.1)

A. Vacuum structure at large �

Now we assume that our theory is at weak coupling, so
that we can analyze it quasiclassically. With generic values
of the quark masses we have

CN
Nf

¼ Nf!

N!ðNf � NÞ! (3.2)

isolated r-vacua in which r ¼ N quarks (out of Nf) de-

velop vacuum expectation values (VEVs). Consider, say,
the vacuum in which the first N flavors develop VEVs, to
be denoted as (1; 2 . . . ; N). In this vacuum the adjoint fields
develop VEVs too, namely,

h�i ¼ � 1ffiffiffi
2

p
m1 . . . 0

. . . . . . . . .

0 . . . mN

0
BB@

1
CCA; (3.3)

where

� � 1

2
aþ Taaa: (3.4)

For generic values of the quark masses, the SUðNÞ sub-
group of the gauge group is broken down to Uð1ÞN�1.
However, in the special limit of equal masses,

m1 ¼ m2 ¼ . . . ¼ mNf
; (3.5)

the adjoint field VEVs do not break the SUðNÞ � Uð1Þ
gauge group. In this limit the theory acquires a global
flavor SUðNfÞ symmetry.

With all quark masses equal (and limiting ourselves to
the leading order in�), the mass term for the adjoint matter
(2.2) reduces to the Fayet–Iliopoulos F-term of the U(1)
factor of the SUðNÞ � Uð1Þ gauge group, which does not
break N ¼ 2 supersymmetry [5,7]. Higher orders in the
parameter � breakN ¼ 2 supersymmetry by splitting all
N ¼ 2 multiplets.
If the quark masses are unequal the UðNÞ gauge group is

broken down to Uð1ÞN by the adjoint field VEVs (3.3).
Using (2.2) and (3.3) it is not difficult to obtain the quark

field VEVs from Eq. (2.6). Up to a gauge rotation they can
be written as [33]

hqkAi ¼ h �~qkAi ¼ 1ffiffiffi
2

p
ffiffiffiffiffi
�1

p
. . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . .
ffiffiffiffiffiffi
�N

p
0 . . . 0

0
BB@

1
CCA;

k ¼ 1; . . . ; N; A ¼ 1; . . . ; Nf; (3.6)

where we present the quark fields as matrices in the
color (k) and flavor (A) indices. The Fayet–Iliopoulos
F-term parameters for each U(1) gauge factor are given
(in the quasiclassical approximation) by the following
expressions:

�P 	 2 �mP; P ¼ 1; . . . ; N: (3.7)

While the adjoint VEVs do not break the SUðNÞ � Uð1Þ
gauge group in the limit (3.5), the quark condensate (3.6)
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does result in the spontaneous breaking of both gauge and
flavor symmetries. A diagonal global SUðNÞ combining
the gauge SUðNÞ and an SUðNÞ subgroup of the flavor
SUðNfÞ group survives, provided that the quark masses are

equal. This is color-flavor locking. Below we will refer to
this diagonal global symmetry as to SUðNÞCþF.

Thus, the pattern of the color and flavor symmetry
breaking is as follows:

UðNÞgauge � SUðNfÞflavor ! SUðNÞCþF � SUðNf � NÞF
� Uð1Þ: (3.8)

Here SUðNÞCþF is a global unbroken color-flavor rotation,
which involves the first N flavors, while the SUðNf � NÞF
factor stands for the flavor rotation of the ðNf � NÞ quarks.
As we will see shortly, the global symmetry of the dual
theory is, of course, the same, albeit the physical origin is
different. The presence of the global SUðNÞCþF group is
instrumental for formation of the non-Abelian strings
[11–14,33]. Tensions of N elementary strings are deter-
mined [33] by the parameters �P, see (3.7),

TP ¼ 2�j�Pj: (3.9)

Since the global (flavor) SUðNfÞ group is broken by the

quark VEVs anyway, it will be helpful for our purposes to
consider the following mass splitting:

mP ¼mP0 ; mK ¼mK0 ; mP�mK ¼�m (3.10)

where

P; P0 ¼ 1; . . . ; N and K;K0 ¼ N þ 1; . . . ; Nf: (3.11)

This mass splitting respects the global group (3.8) in the
(1; 2; . . . ; N) vacuum. Moreover, this vacuum becomes
isolated. No Higgs branches develop. We will often focus
on this limit below in this section.

Now, let us briefly discuss the perturbative excitation
spectrum. Since both U(1) and SUðNÞ gauge groups are
broken by the squark condensation, all gauge bosons
become massive.

To the leading order in�,N ¼ 2 supersymmetry is not
broken. In fact, with nonvanishing �P’s (see Eq. (3.7)),
both the quarks and adjoint scalars combine with the gauge
bosons to form long N ¼ 2 supermultiplets [7], for a
review see [17]. In the limit (3.10) �P � �, and all states
come in representations of the unbroken global group (3.8),
namely, in the singlet and adjoint representations of
SUðNÞCþF,

ð1; 1Þ; ðN2 � 1; 1Þ; (3.12)

and in the bifundamental representations

ð �N;Nf � NÞ; ðN; �Nf � �NÞ: (3.13)

We mark representations in (3.12) and (3.13) with respect
to two non-Abelian factors in (3.8). The singlet and adjoint
fields are (i) the gauge bosons, and (ii) the first N flavors of

the squarks qkP (P ¼ 1; . . . ; N), together with their fermion
superpartners. The bifundamental fields are the quarks qkK

with K ¼ N þ 1; . . . ; Nf. These quarks transform in the

two-index representations of the global group (3.8) due to
the color-flavor locking. Singlet and adjoint fields have
masses of order g

ffiffiffi
�

p
, while masses of bifundamental fields

are equal to �m.
The above quasiclassical analysis is valid if the theory is

at weak coupling. This is the case if the quark VEVs are
sufficiently large so that the gauge coupling constant is
frozen at a large scale. From (3.6) we see that the quark
condensates are of the order of

ffiffiffiffiffiffiffiffi
�m

p
(see also [2,3,21,29]).

The weak coupling condition reduces toffiffiffiffiffiffiffiffi
�m

p � �N¼2; (3.14)

where �N¼2 is the scale of the N ¼ 2 theory, and
we assume that all quark masses are of the same order
mA �m. In particular, the condition (3.14), combined with
the condition (3.1) of smallness of �, implies that the
average quark mass m is very large.

B. Dual theory

Now we will relax the condition (3.14) and pass to the
strong coupling domain at

j ffiffiffiffiffiffi
�P

p j � �N¼2; jmAj � �N¼2; (3.15)

still keeping � small.
In [8,9] it was shown that the theory (2.4) in the r ¼ N

vacuum undergoes a crossover transition as the value of �
decreases. The domain (3.15) can be described in terms of
weakly coupled (infrared-free) dual theory with with the
gauge group

U ðNf � NÞ � Uð1Þ2N�Nf ; (3.16)

and Nf flavors of light dyons.4

Light dyons DlA (l ¼ 1; . . . ; ðNf � NÞ and A¼1;...;Nf)

are in the fundamental representation of the gauge group
SUðNf � NÞ and are charged under the Abelian factors

indicated in Eq. (3.16). In addition, there are (2N � Nf) light

dyons DJ (J ¼ ðNf � N þ 1Þ; . . . ; N), neutral under the

SUðNf � NÞ group, but charged under the U(1) factors.
The dyon condensates are as follows:

hDlAi¼ h �~DlAi ¼ 1ffiffi
2

p

0 ... 0
ffiffiffiffiffi
�1

p
. . . 0

.. . . . . . . . . . . . . . . . .

0 . . . 0 0 ...
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðNf�NÞ

q
0
BBB@

1
CCCA;

(3.17)

4Previously the SUðNf � NÞ gauge group was identified [21]
as dual on the Coulomb branch at the root of the baryonic Higgs
branch in theN ¼ 2 supersymmetric SUðNÞ Yang–Mills theory
with massless quarks.
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hDJi¼ h �~DJi¼
ffiffiffiffiffi
�J

2

s
; J¼ðNf�Nþ1Þ; . . . ;N: (3.18)

The most important feature apparent in (3.17), as compared
to the squark VEVs in the original theory (3.6), is a
‘‘vacuum leap’’ [8],

ð1; . . . ; NÞ ffiffiffi
�

p
��N¼2

! ðN þ 1; . . . ; Nf; ðNf � N þ 1Þ; . . . ; NÞ ffiffiffi
�

p
��N¼2

:

(3.19)

In other words, if we pick up the vacuum with nonvanish-
ing VEVs of the first N quark flavors in the original theory
at large �, Eq. (2.4), and then reduce � below �N¼2, the
system goes through a crossover transition and ends up in
the vacuum of the dual theory with the nonvanishing VEVs
of ðNf � NÞ last dyons (plus VEVs of ð2N � NfÞ dyons
that are SUðNf � NÞ singlets).

The Fayet–Iliopoulos parameters �P in (3.17) and (3.18)
are determined by the quantum version of the classical
expressions (3.7) [33]. Defining

uk ¼
�
Tr

�
1

2
aþ Taaa

�
k
�
; k ¼ 1; . . . ; N; (3.20)

we perform a quantum generalization in the two relevant
terms in the third line of the potential in (2.6),

@W br

@aa
! �

@u2
@aa

;
@W br

@a
! �

@u2
@a

: (3.21)

From this we obtain [33]

�P ¼ �2
ffiffiffi
2

p
�EP; (3.22)

where EP (P ¼ 1; . . . ; N) are the diagonal elements of the
N � N matrix

E ¼ 1

N

@u2
@a

þ T~a @u2
@a~a : (3.23)

Here T~a are the Cartan generators of the SUðNÞ gauge
group (the subscript ~a runs over ~a ¼ 1; . . . ; ðN � 1Þ).

The parameters EP are expressible in terms of the roots
of the Seiberg–Witten curve. Namely, in the given r ¼ N
vacuum they are [33]

EP ¼ eP; P ¼ 1; . . . ; N; (3.24)

where eP are the double roots of the Seiberg–Witten
curve [21],

y2¼YN
P¼1

ðx��PÞ2�4

�
�N¼2ffiffiffi

2
p

�
2N�Nf YNf

A¼1

�
xþmAffiffiffi

2
p

�
; (3.25)

while �P are gauge invariant parameters on the Coulomb
branch.

In the r ¼ N vacuum the curve (3.25) hasN double roots
and reduces to

y2 ¼ YN
P¼1

ðx� ePÞ2; (3.26)

where quasiclassically (at large masses) eP’s are given by

the mass parameters,
ffiffiffi
2

p
eP 	 �mP (P ¼ 1; . . . ; N).

Thus, the dyon condensates at small � in the r ¼ N
vacuum are determined by

�P ¼ �2
ffiffiffi
2

p
�eP: (3.27)

We will see below that the expressions (3.6), (3.17), and
(3.22) are quite general and valid also for the r < N vacua,
while the relation (3.24) gets modified in the r < N vacua.
As long as we keep �P and masses small enough (i.e. in

the domain (3.15)) the coupling constants of the infrared-
free dual theory (frozen at the scale of the dyon VEVs) are
small: the dual theory is at weak coupling.
At small masses, in the region (3.15), the double roots of

the Seiberg–Witten curve are

ffiffiffi
2

p
eI¼�mIþN;

ffiffiffi
2

p
eJ¼�N¼2 exp

�
2�i

2N�Nf

J

�
(3.28)

for 2N � Nf > 1, where

I¼1; . . . ;ðNf�NÞ and J¼ðNf�Nþ1Þ; . . . ;N: (3.29)

In particular, the ðNf � NÞ first roots are determined by the

masses of the last ðNf � NÞ quarks—a reflection of the fact

that the non-Abelian sector of the dual theory is not asymp-
totically free and is at weak coupling in the domain (3.15).

C. ‘‘Instead-of-confinement’’ mechanism

Now, let us consider either the equal quark masses or the
special choice (3.10). Both, the gauge group and the global
flavor SUðNfÞ group, are broken in the vacuum. In the case

of (3.10) the flavor SUðNfÞ group is explicitly broken down
to SUðNÞ � SUðNf � NÞ by masses. However, the color-

flavor locked form apparent in (3.17) under the given mass
choice guarantees that the diagonal global SUðNf � NÞCþF

symmetry survives. More exactly, the unbroken global
group of the dual theory is

SU ðNÞF � SUðNf � NÞCþF � Uð1Þ: (3.30)

The SUðNf � NÞCþF factor in (3.30) is a global unbroken

color-flavor rotation, which involves the last (Nf � N)

flavors, while the SUðNÞF factor stands for the flavor rota-
tion of the first N dyons.
Thus, color-flavor locking takes place in the dual theory

too. In much the same way as in the original theory, the
presence of the global SUðNf � NÞCþF symmetry is the

reason behind formation of the non-Abelian strings. Their
tensions are still given by Eq. (3.9), where the parameters
�P are determined by (3.27) [9,33]. For generic quark
masses the global symmetry (3.8) is broken down to
Uð1ÞNf�1.
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In the equal mass limit, or given the special choice (3.10),
the global unbroken symmetry (3.30) of the dual theory at
small� coincideswith theglobal group (3.8)whichmanifests
itself in the r ¼ N vacuum of the original theory at large �.

Note, however, that this global symmetry is realized in
two very distinct ways in the dual pair at hand. As was
already mentioned, the quarks and UðNÞ gauge bosons of
the original theory at large � come in the following repre-
sentations of the global group (3.8):

ð1;1Þ; ðN2�1;1Þ; ð �N;ðNf�NÞÞ; and ðN;ð �Nf� �NÞÞ:
At the same time, the dyons and UðNf � NÞ gauge bosons
of the dual theory form

ð1; 1Þ; ð1; ðNf � NÞ2 � 1Þ;
ðN; ð �Nf � �NÞÞ; and ð �N; ðNf � NÞÞ

representations of (3.30). We see that the adjoint represen-
tations of the (Cþ F) subgroup are different in two theo-
ries. How can this happen?

The quarks and gauge bosons which form the adjoint
(N2 � 1) representation of SUðNÞ at large � and the dyons
and gauge bosons which form the adjoint ððNf � NÞ2 � 1Þ
representation of SUðNf � NÞ at small � are, in fact,

distinct states. The (N2 � 1) adjoints of SUðNÞ become
heavy and decouple as we pass from large to small �
along the line ���N¼2. Moreover, some composite
ððNf � NÞ2 � 1Þ adjoints of SUðNf � NÞ, which are heavy
and invisible in the low-energy description at large �
become light at small � and form the DlK dyons
(K ¼ N þ 1; . . . ; Nf) and gauge bosons of UðNf � NÞ.
The phenomenon of the level crossing takes place.
Although this crossover is smooth in the full theory, from
the standpoint of the low-energy description the passage
from large to small � means a dramatic change: the low-
energy theories in these domains are completely different;
in particular, the degrees of freedom in these theories are
different.

This logic leads us to the following conclusion [8]. In
addition to light dyons and gauge bosons included in the
low-energy theory at small � we must have heavy fields
which form the adjoint representation (N2 � 1, 1) of the
global symmetry (3.30). These are screened quarks and
gauge bosons from the large-� domain.

As has been already noted in Sec. I, at small � they
decay into the monopole-antimonopole pairs on the curves
of marginal stability (CMS).5 This is in accordance with

the results obtained in [2,3,34] for N ¼ 2 SU(2) gauge
theories, on the Coulomb branch at vanishing �. For the
theory at hand this picture was established in [19]. The
general rule is that the only states that exist at strong
coupling inside CMS are those which can become massless
on the Coulomb branch [2,3,34]. For our theory these are
light dyons shown in Eq. (3.17), gauge bosons of the dual
gauge group and monopoles.
At small nonvanishing values of � the monopoles and

antimonopoles produced in the decay process of the adjoint
(N2 � 1, 1) states cannot escape from each other and fly off
to asymptotically large separations because they are con-
fined. Therefore, the (screened) quarks or gauge bosons
evolve into stringy mesons in the strong coupling domain
of small �-the monopole-antimonopole pairs connected
by two strings [8,9], as shown in Fig. 1. This is what we
call ‘‘instead-of-confinement’’ mechanism for quarks and
gauge bosons.

D. r ¼ N Duality at large �

From Eqs. (3.17), (3.22), and (3.28) we see that the
VEVs of the non-Abelian dyons DlA are determined byffiffiffiffiffiffiffiffi
�m

p
and are much smaller than the VEVs of the Abelian

dyonsDJ in the domain (3.15). The latter are of the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
. This circumstance is most crucial for us. It

allows us to increase � and decouple the adjoint fields
without spoiling the weak coupling condition in the dual
theory [9].
Now we assume that

j�j � jmAj; A ¼ 1; . . . ; Nf: (3.31)

The VEVs of the Abelian dyons become large at large �.
This makes U(1) gauge fields of the dual group (3.16)
heavy. Decoupling these gauge factors, together with the
adjoint matter and the Abelian dyons themselves, we ob-
tain the low-energy theory with the

U ðNf � NÞ (3.32)

gauge fields and the non-Abelian dyons DlA (l ¼ 1; . . . ;
Nf � N, A ¼ 1; . . . ; Nf). For the single-trace perturbation

(2.2) with � ¼ 0 the superpotential for DlA has the form [9]

W ¼ � 1

2�
ð ~DAD

BÞð ~DBD
AÞ þmAð ~DAD

AÞ; (3.33)

where the color indices are contracted inside each
parentheses.
The minimization of this superpotential leads to the

dyon VEVs,

hDlAi¼ h �~DlAi¼ 1ffiffiffi
2

p
0 .. . 0

ffiffiffiffiffi
�1

p
. . . 0

. . . . . . . . . . . . . . . . . .

0 .. . 0 0 .. .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðNf�NÞ

q
0
BBB@

1
CCCA;
(3.34)

5An explanatory remark regarding our terminology is in order.
Strictly speaking, such pairs can be formed by monopole-
antidyons and dyon-antidyons as well, the dyons carrying root-
like electric charges. In this paper we refer to all such states
collectively as to ‘‘monopoles.’’ This is to avoid confusion with
dyons which appear in Eq. (3.17). The latter dyons carry weight-
like electric charges and, roughly speaking, behave as quarks,
see [8] for further details.
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where those �’s that enter Eq. (3.34) (cf. Equation (3.17))
are of the order of�m, see (3.28). Other �’s (see Eq. (3.18))
become irrelevant, since all U(1) gauge fields become
heavy at large � and decouple.

Below the scale � our theory becomes dual to N ¼ 1
SQCD with the scale

~� 3N�2Nf ¼ �
2N�Nf

N¼2

�Nf�N : (3.35)

The only condition we impose to keep this infrared-free
theory in the weak coupling regime is

j ffiffiffiffiffiffiffiffi
�m

p j � ~�: (3.36)

This means that at large � we must keep the quark masses
sufficiently small.

Wewould like to stress that if VEV’s of dyons were all of

order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
, it would not be possible to decouple the

adjoint matter keeping the dual theory at weak coupling.

Once we increased� above the scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
, we would

get that these VEVs are much larger than ~�, which breaks
the weak coupling condition in the dual theory. Thus, the
non-Abelian structure present in the dual theory is the most
important element of the continuation to large �.

To summarize, at large � and small � the original
N ¼ 1 SQCD in the r ¼ N vacuum goes through a cross-
over transition at strong coupling. In the domain (3.36)
it is described by the weakly coupled infrared-free dual
theory, UðNf � NÞ SQCD, with Nf light dyon flavors.

Condensation of the light dyons DlA in this theory triggers
formation of the non-Abelian strings and confinement of
monopoles. For quarks and gauge bosons of the original
N ¼ 1 SQCD we have an ‘‘instead-of-confinement’’
phase: they decay into the monopole-antimonopole pairs
on CMS and form stringy mesons shown in Fig. 1.

IV. r-DUALITY

Now we are finally ready to turn to the main topic of this
paper–the study of the r < N vacua. First we consider the
small-� domain in which the theory is close to theN ¼ 2
limit. Our task is to analyze the transition from large to
small �. In much the same way as in [8] we will do this in
two steps. First, we will assume the quark mass differences
to be large. In this domain the theory stays at weak cou-
pling, and we can safely decrease the value of the parame-
ter �. Next, we will use the exact Seiberg–Witten solution
of the theory on the Coulomb branch [2,3] (i.e. at � ! 0) to
perform the passage from the domain of the large quark
mass differences to the domain of the small quark mass
differences.

With large mass differences, the quark sector of the
theory in the r-vacuum is at weak coupling and can be
analyzed semiclassically. The number of the r-vacua with
r < N in our theory is [29]

ðN � rÞCr
Nf

¼ ðN � rÞ Nf!

r!ðNf � rÞ! ; (4.1)

i.e. is equal to the number of choices one can pick up r
quarks which develop VEVs (out of Nf quarks) times the

Witten index (the number of vacua) in the classically
unbroken SUðN � rÞ pure gauge theory.
Below we consider a particular vacuum where the first r

quarks develop VEVs (cf. Sec. III), to be labeled by
(1; . . . ; r). Quasiclassically at large mass differences the
VEVs of the adjoint scalars are given by�

diag

�
1

2
aþTaaa

��
	� 1ffiffiffi

2
p ½m1; . . . ;mr;0; . . . ;0
; (4.2)

where the first r diagonal elements are proportional to the
quark masses, while the last (N � r) entries classically
vanish. In quantum theory they become of order of �N¼2.
Now we have to identify this vacuum in terms of the

Seiberg–Witten curve. In our theory (2.4) it has the form [21]

y2¼YN
k¼1

ðx��kÞ2�4

�
�N¼2ffiffiffi

2
p

�
2N�Nf YNf

A¼1

�
xþmAffiffiffi

2
p

�
; (4.3)

where �k are gauge invariant parameters on the Coulomb
branch. Semiclassically,

diag

�
1

2
aþ Taaa

�
	 ½�1; . . . ; �N
: (4.4)

Therefore, in the (1; . . . ; r) quark vacuum we have

�P 	 �mPffiffiffi
2

p ; P ¼ 1; . . . ; r;

�P ��N¼2; P ¼ rþ 1; . . . ; N
(4.5)

in the large mA limit, see (4.2).
To identify the r < N vacuum in terms of the curve (4.3)

it is necessary to find such values of �P which would
ensure the curve to have N � 1 double roots. r parameters
�P’s are determined by the quark masses in the semiclas-
sical limit, see (4.5). N � 1 double roots are associated
with r condensed quarks and N � r� 1 condensed mono-
poles. Altogether, N � 1 condensed states.
In contrast, in the r ¼ N vacuum we have the maximal

possible number of the condensed states (quarks), namely,N
in UðNÞ theory. This difference is related to the presence
of the unbroken U(1) gauge group in the r < N vacua [24].
In the classically unbroken (after quark condensation)
UðN�rÞ gauge group N�r�1 monopoles condense at
the quantum level, thus breaking the non-Abelian
SUðN�rÞ subgroup. One U(1) factor remains unbroken
because the monopoles do not interact with it.
Now we pass to the limit of the equal quark masses (3.5)

and address the following question. What is the maximal
number of �’s which are determined by the quark masses
exactly, without �N¼2 corrections? Let us denote this
number by �. Let us rewrite the curve (4.3) as
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y2 ¼
�
xþ mffiffiffi

2
p

�
2�

8<
: YN

k¼�þ1

ðx��kÞ2

� 4

�
�N¼2ffiffiffi

2
p

�
2N�Nf

�
xþ mffiffiffi

2
p

�
Nf�2�

9=
;; (4.6)

where the first � �’s are given by

�P ¼ � mffiffiffi
2

p ; P ¼ 1; . . . ; �: (4.7)

This curve has � double roots located at

eP ¼ � mffiffiffi
2

p ; P ¼ 1; . . . ; �: (4.8)

Now, the reduced curve in the curly brackets has
(N � �) colors and (Nf � 2�) flavors. If the maximal

number of quarks (all of them) condense in this reduced
theory, the rank of the classically unbroken gauge group
would be ðN � �Þ � ðNf � 2�Þ. This number should be

equal to the rank of the classically unbroken group in the
r-vacuum of the full theory. This gives

ðN � �Þ � ðNf � 2�Þ ¼ N � r; (4.9)

which entails

� ¼ Nf � r: (4.10)

Note, that the number of flavors in the reduced
curve should be, of course, non-negative. This gives Nf �
2� � 0 or

r � Nf=2:

For smaller r it is obvious that � ¼ r. Thus, we arrive at

� ¼
8<
: r; r � Nf

2

Nf � r; r >
Nf

2

: (4.11)

The main feature of the solution (4.7) is the absence of
Oð�N¼2Þ corrections to the first � �’s. This means that in
the equal mass limit these � �’s become equal. This is a
signal of restoration of the non-Abelian SUð�Þ gauge
group, i.e. the gauge group of the dual theory at small �.

Namely, the dual gauge group in the equal mass limit
becomes

U ð�Þ � Uð1ÞN��: (4.12)

This is in perfect agreement with the results obtained in
[21,29] where non-Abelian gauge groups were identified at
the roots of the nonbaryonic Higgs branches in the SUðNÞ
gauge theory with the massless quarks.

Thenovel element of our analysis presented in this section
is that we started from the non-Abelian r-vacuum at large �
and demonstrated that, as we reduce �, the theory in this
vacuum undergoes crossover to a different non-Abelian
regime, with the dual low-energy gauge group (4.12).

As was already mentioned, the physical reason for the
emergence of the non-Abelian gauge group is that the low-
energy effective theory with the dual gauge group (4.12) is
infrared-free in the equal mass limit and stays at weak
coupling. Therefore, the classical analysis showing that the
non-Abelian gauge group is restored in the equal mass limit
remains intact in quantum theory.
As was already mentioned, we interpret (4.11) as

a crossover transition with respect to the parameter �. If
r > Nf=2 the rank of the dual non-Abelian gauge subgroup

SUð�Þ at small � is different from the rank of the original
non-Abelian subgroup SUðrÞ. This difference imply a
‘‘vacuum leap’’ (see Secs. III B and VIB) and occurrence
of ‘‘instead-of-confinement’’ mechanism.
For r < Nf=2 there is no crossover.

V. r ¼ N � 1 VACUUM AT LARGE �

Our main example of the r vacuum in this paper is

r ¼ N � 1; (5.1)

in the theory (2.4). We will use the same strategy as for the
study of the r ¼ N vacuum: first assume that � is small
and the theory is close to the N ¼ 2 limit, so we can use
the exact Seiberg–Witten solution valid near the Coulomb
branch. We will study the crossover from the large-�
domain where the low-energy gauge group is

U ðr ¼ N � 1Þ � Uð1Þunbr (5.2)

to the small-� domain where the dual theory has the gauge
group

U ð� ¼ Nf � N þ 1Þ � Uð1ÞN���1 � Uð1Þunbr: (5.3)

At the last stage we will increase � thus decoupling the
adjoint matter.
Although in this paperwemostly consider the r¼ðN�1Þ

vacuum as a particular example of r < N vacua in the theory
(2.4), we believe that our results are general and can be
applied to all r vacua.
We also note, that while we keep � small to ensure the

proximity of the theory at hand to the N ¼ 2 limit, we
need a weaker condition to have a crossover into strong
coupling, namely r > Nf=2, see (4.11). At the last stage, in

Sec. VII, we make � large and assume that r > 2
3Nf in

order to keep the dual N ¼ 1 theory infrared-free.

A. Low-energy theory

The low-energy theory in the r ¼ N � 1 vacuum at
large � is presented in Appendix A. It includes non-
Abelian gauge fields An

� (n ¼ 1; . . . ; r2 � 1) as well as

Abelian fields A� and AN2�1
� . The last one is associated

with the last Cartan generator of the SUðNÞ group. These
fields have scalar N ¼ 2 superpartners an, a and aN

2�1.
Light matter consists of quarks qkA (k ¼ 1; . . . ; r). Note,
that all non-Abelian gauge fields from the sector
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SUðNÞ=SUðrÞ are heavy and decouple in the large
mass limit due to the structure of the adjoint VEVs (4.2).
Also qNA quarks are heavy and not included in the low-
energy theory.

The potential (A3) determines the vacuum structure in
the r ¼ N � 1 vacuum. The adjoint VEVs have the form

hdiagð�Þi 	 � 1ffiffiffi
2

p ½m1; . . . ; mN�1; 0
; (5.4)

while the (s)quark VEVs are

hqkAi¼ h �~qkAi¼ 1ffiffiffi
2

p
ffiffiffiffiffi
�1

p
. . . 0 0 ... 0

.. . . . . . . . . . . . . . . . .

0 . . .
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðN�1Þ

p
0 ... 0

0
BB@

1
CCA;

k¼1; . . . ;ðN�1Þ; A¼1; . . . ;Nf;

(5.5)

where now the first (N � 1) parameters � are given quasi-
classically by (3.7) while

�N ¼ 0: (5.6)

The last condition reflects the fact that the N-th quark is
heavy and develops no VEV.

To see that this is the case we can use the general
formula (3.22) for �’s where the quasiclassical expression
for the matrix E reduces to

diag ðEÞ 	 hdiagð�Þi 	 � 1ffiffiffi
2

p ½m1; . . . ; mN�1; 0
: (5.7)

As is seen from Eq. (A2), the quarks interact with a
particular linear combination of the U(1) gauge fields A�

and AN2�1
� , namely,

A� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN � 1Þ

s
AN2�1
� : (5.8)

The quark VEVs make this combination massive. The
orthogonal combinationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN � 1Þ

s
A� � AN2�1

� : (5.9)

remains massless and corresponds to the unbrokenUð1Þunbr
gauge group.

In the equal mass limit the global flavor symmetry
SUðNfÞ is broken in the r vacuum down to

SU ðrÞCþF � SUð� ¼ Nf � rÞF � Uð1Þ: (5.10)

Now SUðrÞCþF is a global unbroken color-flavor
rotation, which involves only the first r flavors, while the
SUð� ¼ Nf � rÞF factor stands for the flavor rotation of

the remainder of the quark sector.
Since the global (flavor) SUðNfÞ group is broken by the

quark VEVs anyway, it is useful to consider the following
mass splitting:

mP ¼mP0 ; mK ¼mK0 ; mP�mK ¼�m;

P;P0 ¼ 1; . . . ; r and K;K0 ¼ rþ 1; . . . ;Nf:
(5.11)

This mass splitting respects the global group (5.10) in the
(1; 2; . . . ; r) vacuum. This vacuum becomes isolated.
Inmuch the sameway as in the r ¼ N vacuum, in the r ¼

N � 1 vacuum all states in the limit (5.11) come in repre-
sentations of the unbroken global group (5.10), namely, in
the singlet and adjoint representations of SUðrÞCþF,

ð1; 1Þ; ðr2 � 1; 1Þ; (5.12)

and in the bifundamental representations

ð �r; �Þ; ðr; ��Þ: (5.13)

Wemark representations in (3.12) and (3.13) with respect to
two non-Abelian factors in (5.10). The singlet and adjoint
fields are the gauge bosons, and the first r flavors of the
quarks qkP (P ¼ 1; . . . ; r). The bifundamental fields are the
quarks qkK with K ¼ rþ 1; . . . ; Nf. Singlet and adjoint

fields have masses of order g
ffiffiffi
�

p
, where � is the common

value of the first r parameters � in the limit (5.11), while the
bifundamental field masses are equal to �m.
The above quasiclassical analysis applies provided that

the theory is at weak coupling. The weak coupling condi-
tion is

j ffiffiffi
�

p j � j ffiffiffiffiffiffiffiffi
�m

p j � �LE
N¼2; (5.14)

where �LE
N¼2 is the scale of the low-energy theory (A1)

determined by

�
2N�Nf

N¼2 ¼ m2ð�LE
N¼2Þ2ðN�1Þ�Nf : (5.15)

B. Strings and confinement of monopoles at large �

As quarks develop VEVs in the r ¼ N � 1 vacuum the
monopoles should be confined, in much the same way as
they are in the r ¼ N vacuum. As was already mentioned,
the distinction is that a single U(1) factor of the gauge
group remains unbroken; therefore the associated magnetic
flux should be unconfined. In this section we will deter-
mine the elementary string fluxes in the classical limit at
large � to show that the elementary monopole fluxes can be
absorbed by two strings. Hence, the monopoles are indeed
represented by the junctions of two different strings. The
exceptions are the monopolesMPN (P ¼ 1; . . . ; r) interpo-
lating between an P-th elementary string and the N-th
would-be string (which is in fact absent).
To make our discussion simpler we will consider here

(and, often, below) the theory with UðN ¼ 4Þ gauge group
and Nf ¼ 5 as an example,

N ¼ 4; Nf ¼ 5; r ¼ 3; � ¼ 2: (5.16)

In this case the low-energy theory (A1) has the gauge group
Uð3Þ � Uð1Þ15, where Uð1Þ15 describes the gauge field

AN2�1
� with N ¼ 4.
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If the quark masses are unequal, the U(3) gauge group is
broken down to Uð1Þ3 and the non-Abelian strings become
ZN¼4 Abelian strings, see [17] for more details.6 Let us
calculate their fluxes. Charges of three quarks qkA, k ¼ 1,
2, 3 in (A1) can be written as

~nq1 ¼
�
1

2
; 0;

1

2
; 0;

1

2
ffiffiffi
3

p ; 0;
1

2
ffiffiffi
6

p ; 0

�
;

~nq2 ¼
�
1

2
; 0;� 1

2
; 0;

1

2
ffiffiffi
3

p ; 0;
1

2
ffiffiffi
6

p ; 0

�
;

~nq3 ¼
�
1

2
; 0; 0; 0;� 1ffiffiffi

3
p ; 0;

1

2
ffiffiffi
6

p ; 0

�
;

(5.17)

respectively, where we use the notation

~n ¼ ðne; nm; n3e; n3m; n8e; n8m;n15e ; n15m Þ; (5.18)

and ne and nm denote electric and magnetic charges of a
given state with respect to the U(1) gauge group, while n3e,
n3m, n

8
e, n

8
e and n15e , n15e stand for the electric and magnetic

charges with respect to the Cartan generators of the SU(4)
gauge group (broken down to Uð1Þ3 by quark mass differ-
ences). In Appendix B for convenience we present weights
and roots of the SU(4) algebra. Quark charges correspond
to the weights of this algebra. Note, that the 4-th quark is
heavy and does not enter in the low-energy theory (A1).

Consider one of the Z4 strings which is formed due to the
winding of the q11 quark at r ! 1 (see [8,17] for a more
detailed discussion of the construction of the non-Abelian
strings),

q11 �
ffiffiffiffiffi
�1

2

s
ei�; q22 �

ffiffiffiffiffi
�2

2

s
; q33 �

ffiffiffiffiffi
�3

2

s
; (5.19)

see (5.5). Here r and � are the polar coordinates in the
plane i ¼ 1, 2 orthogonal to the string axis. Note that in the
r ¼ N ¼ 4 vacuum there is one extra condition associated
with the fourth quark [8]. In the r ¼ 3 vacuum this condi-
tion is absent. Eqs. (5.19) imply the following behavior of
the gauge potentials at r ! 1:

1

2
Ai þ 1

2
A3
i þ

1

2
ffiffiffi
3

p A8
i þ

1

2
ffiffiffi
6

p A15
i � @i�;

1

2
Ai � 1

2
A3
i þ

1

2
ffiffiffi
3

p A8
i þ

1

2
ffiffiffi
6

p A15
i � 0;

1

2
Ai � 1ffiffiffi

3
p A8

i þ
1

2
ffiffiffi
6

p A15
i � 0;

(5.20)

see the quark charges in (5.17). In the r ¼ 3 vacuum we
have to supplement these conditions with one extra condi-
tion which ensures that the combination (5.9) of the gauge
potentials A� and A15

� , which has no interaction with

quarks, is not excited, namely,

1ffiffiffi
6

p Ai � A15
i � 0: (5.21)

The solution to Eqs. (5.20) is

Ai�4

7
@i�; A3

i �@i�; A8
i �

1ffiffiffi
3

p @i�; A15
i � 4

7
ffiffiffi
6

p @i�:

(5.22)

It determines the string gauge fluxes
R
dxiAi,

R
dxiA

3
i ,R

dxiA
8
i and

R
dxiA

15
i , respectively. The integration above

is performed over a large circle in the (1, 2) plane. Let us
call this string S1.
Next, we define the string charges [8] asZ

dxiðAD
i ; Ai;A

3D
i ; A3

i ;A
8D
i ; A8

i ;A
15D
i ; A15

i Þ
¼ 4�ð�ne; nm;�n3e; n

3
m;�n8e; n

8
m;�n15e ; n15m Þ: (5.23)

This definition ensures that the string has the same charge
as a trial monopole which can be attached to the string
endpoint. In other words, the flux of the given string is the
flux of a trial monopole7 sitting on string’s end, with the
charge defined by (5.23).
In particular, according to this definition, the charge of

the string with the fluxes (5.22) is

~n S1 ¼
�
0;
2

7
; 0;

1

2
; 0;

1

2
ffiffiffi
3

p ; 0;
2

7
ffiffiffi
6

p
�
: (5.24)

Since this string is formed through the quark condensation,
it is magnetic.
There are two other elementary strings S2 and S3 which

arise due to winding of q22 and q33 quarks, respectively.
Repeating the above procedure for these strings we get
their charges,

~nS2 ¼
�
0;
2

7
; 0;� 1

2
; 0;

1

2
ffiffiffi
3

p ; 0;
2

7
ffiffiffi
6

p
�
;

~nS3 ¼
�
0;
2

7
; 0; 0; 0;� 1ffiffiffi

3
p ; 0;

2

7
ffiffiffi
6

p
�
:

(5.25)

Note, that the fourth string S4 of the U(4) gauge group is
absent in the r ¼ 3 vacuum since the fourth quark is heavy,
have no VEV and, therefore, can have no winding.
It is easy to check that each of the three elementary

SU(4) monopoles associated with first three roots of the
SU(4) algebra (see Appendix B) is confined by two ele-
mentary strings. Consider, say, two elementary monopoles
from the SUðr ¼ 3Þ subgroup with the charges ~nM12

¼
ð0; 0; 0; 1; 0; 0; 0; 0Þ and ~nM23

¼ ð0; 0; 0;� 1
2 ; 0;

ffiffi
3

p
2 ; 0; 0Þ.

These charges can be written as a difference of the charges
of two elementary strings, namely,

6One of these strings is absent in the r ¼ 3 vacuum.

7This trial monopole does not necessarily exist in our theory.
In the UðNÞ theories the SUðNÞ monopoles are rather string
junctions, so they are attached to two strings [8,13].
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~nM12
¼ ð0; 0; 0; 1; 0; 0; 0; 0Þ ¼ ~nS1 � ~nS2 ;

~nM23
¼

�
0; 0; 0;� 1

2
; 0;

ffiffiffi
3

p
2

; 0; 0

�
¼ ~nS2 � ~nS3 :

(5.26)

This means that each of these monopoles (at large �) is in
fact a junction of two strings, with one string having the
outgoing flux while the other incoming. The third M13

monopole from the SUðr ¼ 3Þ subgroup can be considered
as a bound state of two elementary ones in (5.26).

So far the monopole confinement in the r ¼ N � 1
vacuum looks quite similar to that in the r ¼ N vacuum
[8]. The distinction becomes apparent once we consider the
SUðN ¼ 4Þ monopole which does not belong to the
SUðr ¼ 3Þ subgroup. Let us consider the M34 monopole
with charges

~n M34
¼

0
@0; 0; 0; 0; 0;� 1ffiffiffi

3
p ; 0;

ffiffiffi
2

3

s 1
A: (5.27)

In the r ¼ 4 vacuum this monopole is a junction of two
strings S3 and S4. In the r ¼ 3 vacuum the S4 string is
absent. Let us calculate the unconfined flux of the S3 string
with the monopole M34 attached to its end. To this end
consider the difference

~nunconf ¼ ~nS3 � ~nM34
¼2

ffiffiffi
6

p
7

�
0;

1ffiffiffi
6

p ;0;0;0;0;0;�1

�
: (5.28)

We see that the n8m charge is cancelled, and the resulting
charge is a source of the U(1) gauge magnetic field corre-
sponding to the following combination:

1ffiffiffi
6

p A� � A15
� ; (5.29)

This is exactly the field of the unbroken Uð1Þunbr gauge
group, see (5.9).

Thus, the S3 string can terminate on the M34 monopole
producing a magnetic source for the unbroken Uð1Þunbr
gauge field. All other monopole fluxes, in particular, all
non-Abelian fluxes from the SU(3) subgroup, are absorbed
and squeezed in the confining strings S1, S2 and S3.

The picture of the monopole confinement in the r ¼ 3
vacuum is shown in Fig. 3.

To conclude this section let us determine the tensions of
three elementary strings in the r ¼ 3 vacuum. To the
leading order in �, close to theN ¼ 2 limit, these strings
are BPS saturated. The Bogomol’nyi representation for
non-Abelian strings stabilized by the Fayet–Iliopoulos
F-term is considered in [33]. The boundary terms in this
representation determine the string tensions,

T ¼ Tr

8>>><
>>>:

�1 . . . 0

. . . . . . . . .

0 . . . �N

0
BB@

1
CCAZ

dxi

�
1

2
Ai þ TaAa

i

�9>>>=
>>>;: (5.30)

The first diagonal matrix here is associated with quark
condensates determined by �’s, while the second matrix
linear in A’s represent the string flux. This formula is quite
general and applies to any vacuum. Say, in the r ¼ N
vacuum the fluxes of the elementary ZN strings are [17,33]

Z
dxi diag

�
1

2
Ai þ TaAa

i

�
SP

¼ 2�ð0; . . . ; 1; 0; . . . ; 0Þ (5.31)

with the only nonvanishing element located at the P-th
position, P ¼ 1; . . . ; N. This implies the result [33] for the
tension of the P-th string quoted in (3.9).
In the r ¼ 3 vacuum at hand the string fluxes are deter-

mined by Eqs. (5.24) and (5.25). Thus, we have

Z
dxi diag

�
1

2
Ai þ TaAa

i

�
S1;2;3

¼ 2� diag

	�
1; 0; 0;

1

7

�
;

�
0; 1; 0;

1

7

�
;

�
0; 0; 1;

1

7

�

: (5.32)

This gives the tensions for three elementary strings

TS1;2;3 ¼ 2��1;2;3: (5.33)

Note, that the last (nonvanishing) element in (5.32)
(i.e. 1=7) does not contribute because of the condition
�N¼4 ¼ 0.
We see that the string tensions in the r ¼ N � 1 vacuum

are still determined by nonvanishing �’s, in much the same
way as in the r ¼ N vacuum. In fact, we can fine-tune
the quark masses in such a way that the r ¼ 3 vacuum
coalesces with the r ¼ 4 vacuum (this amounts to taking
�4 ! 0). Then Eqs. (3.9) and (5.33) show continuity of
string tensions.

VI. DUAL THEORY IN THE r ¼ N � 1 VACUUM

Now we will decrease the parameter � passing in the
domain of small �. Then the original theory (A1) finds
itself in the strong coupling regime. As we already ex-
plained in Sec. IV, (see also [8]) in order to study the
transition from large to small � we first assume the quark
mass differences �mAB ¼ mA �mB to be large,

S2
S1

M12

S3

S3S2

M34

M23

U(1)
unbr

FIG. 3. The monopole confinement in the r ¼ 3 vacuum. The
thick double lines denote strings, while the circles denote mono-
poles. Unconfined U(1) flux is shown by arrows.
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j�mABj � �N¼2:

In this domain the theory stays at weak coupling, and we
can safely decrease the value of �.

Next, we use the exact Seiberg–Witten solution of the
theory on the Coulomb branch [2,3] to pass from the
domain of the large quark mass differences to that with
small quark mass differences,

j�mABj � �N¼2:

In doing so we keep the quark masses themselves large,

jmAj � �N¼2:

In this limit the non-Abelian subgroup of the low-energy
gauge group is Uðr ¼ N � 1Þ at large � (see Sec. V) and,
therefore, the crossover to strong coupling as well as dual-
ity in the r-vacuum look very similar to the those in the
r ¼ N vacuum in the UðNÞ theory studied in [8].

Summarizing, in this section we will assume the follow-
ing conditions for the dual theory:

j�mABj � �N¼2; jmAj � �N¼2;

j�Pj � �2
N¼2; j�j � �N¼2:

(6.1)

To be more precise, the Seiberg–Witten curve factorizes
in the r ¼ N � 1 vacuum in the folowing way [35]:

y2 ¼ YN
k¼1

ðx��kÞ2 � 4

�
�N¼2ffiffiffi

2
p

�
2N�Nf YNf

A¼1

�
xþmAffiffiffi

2
p

�

¼ YN�1

P¼1

ðx� ePÞ2ðx� eþN Þðx� e�N Þ: (6.2)

It has r ¼ ðN � 1Þ double roots associated with the
quark condensation, so that for the large mass differences

eP’s are given by the mass parameters,
ffiffiffi
2

p
eP 	 �mP

(P ¼ 1; . . . ; N � 1). The last two roots (and �N) are of
order of �N¼2. For single-trace deformation superpoten-
tial (2.2), with � ¼ 0, (see (2.3)) their sum vanishes [35],

eþN þ e�N ¼ 0: (6.3)

This condition is equivalent to the following physical
condition:

�N ¼ �2
ffiffiffi
2

p
�EN ¼ 0; (6.4)

which is valid because theN-th quark is heavy; therefore, it
develops no VEV. We already obtained this condition in
the classical limit, (see (5.6)). Below we will see that it is
satisfied also in the quantum theory. The root eþN deter-
mines the value of the gaugino condensate [24].

Once �mAB � �N¼2 (while mA 	 m � �N¼2) x is

close to�m=
ffiffiffi
2

p
, if we are interested in double roots of the

curve. Then the curve can be approximately written as

y2	
�
mffiffiffi
2

p
�
2
	Yr
k¼1

ðx��kÞ2�4

�
�LE

N¼2ffiffiffi
2

p
�
2r�Nf YNf

A¼1

�
xþmAffiffiffi

2
p

�


	
�
mffiffiffi
2

p
�
2 Yr
P¼1

ðx�ePÞ2; (6.5)

where the parameter �LE
N¼2 is given in (5.15).

We see that the curve reduces to the curve for the
r-vacuum in the UðrÞ theory. Now we use the results
obtained in [8] where the transition to the strong coupling
(small �mAB) was studied in this case.
To conclude this subsection we present, as an illustra-

tion, the � values and roots of the curve (6.2) for the
particular theory (5.16), in the limit of large masses (6.1).
In this limit �’s are

�1;2¼�m1;2ffiffiffi
2

p ; �3	� 1ffiffiffi
2

p ðm3þ�LE
N¼2Þ; �4	0; (6.6)

while the roots have the form

e1;2 ¼ �m1;2ffiffiffi
2

p ; e3 	 � 1ffiffiffi
2

p ðm3 ��LE
N¼2Þ;

e�4 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m3�

LE
N¼2

q
:

(6.7)

Here we assume for simplicity that m4¼m1 and m5 ¼ m2,
cf. [8]. We see that e1;2 are exactly given by the masses (see

Sec. IV), while eþ4 is much smaller than the double roots.

A. Monodromies

In this section we will study how quantum numbers of
the massless quarks q11; . . . ; qrr in the (1; . . . ; r) vacuum
change as we reduce �mAB to pass from weak coupling to
the strong coupling domain along the Coulomb branch at
� ¼ 0.
To simplify our discussion we will consider a particular

case (5.16) so that the dual group has the smallest non-
trivial rank � ¼ 2. We will consider the (1, 2, 3) vacuum.
The monodromies upon reducing the quark mass differ-
ences for the (1, 2, 3); vacuum in the U(3) theory was
studied in [8]. As was explained above, we can use these
results for our r ¼ 3 vacuum in the U(4) theory if we keep
m � �N¼2.
The quark quantum numbers change due to monodro-

mies with respect to �mAB. The complex planes of �mAB

have cuts, and when we cross these cuts, the a and aD fields
acquire monodromies; the quantum numbers of the corre-
sponding states change accordingly. The method used in
[8] to calculate the quark monodromies was the study of
the Seiberg–Witten curve of the theory in the proximity of
the Argyres–Douglas points [27] in �mAB variables. In
these AD points our (1, 2, 3) vacuum collides with the
monopole singularities. There are two relevant AD points
for the theory at hand [8]. The first one occurs at
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�m31 ¼ �LE
N¼2; e1 ¼ e3 ¼ �m1ffiffiffi

2
p ; (6.8)

where two double roots of the Seiberg–Witten curve (6.5)
coincide, while the second is at

�m32 ¼ �LE
N¼2; e2 ¼ e3 ¼ �m2ffiffiffi

2
p ; (6.9)

where the other two double roots coincide. In these AD
points the monopoles M13 and M23, respectively, become
massless. In [8] it was shown that passing through these
AD points the quarks pick up magnetic charges of the
corresponding monopoles, while the monopoles do not
change their charges. As a result, below the AD points
the charges of the massless dyons are

~nD1 ¼
�
1

2
; 0;

1

2
;
1

2
;

1

2
ffiffiffi
3

p ;

ffiffiffi
3

p
2

;
1

2
ffiffiffi
6

p ; 0

�
;

~nD2 ¼
�
1

2
; 0;� 1

2
;� 1

2
;

1

2
ffiffiffi
3

p ;

ffiffiffi
3

p
2

;
1

2
ffiffiffi
6

p ; 0

�
;

~nD3 ¼
�
1

2
; 0; 0; 0;� 1ffiffiffi

3
p ;� ffiffiffi

3
p

;
1

2
ffiffiffi
6

p ; 0

�
;

(6.10)

see (5.17) and (B4). Here we adjust results of [8] taking
into account the presence of the extra charge along T15 in
the U(4) theory. This amounts to just adding the quark
charges with respect to this Cartan generator in (6.10),
since theM13 andM23 monopoles have no n15m charges, see
(5.17) and (B4).

Note, that as we decrease �mAB we do not encounter
other AD points in which theMP4 monopoles (P ¼ 1, 2, 3)
become massless. To approach these points one has to
reduce mA (see (6.7)), but we keep jmAj large at the
moment.

Two remarks are in order here. First, it is crucially
important to note that the massless dyons D1 and D2

have both electric and magnetic charges 1=2 with respect
to the T3 generator of the dual Uð� ¼ 2Þ gauge group. This
means that they can fill the fundamental representation of
this group. Moreover, all dyonsDlA (l ¼ 1; . . . ; � ¼ 2) can
form color doublets. This is another confirmation of the
conclusion made in Sec. IV, that the non-Abelian factor
SUð� ¼ 2Þ of the dual gauge group gets restored in the
equal mass limit.

A general reason ensuring that the DlA (l ¼ 1; . . . ; �)
dyons fill the fundamental representation of theUð�Þ group
is as follows: due to monodromies the DlA dyons pick up
magnetic charges of particular monopoles of SUðrÞ. The
magnetic charges of these particular monopoles are repre-
sented by weights rather than roots of the Uð�Þ subgroup
(�1=2 for Uð� ¼ 2Þ, see (B4)). This is related to the
absence of the AD points associated with collisions of
the first � double roots, see (4.8). In other words, the
dual SUð�Þ theory is infrared-free and no monopole singu-
larities occur in this subsector.

The second comment is that the dyon charges with
respect to each U(1) generator are proportional to each
other. This guarantees that these dyons are mutually local.

B. ‘‘Vacuum leap’’

In this section we will present the low-energy dual
theory for the r ¼ N � 1 vacuum at small �. The gauge
group of the theory is indicated in (4.12). One of the
U(1) factors of this group corresponds to the unbroken
Uð1Þunbr. The light matter sector consists of dyons which
carry weightlike electric charges as well as rootlike
magnetic charges. Non-Abelian dyons DlA (l ¼ 1; . . . ; �,
A ¼ 1; . . . ; Nf) are in the fundamental representation of

the SUð�Þ dual gauge group. There are also dyon singlets
DJ (J ¼ ð�þ 1Þ; . . . ; r) charged with respect to the U(1)
factors of the dual gauge group. In the particular example
(5.16), the dyon charges were calculated in Sec. VIA. In
this example we have a doublet of the non-Abelian dyons
DlA (l ¼ 1, 2) plus one singlet dyon D3. The action of the
dual theory for this case is presented in Appendix C.
The potential of this theory determines the dyons VEVs.

In the generic r ¼ N � 1 vacuum we have

hDlAi ¼ h �~DlAi ¼ 1ffiffiffi
2

p
0 . . . 0

ffiffiffiffiffi
�1

p
. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . .
ffiffiffiffiffiffi
��

p

0
BB@

1
CCA;

hDJi ¼ h �~DJi ¼
ffiffiffiffiffi
�J

2

s
; J ¼ ð�þ 1Þ; . . . ; r: (6.11)

In much the same way as in the r ¼ N vacuum the most
important feature in (3.17) is a ‘‘vacuum leap’’ [8],

ð1; . . . ;rÞ ffiffiffi
�

p
��N¼2

!ðrþ1; . . . ;Nf;ð�þ1Þ; . . . ;rÞ ffiffiffi
�

p
��N¼2

:

(6.12)

In other words, if we pick up the vacuum with nonvanish-
ing VEVs of the first r quark flavors in the original theory
at large �, and then reduce � below �N¼2, the system will
go through a crossover transition and end up in the vacuum
of the dual theory with the nonvanishing VEVs of � last
dyons (plus VEVs of (r� �) SUð�Þ singlets).
The occurrence of this ‘‘vacuum leap’’ was demon-

strated previously in [8] in a particular example of the
r ¼ 3 vacuum in the U(3) gauge theory with Nf ¼ 5

flavors. This was done as follows. The curve (6.5) was
studied with small mass differences�m14 and�m25. It was
shown that if at large ðm3 �m1;2Þ �1;2 and e1;2 were

approximately given by �m1;2=
ffiffiffi
2

p
, respectively, then at

small ðm3 �m1;2Þ they approach �m4;5=
ffiffiffi
2

p
.

The �P parameters in (6.11) can be calculated from the
potential (C4), see also (C5). It turns out that they are still
determined by Eq. (3.22), in much the same way as in the
r ¼ N vacuum, where the matrix E is given by (3.23).
However, for the r ¼ N � 1 vacuum the relation (3.24)
between EP and the roots of the Seiberg–Witten curve
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modifies. In Appendix D we consider the simplest example
of the r ¼ 1 vacuum in the U(2) gauge theory to find this
relation. An obvious generalization of the result (D10) is

EP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeP�eþN ÞðeP�e�N Þ

q
; P¼1; . . . ;ðN�1Þ; EN ¼0;

(6.13)

which leads to our final expressions for the dyon VEVs in
terms of the roots of the Seiberg–Witten curve,

�P ¼ �2
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeP � eþN ÞðeP � e�N Þ

q
;

P ¼ 1; . . . ; ðN � 1Þ; �N ¼ 0:
(6.14)

Note that, at small �mAB, in the domain (6.1), the first �
roots are determined by the masses of the last � quarks,ffiffiffi

2
p

eI ¼ �mIþr; I ¼ 1; . . . ; � (6.15)

(up to small corrections of order of �m2=�N¼2). This is
because the non-Abelian sector of the dual theory is
infrared-free and is at weak coupling in the domain (6.1).
As long as we keep �P small the dual theory is at weak
coupling. For large masses (see (6.1)) this amounts to
making � sufficiently small.

C. ‘‘Instead-of-confinement’’ mechanism
in the r ¼ ðN � 1Þ vacuum

The phenomenon of the ‘‘vacuum leap’’ ensures that we
have ‘‘instead-of-confinement’’ mechanism for the quarks
and gauge bosons in the r ¼ ðN � 1Þ-vacuum, in much the
same way as in the r ¼ N vacuum.

Indeed, consider the mass choice (5.11). Both, the gauge
group and the global flavor SUðNfÞ group, are broken in the
vacuum. However, the color-flavor locked form of (6.11)
shows that the unbroken global group of the dual theory is

SU ðrÞF � SUð�ÞCþF � Uð1Þ: (6.16)

The SUð�ÞCþF factor in (6.16) is a global unbroken color-
flavor rotation, which involves the last � flavors, while the
SUðrÞF factor stands for the flavor rotation of the first r
dyons.

In the equal mass limit, or given the mass choice (5.11),
the global unbroken symmetry (6.16) of the dual theory at
small � coincides with the global group (5.10) in the
original theory at large �. However, again this global
symmetry is realized in two different ways in the dual
pair at hand. The quarks and gauge bosons of the original
theory at large � come in the (1, 1), (r2 � 1, 1), ð�r; �Þ, and
ðr; ��Þ representations (see (5.12) and (5.13)), while the
dyons and Uð�Þ gauge bosons form

ð1; 1Þ; ð1; �2 � 1Þ (6.17)

and

ðr; ��Þ; ð �r; �Þ (6.18)

representations of (6.16). We see again that the adjoint
representations of the (Cþ F) subgroup are different in
two theories.

This means that quarks and gauge bosons which form the
adjoint (r2 � 1) representation of SUðrÞ at large � and the
dyons and gauge bosons which form the adjoint (�2 � 1)
representation of SUð�Þ at small � are different states.What
happens to quarks and gauge bosons at small �?
In much the same way as in the r ¼ N vacuum, the

screened quarks and gauge bosons in the r ¼ ðN � 1Þ
vacuum from the large-� domain decay in the monopole-
antimonopole pairs on the CMS. As we will show in
Sec. VID, at small nonvanishing � the monopoles and
antimonopoles produced in the decay process of the adjoint
(r2 � 1, 1) states are confined. Therefore, the (screened)
quarks or gauge bosons evolve into stringy mesons in the
strong coupling domain of small �–the monopole-
antimonopole pairs connected by two strings, as shown
in Fig. 1. The difference with ‘‘instead-of-confinement’’
phase in the r ¼ N vacuum is that in the r ¼ ðN � 1Þ
vacuum the strings can be broken by MPN-monopole-
antimonopole pairs (see the next subsection); here
P ¼ 1; . . . ; r. As a result, dipole stringy states emitting
unbroken Uð1Þunbr magnetic gauge fields are formed, see
Fig. 2. Non-Abelian SUð�Þ fluxes are confined in these
stringy dipoles.
Note, that in the large mass limit (6.1) the MPN

monopoles are very heavy, with masses of order of
m=g22; therefore, stringy mesons in Fig. 1 are almost stable.

D. Strings and monopole confinement
in the dual theory

Now we will use the light dyon charges (6.10) to obtain
the fluxes of the Z4 strings in the dual theory and show that
these strings still confine monopoles.

Consider the ~S1 string arising due to winding of the D14

dyon. At r ! 1 we have

D14ðr ! 1Þ �
ffiffiffiffiffi
�1

2

s
ei�; D25ðr ! 1Þ �

ffiffiffiffiffi
�2

2

s
;

D3ðr ! 1Þ �
ffiffiffiffiffi
�3

2

s
;

(6.19)

see (6.11). Note again that the condition associated with the
fourth dyon is absent in the r ¼ 3 vacuum. Taking into
account the dyon charges in Eq. (6.10) we obtain the
behavior of the gauge potentials at infinity,

1

2
Aiþ1

2
A3
i þ

1

2
A3D
i þ 1

2
ffiffiffi
3

p A8
i þ

ffiffiffi
3

p
2
A8D
i þ 1

2
ffiffiffi
6

p A15
i �@i�;

1

2
Ai�1

2
A3
i �

1

2
A3D
i þ 1

2
ffiffiffi
3

p A8
i þ

ffiffiffi
3

p
2
A8D
i þ 1

2
ffiffiffi
6

p A15
i �0;

1

2
Ai� 1ffiffiffi

3
p A8

i �
ffiffiffi
3

p
A8D
i þ 1

2
ffiffiffi
6

p A15
i �0;

(6.20)

which, in turn, implies
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Ai þ 1ffiffiffi
6

p A15
i � 2

3
@i�;

1

2
A3
i þ

1

2
A3D
i � 1

2
@i�;

1

2
ffiffiffi
3

p A8
i þ

ffiffiffi
3

p
2

A8D
i � 1

6
@i�:

(6.21)

The combinations orthogonal to those which appear in
(6.21) are required to tend to zero at infinity, namely, A3

i �
A3D
i � 0, A8D

i � 3A8
i � 0 and A15D

i � 0. Also taking into
account (5.21) which stays intact in the dual theory we get

Ai�4

7
@i�; AD

i �0; A3
i �

1

2
@i�; A3D

i �1

2
@i�;

A8
i �

1

10
ffiffiffi
3

p @i�; A8D
i �

ffiffiffi
3

p
10

@i� A15
i � 4

7
ffiffiffi
6

p @i�;

A15D
i �0:

(6.22)

These expressions determine the charges of the ~S1 string,

~n ~S1
¼

�
0;
2

7
;� 1

4
;
1

4
;�

ffiffiffi
3

p
20

;
1

20
ffiffiffi
3

p ; 0;
2

7
ffiffiffi
6

p
�
: (6.23)

Paralleling the above analysis we determine the charges
of the other two Z4 strings which are due to windings of the
fields D25 and D3, respectively. We get

~n~S2
¼

�
0;
1

3
;
1

4
;� 1

4
;�

ffiffiffi
3

p
20

;
1

20
ffiffiffi
3

p ; 0;
2

7
ffiffiffi
6

p
�
;

~n~S3
¼

�
0;
1

3
; 0; 0;

ffiffiffi
3

p
10

;� 1

10
ffiffiffi
3

p ; 0;
2

7
ffiffiffi
6

p
�
:

(6.24)

Now we can check that each of three monopoles from the
SU(3) subgroup of SU(4) can be confined by two strings.
For the M12 and M23 monopoles we have

~nM12
¼ ð ~n~S1

� ~n~S2
Þ þ 1

2
ð ~nD14 � ~nD25Þ;

~nM23
¼ ð ~n~S1

� ~n~S2
Þ þ 3

10
ð ~nD25 � ~nD3Þ � 1

10
ð ~nD14 � ~nD25Þ;

(6.25)

where ~nD14 , ~nD25 and ~nD3 are charges of the condensed
dyons given in (6.10). Only a part of the monopole flux is
confined inside the strings. The remainder of its flux is
screened by the condensate of the D14, D25 and D3 dyons.

We see that, although the quark charges change as we
pass from the large-� domain to small-�, and the quarks
turn into dyons, this does not happen with the monopoles.
The monopole states do not change their charges. They are
confined in both, strong and weak coupling domains, being
represented by the junctions of two different elementary
strings. In the strong coupling domain in the dual theory
there is a peculiarity: not the entire monopole flux is
carried by two attached strings; a part of it is screened by
the dyon condensate.

Consider now theMP4 monopoles (P ¼ 1, 2, 3). In much
the same way as in the original theory (see Sec. VB), their
fluxes in the dual theory are not completely confined in the
r ¼ 3 vacuum. Consider, say, theM34 monopole (see (5.27))

attached to the string ~S3. In the r ¼ 3 vacuum the ~S4 string is
absent due to the fact that �4 ¼ 0, and the flux of the above
configuration is unconfined.
Let us calculate this unconfined flux. It is easy to

check that

~nunconf ¼ ~n~S3
� ~nM34

þ 1

10
ð2 ~nD3 � ~nD14 � ~nD25Þ

¼ 2
ffiffiffi
6

p
7

�
0;

1ffiffiffi
6

p ; 0; 0; 0; 0; 0;�1

�
: (6.26)

Here we add in the right-hand side a linear combination of
the charges the of D14, D25 and D3 dyons. This linear
combination is screened by their condensates. In much the
sameway as in the original theory, we see that the n8m charge
is canceled and the resulting charge is, in fact, a source for
the U(1) gauge magnetic field exactly corresponding to the
field of the unbroken Uð1Þunbr gauge group, see (5.29).
Thus, the ~S3 string can terminate on the monopole M34

producing a magnetic source of the unbroken Uð1Þunbr
gauge field. All other monopole fluxes are absorbed by

confining the ~S1, ~S2 and ~S3 strings. The picture of the
monopole confinement in the r ¼ 3 vacuum of the dual
theory is qualitatively the same as that in the original
theory, see Fig. 3. Basically, the only difference is the
fact that now confined non-Abelian fluxes are associated
with the dual gauge group SUð� ¼ 2Þ, rather than with the
original SUðr ¼ 3Þ group.
Note, that at large quark masses (see (6.1)) the MP4

monopole masses (P ¼ 1, 2, 3) are very large; therefore,

the ~SP strings are almost stable in this limit.
Note also, that, in much the same way as in the original

theory, the tensions of ~SP strings are still given by Eq. (5.33),
where the �P parameters are determined by (6.14).

VII. r-DUALITY AT LARGE �

Nowwe are ready to increase� and decouple the adjoint
matter. Our theory (2.4) will flow to N ¼ 1 SQCD.

A. Moving to the Argyres—Douglas point

In order to keep our dual theory at weak coupling we
need to keep the � parameters (at least � of them) suffi-
ciently small. At large � this creates a problem. In the
r ¼ N vacuum this problem was overcame in [9] by as-
suming the quark masses to be small. The � parameters in
the r ¼ N vacuum are given by (3.27), while the first
ðNf � NÞ roots of the Seiberg—Witten curve are deter-

mined by the quark masses, with no�N¼2-corrections, see
(3.28). This allows us to increase � thus decoupling the
adjoint matter as well as the U(1) factors, while keeping the
low-energy UðNf � NÞ gauge theory at week coupling.

r DUALITY AND ‘‘INSTEAD-OF-CONFINEMENT’’ . . . PHYSICAL REVIEW D 86, 025001 (2012)

025001-17



Inspecting Eq. (6.14) we immediately see that this strat-
egy does not work in the r ¼ N � 1 vacuum.

Although the first � roots of the Seiberg—Witten curve
are determined by the quark masses (see (6.15)), the last
two undouble roots e�N are of order of �N¼2 at small
masses. Therefore, at large � the � parameters become
large at small masses,

���N¼2;

destroying the weak coupling condition.
Thus, in the r < N vacua we need a different, novel

strategy. Equation (6.14) shows that if we keep the mass
differences very small and force the average value of the �
double roots (determined by the quark masses, that are
almost equal) to lie in the proximity of one of the roots e�N ,
we make � parameters � small. Say, we fine-tune the quark
masses to ensure the limit

eP ! eþN ; �mKK0 � �N¼2;

P ¼ 1; . . . ; �; K; K0 ¼ ðrþ 1Þ; . . . ; Nf:
(7.1)

Note, that it is possible to place all � double roots close to
eþN because it is the quark masses rather than �N¼2 that
determine the ‘‘non-Abelian’’ roots of the Seiberg—
Witten curve and the VEVs of the non-Abelian dyons,
see (6.15).

This limit means moving to the AD points. To see that
this is indeed the case observe that masses of � monopoles
MPN (P ¼ 1; . . . ; �) on the Coulomb branch are deter-
mined by the differences ðeP � eþN Þ ! 0, the correspond-
ing 	-cycles shrink.

Thus, besides the light dyons DlA and DJ which are
always present in our r vacuum, we get extra light mono-
poles that are mutually nonlocal with the dyons. If we were
on the Coulomb branch (at �P ¼ 0) this would definitely
mean moving to strong coupling. In fact, the running
coupling constant of our dual theory is determined by the
light dyon loops. If the monopoles simultaneously become
light, their loops give logarithmic contributions to the
inverse coupling, making the overall coupling constant of
order of unity.

However, at small but nonvanishing � we are not on the
Coulomb branch. In fact, the monopoles are confined. In
particular, � monopoles MPN (P ¼ 1; . . . ; �) in question
form stringy dipole states shown in Fig. 2. Although the
masses of theMPN monopoles becomevery small in the limit
(7.1), the mass of the stringy dipole state formed by one of
thesemonopoles (and an antimonopole) is determined by the
string tension and, therefore, is much larger. It is of order offfiffiffiffiffiffi
�P

p
. The masses of the DlA dyons are of order of ~g

ffiffiffi
�

p
.

Starting from weak coupling in the dual theory and calculat-
ing the renormalization of the coupling constant ~gwe see that
the monopole-antimonopole states are heavier, and their
loops are suppressed. In the theory (C1) the coupling constant
renormalization is determined by the dyon loops. This

ensures that the renormalized coupling constant is small,
provided that we keep �’s small enough.
In other words, away from the Coulomb branch

(at � � 0) the dual theory has no nontrivial conformal
AD-regime, which appears on the Coulomb branch in the
limit (7.1) [27]. It stays infrared-free. Note, however, that
the effective two-dimensional sigma model on the non-
Abelian string goes into a nontrivial conformal regime at
the AD-point [36]. This is because condensates of the
scalar fields tend to zero inside the string core, and on
the string we are essentially back to the Coulomb branch of
the four-dimensional bulk theory.
Let us stress, that this is the most important observation

which allows us to extend our r-duality from N ¼ 2
SQCD to N ¼ 1.
The fact that the light matter VEVs tend to zero in the

AD-point was first recognized in [37] in the Abelian case.

B. Decoupling the U(1) factors

Now we can continue following the same road as in [9],
where the large-� limit was studied in the r ¼ N vacuum.
First we will take the limit (7.1) still keeping � small.
The VEVs of the non-Abelian dyons DlA become much

smaller than the VEVs of the Abelian dyons DJ, see
(6.11), (6.14), and (6.15). In particular, the VEVs of the
DJ dyons are determined by the differences (eJ � eþN ) for
J ¼ ð�þ 1Þ; . . . ; r which are not small and stay of order of
�N¼2 in the limit (7.1).
As a result, (N � �� 1) U(1) gauge fields of the dual

gauge group (4.12) as well as the DJ dyons themselves

acquire large masses, � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
, and decouple. At low

energies we are left with the

U ð�Þ � Uð1Þunbr (7.2)

gauge theory of non-Abelian DlA dyons (l ¼ 1; . . . ; �,
A ¼ 1; . . . ; Nf). The gauge field corresponding to

Uð1Þunbr does not interact with the dyons and remains
massless. The VEVs of the non-Abelian dyons are given by

hDlAi ¼ h �~DlAi ¼ 1ffiffiffi
2

p
0 . . . 0

ffiffiffiffiffi
�1

p
. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . .
ffiffiffiffiffiffi
��

p

0
BB@

1
CCA;

(7.3)

see (6.11), where the first � parameters �P are small in the
limit (7.1).
The superpotential of this theory can be written as

W ¼ ffiffiffi
2

p XNf

A¼1

�
1

2
~DAbUð1ÞDA þ ~DAb

pTpDA

þ 1ffiffiffi
2

p mA
~DAD

A

�
þ�u2ðbUð1Þ; bp; aunbrÞ: (7.4)

Here bUð1Þ is a chiral superfield, the N ¼ 2 superpartner

of BUð1Þ
� , where BUð1Þ

� is a particular linear combination of
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the dual gauge fields not interacting with theDJ dyons. We
normalized bUð1Þ so that the charges of the DlA dyons with

respect to this field are 1
2 . This amounts to redefining its

coupling constant ~g2Uð1Þ.
Moreover, bp (with p ¼ 1; . . . ; �2 � 1) is an SUð�Þ

adjoint chiral field, the N ¼ 2 superpartner of the dual
SUð�Þ gauge field, see (C1). We also use the standard
normalization for the non-Abelian charges of DlA absorb-

ing
ffiffiffi
2

p
present in (C2) in the definition of the gauge fields.

Finally, aunbr is a superpartner of the gauge field of the
Uð1Þunbr, see (5.9).

C. Decoupling adjoint matter

Now we increase � and make it

j�j � j ffiffiffiffiffiffi
�P

p j; P ¼ 1; . . . ; � (7.5)

decoupling adjoint matter. In order to keep the dual theory
at weak coupling we go to the AD limit (7.1) and require

j ffiffiffiffiffiffi
�P

p j � ~�; P ¼ 1; . . . ; �; (7.6)

where

~� r�2� ¼ �r��
N¼2

�� : (7.7)

We also assume that the quark mass differences are very
small, even smaller than EP, namely,

�mKK0 � EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2P � e2NÞ

q
;

P ¼ 1; . . . ; �;

K; K0 ¼ ðrþ 1Þ; . . . ; Nf:

(7.8)

Given the superpotential (7.4) we can explicitly integrate
out the adjoint matter. First we find the adjoint scalar
VEVs. Say, in the simplest example � ¼ 2 we have

b3 ¼ � 1ffiffiffi
2

p ðmNf�1 �mNf
Þ;

bUð1Þ ¼ � 1ffiffiffi
2

p ðmNf�1 þmNf
Þ:

(7.9)

Next we find aunbr from Eq. (7.4) and expand the result-
ing function u2 in powers of bp and deviations of bUð1Þ
from its VEV in (7.9),

u2ðbUð1Þ;bpÞ¼c1ðbpÞ2þc2�bUð1Þþc3ð�bUð1ÞÞ2

þO

�
�2ðbpÞ4
�2

N¼2

�
þO

�
�2ð�bUð1ÞÞ3

�N¼2

�
; (7.10)

Since�bUð1Þ and bp are of order of EP (the VEVs of bp are
also small, of order of �mKK0 , see (7.9)) we can neglect
higher-order terms in the expansion (7.10) and keep only
linear and quadratic terms. Higher-order terms are sup-
pressed by powers of EP=�N¼2.

Now, substituting (7.10) into (7.4) and integrating over
�bUð1Þ and bp we get the superpotential which depends

only on DlA. Minimizing it and requiring the VEVs of DlA

to be given by (7.3) (see also (6.14)) we fix the coefficients
c1 and c2. Say, for � ¼ 2 we get

c1 ¼ � 1

2
ffiffiffi
2

p m̂

Ê
; c2 ¼ 2Ê; (7.11)

where

m̂ ¼ 1

�

X�
P¼1

mrþP; Ê ¼ 1

�

X�
P¼1

EP: (7.12)

Note that the constant c3 cannot be fixed by this procedure.
In principle, c3 can be fixed by studying the behavior of u2
near the AD points.
After eliminating the adjoint matter the superpotential

takes the form

W ¼ Êffiffiffi
2

p
m̂�

ð ~DAD
BÞð ~DBD

AÞ þ
�
ðmA � m̂Þ þ ð ffiffiffi

2
p

ÊÞ2
m̂

�

� ð ~DAD
AÞ þ c

�
1

2�
ð ~DAD

AÞ2 þ ffiffiffi
2

p
�Êð ~DAD

AÞ
�
:

(7.13)

This equation presents our final large-� result for the
superpotential of the theory dual to N ¼ 1 SQCD in the
(1; . . . ; r) vacuum. The constant c� 1 remains undeter-
mined; it is related to c3 above.
One can check that minimization of this superpotential

leads to correct values of the dyon VEVs, Eq. (7.3). The
theory with the superpotential (7.13) possesses many other
vacua in which different dyons (and different number of
dyons) develop VEVs. We consider only one particular
vacuum here. As was explained in Sec. VI B, if we choose
the (1; . . . ; r) vacuum in the original theory above the cross-
over, thenwe end up in the (0; . . . ; 0; rþ 1; . . . ; Nf) vacuum

in the dual theory below the crossover, see (7.3). Vacuawith
the number of condensed D’s less than the maximum pos-
sible one (equal �) seen in (7.13) are spurious.

D. Perturbative mass spectrum

Now we briefly summarize the perturbative mass spec-
trum of our dual theory with superpotential (7.13) given the
quark mass choice (5.11).
The Uð�Þ gauge group is completely Higgsed, and the

masses of the gauge bosons are

mSUð�Þ ¼ ~g2
ffiffiffi
�

p
(7.14)

for the SUð ~NÞ gauge bosons, and

mUð1Þ ¼ ~g1

ffiffiffi
�

2

r ffiffiffi
�

p
: (7.15)

for the U(1) gauge boson. Here ~g1 and ~g2 are dual gauge
couplings for theU(1) andSUð�Þ gauge bosons, respectively,
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while � is a common value of the first � parameters �P (see
Eqs. (6.14) and (6.15)),

� ¼ �2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 � 2e2N

q
: (7.16)

The dyon masses are determined by the D-term potential

Vdual
D ¼ ~g22

2
ð �DAT

pDA � ~DAT
p �~D

AÞ2 þ ~g21
8
ðjDAj2 � j ~DAj2Þ2

(7.17)

and the F-term potential following from the superpotential
(7.13). Diagonalizing the quadratic form given by these two
potentials we find that, out of 4�NF real degrees of freedom
of the scalar dyons, �2 are eaten up in the Higgs mechanism,
�2 � 1 real scalar dyons have the same mass as the non-
Abelian gauge fields, Eq. (7.14), while one scalar dyon has
the mass (7.15). These dyons are scalar superpartners of the
SUð�Þ and U(1) gauge bosons in N ¼ 1 massive vector
supermultiplets, respectively.

Another 2ð�2 � 1Þ dyons form a (1, �2 � 1) representa-
tion of the global group (6.16). Their mass is as follows:

mð1;�2�1Þ ¼
Ê2

m̂
; (7.18)

while two real singlet dyons are heavier, their mass

mð1;1Þ � Ê (7.19)

is determined by the last term (the one with unknown
coefficient) in (7.13). Here

Ê ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 � 2e2N

q
; (7.20)

see (6.13).
The masses of 4r� bifundamental fields are given by the

mass split of r first and � last quark masses, see (5.11),

mð�r;�Þ ¼ �m: (7.21)

All these dyons are the scalar components of the N ¼ 1
chiral multiplets.

We see that the masses of the gauge multiplets and those
of chiral matter get a large split in the limit of large � and

small Ê. Chiral matter becomes much lighter than the
gauge multiplets cf. [17,38].

E. Summary

To summarize, at large �, upon reducing �, the original
N ¼ 1 SQCD in the r ¼ N � 1 vacuum undergoes a
crossover transition at strong coupling. In the domain
(7.6) in the vicinity of the AD points (7.1) it is described
by the weakly coupled infrared-free dual theory, Uð�Þ �
Uð1Þunbr SQCD, with Nf light dyon flavors. Condensation

of the light dyons DlA in this theory leads to formation of
the non-Abelian strings and confinement of monopoles.
Quarks and gauge bosons of the original N ¼ 1 SQCD

are in the ‘‘instead-of-confinement’’ phase: they decay into
the monopole-antimonopole pairs on CMS and form
stringy mesons. In fact, in the AD-regime (7.1) the MPN

monopoles (P ¼ 1; . . . ; �) become very light and, there-
fore, strings are unstable. As a result, stringy mesons
shown in Fig. 1 decay into stringy dipoles, see Fig. 2.
Stringy dipoles with nontrivial charges with respect to
the SUðrÞ part of the global group (for example from the
adjoint representation) are stable.

VIII. CONCLUSIONS

Our main task was to extend non-Abelian duality, that
was observed previously [8] in the r ¼ N vacuum, to vacua
with a smaller number of condensed quarks, which we
referred to as the r vacua. The second task was exploration
of the confinement mechanism both in the original and dual
theories, as it reveals itself in the r vacua. As in [8] we start
from the N ¼ 2 theory slightly deformed by the adjoint
field mass parameter � and study the transition from large
values of the FI parameters � to small values. At large � it
is the original theory that is weakly coupled. As we move
to smaller � the original theory becomes coupled exceed-
ingly stronger. A dual description becomes more appropri-
ate. We identify the dual gauge group (which, surprisingly,
is not the Seiberg dual group if r < N), dual matter and
dual theory as a whole. Remarkably, the ‘‘dual quarks’’ are
not monopoles. We identify an ‘‘instead-of-confinement’’
mechanism.
Then we increase the deformation parameter � and

repeat the whole program. At large � the adjoint fields
decouple, and our theory flows to N ¼ 1 SQCD. The
gauge group of the dual theory becomes UðNf � rÞ. We

show that the dual theory is still weakly coupled if we
approach the Argyres—Douglas point. The ‘‘instead-of-
confinement’’ mechanism for quarks and gauge bosons
survives in the limit of large �. It determines low-energy
non-Abelian dynamics in the r-vacua of N ¼ 1 SQCD.
Our main example in this paper is the r ¼ ðN � 1Þ

vacuum. Still we expect that our results are quite general
and can be applied to all r > 2

3Nf vacua. In particular, a

generic r vacuum has (N � r� 1) condensed monopoles
at large �, in addition to r condensed quarks. These mono-
poles are charged with respect to Abelian U(1) factors of
the gauge group. At large � and small � in the dual theory
all SUð�Þ singlets (including these monopoles) become
heavy and decouple. They do play no role in the low-
energy dynamics of the dual theory at large �. The light
matter charged with respect to the dual gauge group Uð�Þ
consists of the DlA dyons which are quarklike states. In
particular, condensation of these dyons leads to confine-
ment of monopoles.
Avery crucial question is comparison of the r duality we

studied here with the Seiberg duality. This will be carried
out in a separate publication [28].
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APPENDIX A: LOW-ENERGYACTION OF
THE UðNÞ THEORY IN THE r ¼ N � 1

VACUUM AT LARGE �

The low-energy action has the form

S ¼
Z

d4x

�
1

4g22
ðFn

��Þ2 þ 1

4g21
ðF��Þ2 þ 1

4g22
ðFðN2�1Þ

�� Þ2

þ 1

g22
jD�a

nj2 þ 1

g21
j@�aj2 þ 1

g22
j@�aðN2�1Þj2

þ jr�q
Aj2 þ jr�

�~qAj2 þ V

�
; (A1)

where the fundamental and adjoint color indices are
k ¼ 1; . . . ; r and n ¼ 1; . . . ; r2 � 1, respectively, while

the U(1) gauge field AN2�1
� and its scalar superpartner

aN
2�1 are associated with the last Cartan generator of

SUðNÞ. Note that all non-Abelian gauge fields from the
SUðNÞ=SUðrÞ sector are heavy and decouple in the large
mass limit due to the structure of the adjoint VEVs,
see (4.2). Also the qNA quarks are heavy and not included
in the low-energy theory. The covariant derivative

r� ¼ @� � i

2
A� � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN � 1Þp AN2�1
� � iAn

�T
n (A2)

acts in the fundamental representation.

The scalar potential VðqA; ~qA; an; a; aðN2�1ÞÞ in the
action (A1) is

VðqA; ~qA;an;a;aðN2�1ÞÞ¼g22
2

�
1

g22
fnms �amasþ �qAT

nqA� ~qAT
n �~qA

�
2þg21

8
ð �qAqA� ~qA �~q

AÞ2þ g22
4NðN�1Þð �qAq

A� ~qA �~q
AÞ2

þ2g22

��������~qAT
nqAþ 1ffiffiffi

2
p @W br

@an

��������2þg21
2

��������~qAq
Aþ ffiffiffi

2
p @W br

@a

��������2þ2g22

�������� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN�1Þp ~qAq

A

þ 1ffiffiffi
2

p @W br

@aðN2�1Þ

��������2þ1

2

XNf

A¼1

	��������
�
aþ ffiffiffi

2
p

mAþ2Tnanþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN�1Þ

s
aðN2�1

�
qA

��������2

þ
��������
�
aþ ffiffiffi

2
p

mAþ2Tnanþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN�1Þ

s
aðN2�1

�
�~qA
��������2



: (A3)

APPENDIX B: WEIGHTS AND ROOTS OF
THE SU(4) ALGEBRA

In this Appendix we present, for completeness, weights and roots of the SU(4) algebra which we repeatedly use in the
main text. Weights determine quark charges, while roots determine monopole charges. The diagonal (Cartan) generators of
SUðNÞ are defined as

T ~a¼ðmþ1Þ2�1
ij ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðmþ 1Þp �Xm
k¼1

�ik�jk �m�i;mþ1�j;mþ1

�
; m ¼ 1; . . . ; N � 1: (B1)

For SU(4) the index values m ¼ 1, 2, 3 correspond to the Cartan generators T3, T8 and T15.
In three-dimensional Cartan plane the weights of the SU(4) algebra are

w1 ¼
�
1

2
;

1

2
ffiffiffi
3

p ;
1

2
ffiffiffi
6

p
�
; w2 ¼

�
� 1

2
;

1

2
ffiffiffi
3

p ;
1

2
ffiffiffi
6

p
�
; w3 ¼

�
0;� 1ffiffiffi

3
p ;

1

2
ffiffiffi
6

p
�
; w4 ¼

�
0; 0;� 3

2
ffiffiffi
6

p
�
: (B2)

The roots can be obtained as

�ij¼wi�wj; i<j: (B3)

This implies
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�12 ¼ ð1; 0; 0Þ; �13 ¼
�
1

2
;

ffiffiffi
3

p
2

; 0

�
; �23 ¼

�
� 1

2
;

ffiffiffi
3

p
2

; 0

�
; �14 ¼

�
1

2
;

1

2
ffiffiffi
3

p ;

ffiffiffi
2

3

s �
;

�24 ¼
�
� 1

2
;

1

2
ffiffiffi
3

p ;

ffiffiffi
2

3

s �
; �34 ¼

�
0;� 1ffiffiffi

3
p ;

ffiffiffi
2

3

s �
:

(B4)

For the monopole with charges determined by the root �ij we use the notationMij. From the expressions above we find

charges of all monopoles in SU(4). Say, for the M23 monopole we have

~n M23
¼

�
0; 0; 0;� 1

2
; 0;

ffiffiffi
3

p
2

; 0; 0

�
(B5)

in notations (5.18).

APPENDIX C: LOW-ENERGYACTION OF THE DUAL THEORY IN THE r ¼ 3 VACUUM FOR N ¼ 4

The dual theory for the r ¼ 3 vacuum in the U(3) gauge theory was found in [8]. To utilize these results in the r ¼ 3
vacuum in the U(4) theory at hand we make a minor adjustment which takes into account the presence of an extra U(1)
gauge field associated with the T15 generator in the U(4) theory. The dual gauge group is Uð2Þ � Uð1Þ8 � Uð1Þ15. The
bosonic part of the action is

Sdual ¼
Z

d4x

�
1

4~g22
ðFp

��Þ2 þ 1

4g21
ðF��Þ2 þ 1

4~g28
ðF8

��Þ2 þ 1

4~g215
ðF15

��Þ2 þ 1

~g22
j@�bpj2 þ 1

g21
j@�aj2 þ 1

~g28
j@�b8j2

þ 1

~g215
j@�a15j2 þ jr1

�D
Aj2 þ jr1

�
~DAj2jr2

�D
3j2 þ jr2

�
~D3j2 þ V

�
; (C1)

Here covariant derivatives are defined in accordance with the charges of theDl (l ¼ 1, 2) andD3 dyons in (6.10). Namely,

r1
� ¼¼ @� � i

�
1

2
A� þ ffiffiffi

2
p

Bp
�

p

2
þ

ffiffiffiffiffiffi
10

p

2
ffiffiffi
3

p B8
� þ 1

2
ffiffiffi
6

p A15
� Þ; r2

� ¼ @� � i

�
1

2
A� �

ffiffiffiffiffiffi
10

p
ffiffiffi
3

p B8
� þ 1

2
ffiffiffi
6

p A15
�

�
; (C2)

where the Bp
� gauge fields (p ¼ 1, 2, 3), B8

�, and their scalar superpartners bp and b8 are

B3
�¼ 1ffiffiffi

2
p ðA3

�þA3D
� Þ; b3¼ 1ffiffiffi

2
p ða3þa3DÞ forp¼3; B8

�¼ 1ffiffiffiffiffiffi
10

p ðA8
�þ3A8D

� Þ; b8¼ 1ffiffiffiffiffiffi
10

p ða8þ3a8DÞ: (C3)

The coupling constants g1, ~g8, ~g15 and ~g2 correspond to three U(1)’s and the SU(2) gauge groups, respectively. The
scalar potential VðD; ~D; bp; b8; a; a15Þ in the action (C1) is

V¼ ~g22
4

�
1

~g22
fnms �amasþ �DA


pDA� ~DA

p �~D

A
�
2þ10

3

~g28
8
ðjDAj2�j ~DAj2�2jD3j2þ2j ~D3j2Þ2

þ ~g21
8
ðjDAj2�j ~DAj2þjD3j2�j ~D3j2Þ2þ ~g215

48
ðjDAj2�j ~DAj2þjD3j2�j ~D3j2Þ2

þ ~g22
2

�������� ffiffiffi
2

p
~DA


pDAþ
ffiffiffi
2

p @W br

@bp

��������2þ ~g21
2

�������� ~DAD
Aþ ~D3D3þ

ffiffiffi
2

p @W br

@a

��������2þ ~g28
2

��������
ffiffiffiffiffiffi
10

3

s
~DAD

A�2

ffiffiffiffiffiffi
10

3

s
~D3D

3

þ ffiffiffi
2

p @W br

@b8

��������2þ ~g215
2

�������� 1ffiffiffi
6

p ð ~DAD
Aþ ~D3D3Þþ

ffiffiffi
2

p @W br

@a15

��������2þ1

2

	��������
�
aþ
p

ffiffiffi
2

p
bpþ

ffiffiffiffiffiffi
10

3

s
b8þ 1ffiffiffi

6
p a15þ ffiffiffi

2
p

mA

�
DA

��������2

þ
��������
�
aþ
p

ffiffiffi
2

p
bpþ

ffiffiffiffiffiffi
10

3

s
b8þ 1ffiffiffi

6
p a15þ ffiffiffi

2
p

mA

�
�~DA

��������2þ
��������a�2

ffiffiffiffiffiffi
10

3

s
b8þ 1ffiffiffi

6
p a15þ ffiffiffi

2
p

m3

��������2ðjD3j2þj ~D3j2Þ


; (C4)

(see also [9]).
The derivatives of the superpotential W in (C4) can be calculated using (3.21). Next, we use monodromies found in

Sec. VIA to relate the derivatives of u2 with respect to b3 and b8 to those with respect to a3 and a8, namely,
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1ffiffiffi
2

p @u2
@b3

¼ @u2
@a3

;
1ffiffiffiffiffiffi
10

p @u2
@b8

¼ @u2
@a8

; (C5)

see also [9,19].

APPENDIX D: THE r ¼ 1 VACUUM
IN U(2) THEORY

In this Appendix we find the relation of the matrix E
(see (3.23)) determining the quark/dyon VEVs in the
original/dual theory with the roots of the Seiberg—
Witten curve. We consider the simplest possible example:
the r¼1 vacuum in the U(2) gauge theory with 1�Nf<4.

Let us calculate the diagonal elements of the matrix E
given by

E ¼ 1

2

@u2
@a

þ 
3

2

@u2
@a3

(D1)

in this particular case. The Seiberg—Witten curve in this
case factorizes as follows:

y2 ¼ ðx� e1Þ2ðx� eþ2 Þðx� e�2 Þ; (D2)

see (6.2). Here the double root at x ¼ e1 corresponds to a
single condensed quark in the r ¼ 1 vacuum, while two
other roots (subject to condition (6.3)) determine the gau-
gino condensate.

The exact solution of the theory on the Coulomb branch
relates the fields a and a3 to contour integrals running
along the contours �i (i ¼ 1, 2) in x-plane encircling the
double root e1 and the cut which is stretched between the
roots e�2 , see Fig. 4.

Using explicit expressions from [39–42] and their gen-
eralization to the UðNÞ case [33] we can write

@�i

@u2
¼1

2

1

2�i

I
�i

dx

y
;

@�i

@u1
¼ 1

2�i

I
�i

dx

y
½x�ðe1þe2Þ
;

(D3)

where the variables u1, u2 are given by (3.20), and we
define

ð�1; . . . ;�NÞ ¼ diag

�
1

2
aþ T~aa~a

�
; (D4)

while

e2 ¼ 1

2
ðeþ2 þ e�2 Þ: (D5)

In fact, e2 ¼ 0 due to the condition (6.3).
Equation (D4) gives in the N ¼ 2 case

a ¼ �1 þ�2; a3 ¼ �1 ��2: (D6)

For the factorized curve (D2) the integrals (D3) can be
easily evaluated. The integrals along the �1 contour are

given by their pole contributions. To calculate the integrals
along the �2 contour we write �2 ¼ C� �1, where C is a
large circle at infinity, see Fig. 4. This gives us

@�1

@u2
¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q ;

@�2

@u2
¼ � 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q ;

@�1

@u1
¼ � e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðe1 � eþ2 Þðe1 � e�2 Þ
q ;

@�2

@u2
¼ 1þ e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðe1 � eþ2 Þðe1 � e�2 Þ
q :

(D7)

Using (D6) we get the derivatives @a=@u1, @a
3=@u1,

@a=@u2 and @a3=@u2. Inverting this matrix and substitut-
ing the result in (D1) we obtain

diag E ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q
þ e2; e2Þ: (D8)

Now we see that

EN¼2 ¼ eN¼2 ¼ 0; (D9)

i.e. the two conditions (6.3) and (6.4) are equivalent.
Using these conditions we finally obtain

diag E ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q
; 0Þ: (D10)

Straightforward generalization of this result to arbitrary N
gives Eq. (6.13) that was presented in the main text.

e1

C

α

α 2

1 e
2
−

e +
2

FIG. 4. �-contours in x-plane for the U(2) theory. Solid
straight line denotes the cut.
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