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We derive a closed-form solution for the Green’s function for the wave equation of a static (with respect
to an undragged, static observer at infinity) scalar charge in the Kerr space-time. We employ our solution
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I. INTRODUCTION

Understanding the Green’s function on the Kerr geome-
try is important in a number of fundamental theoretical
problems such as the radiation reaction problem [1,2],
miniature black hole creation [3] and in the Kerr/CFT
correspondence [4—6]. The wave equations satisfied by
Green’s functions for black hole space-times are extremely
complicated, even in the most simple case of a
Schwarzschild black hole. However, in the Schwarzschild
case, despite not having closed-form solutions for the
Green’s functions, the static or zero-frequency scalar
Green’s function is known in closed form and may be
used to obtain, for example, analytic expressions for the
vacuum polarization on the horizon of the black hole [7] or
the self-force on a static scalar charge [8].

For the Kerr space-time, as in the Schwarzschild case,
the wave equation is fully separable [9] and we may there-
fore obtain a mode-sum representation for the Green’s
function in terms of spheroidal functions and complicated
radial functions that must be computed numerically. The
zero-frequency mode simplifies significantly though still a
highly nontrivial double mode-sum over a product of four
associated Legendre functions, not all of integer order. The
only closed-form expression for a Green’s function was
obtained by Linet [10], where he derived the scalar Green’s
function with one point on the pole of the Kerr black hole,
and Frolov [11] used this result to calculate analytically the
vacuum polarization on the pole of the Kerr black hole.

In this paper, we shall obtain the closed-form represen-
tation of the Green’s function for a static scalar charge in
the Kerr space-time, i.e., a scalar charge at fixed spatial
Boyer-Lindquist coordinates. This derivation relies on two
interesting results concerning the associated Legendre
functions, one of which we prove in this paper and the
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other we prove in Ref. [12]. We validate our expression for
the Green’s function by calculating the self-force on a
static scalar charge in the Kerr space-time, obtaining the
result conjectured by Burko and Liu [13]. Therefore, this
paper is also the first proof of the result claimed in
Ref. [13].

II. THE KERR GREEN’S FUNCTION

The Kerr metric in Boyer-Lindquist coordinates is

(A — a?sin®0) 2

ds* = S
2 + 2 A
- 2asin20%dld¢
N ((r2 + a?)? — azAsinZH)Sin20d¢2
pX
>, 5
+ L+ 3d6?, 2.1)
where
A=r*+a>—2Mr and 3 =r?>+ a’cos’d. (2.2)

The event and Cauchy horizons are defined by vanishing
A, which has two roots r.. = M + VM? — a?, the positive
subscript being the event horizon and the negative being
the Cauchy horizon. Moreover, the Killing vector d/9¢ is
the null generator of the static limit surface, given by r, =
M + ~M? — a*cos?#. Inside this surface, the ergosphere
region, d/dt becomes space-like and so local radial null
cones tip over forcing particles to move in the direction of
the black hole’s rotation; i.e., a particle inside the static
limit surface cannot remain static. We would therefore
expect our closed-form expression for the static scalar
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Green’s function to diverge as the static limit surface is
approached.

The Green’s function for a scalar particle in the Kerr
space-time satisfies the following wave equation:

(2 + a?)? 52\ 9% AMar  9?
{_<7A a’sin 0)82 Tm
AT P A
sin A)a¢p*  sinf 96 a0

S(x —x)

The wave equation on this metric admits a fully separable
solution [9] and so the Green’s function may be written
as the following mode-sum representation in terms of

separated mode solutions,
cosw(t — ') Z Z eim@=9")

Gx, x') = L / 2 2.

X Swlm(COSG)Sw[m(COSH )lem(r’ rl)dw: (24)

where S,,;,,(cos#) are the normalized spheroidal functions
satisfying

1 d d
_ + 2
{sin0 dﬁ( 1n0d0) a’w?cos?o
2

LI )\w,m}Sw,m(cos@) —0 2.5)
sin- 6
and also satisfying the normalization condition
1
[ S o1 (€080)S 1. (cosB)d(cosh) = 6. (2.6)
~1

Equation (2.5) and the normalization condition (2.6) imply
that for w = 0, the spheroidal functions reduce to the
normalized associated Legendre polynomials, i.e.,

Sopm(cosB) = \/(21; DU~ m)!P;"(cosﬁ). 2.7)

(I + m)!

The radial part of the Green’s function, Y., satisfies the
inhomogeneous equation

AMarmeo  m?a?

d d , (PP + a?)?

- a2w2 - )lwlm}/\/wlm(r» r/) = _5(7" - rl)-

(2.8)

For a static source, the derivatives with respect to ¢ vanish
in Eq. (2.3). Hence the static Green’s function satisfies
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In this case, the mode-sum expression reduces to the zero-
frequency mode of Eq. (2.4) (modulo a factor of 2)
resulting in a simplified mode-sum solution in terms of
associated Legendre functions,

1 & L
G gatic (X, X') =—7TZ Z im(@=¢N(2] + 1)

!
(l n ;'Pm(cosﬁ)P’”(cosQ’)){lm(r ),

(2.10)

where yx;,,(r, r') satisfies

{i(A i) + mZaz =1l + 1)}le(r, r'y=—=86(r—7r).

dr\ dr
(2.11)
Changing the radial variable
-M
n = d where b = VM? — a2, 2.12)

we may rewrite the radial equation as

[e(m-02)+ (f—’le) =1+ D] )

/
_dm =) (2.13)
b
where y = a/b. We note that the regular singular point has
now been shifted from r = r, to n = 1. The solutions of
the corresponding homogeneous equation are the associ-
ated Legendre functions of pure imaginary, noninteger
order, P; =M (p) and Q+’7’"(n). The boundary conditions
1mposed correspond to different Green’s functions, which
in turn correspond to different combinations of these asso-
ciated Legendre functions. For the retarded Green’s func-
tion, for example, one typically chooses ingoing radiation
boundary conditions at the horizon and outgoing radiation
boundary conditions at infinity. However, since we are
considering a static particle, we cannot impose radiation
boundary conditions. Rather, for the retarded Green’s func-
tion, we require that the inner solution be regular on the
future event horizon in ingoing Kerr-Newman coordinates,
while the advanced Green’s function corresponds to the
inner solution being regular on the past event horizon in
outgoing Kerr-Newman coordinates. Near the horizon, the
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two candidates for the inner solution, P;"7"(7), are

oscillatory,

. 1 + I\tiym/2
P () ~ (77 ) ’ asm— 17,

I'a Fiym)\n—1
(2.14)

In ingoing Kerr-Newman coordinates (r, 8, ¢), where ¢
is related to Boyer-Lindquist ¢ by

dd = do + %dr, 2.15)

it may be shown that

P ()Y (6, ) ~ ———— ¥, (6, ¢>("“)"’”,

I'a—imy) 1

P ()Y (6, ) ~ 0, &), (2.16)

1
— Y
'+ imy) Im

as 7 — 1%, It is clear from these asymptotic expressions
that the first solution oscillates infinitely fast in ingoing
Kerr-Newman coordinates, whereas the second solution is
regular. The appropriate inner solution for the retarded
Green’s function is therefore P, "7 (n). Similarly, for
the advanced Green’s function, the appropriate choice is
1my
(n).

Havmg fixed our choice for the inner solution, the choice
for the outer solution is determined by regularity at infinity;
we may choose either 0;"7(n) or Q; "7 since both are
regular at infinity and differ only by a constant multiplier
for each [ and m. This constant multiplier will be accounted
for by the normalization. The solution of the retarded
inhomogeneous radial equation (2.13) may be written
formally as

1P " (n)Q/(n-)

Xim(m, m') = 5 N
o l Pf”(??<)Qf”(77>)
=3 7 s 2.17)

where 7. = min(n, ') and 7~ = max(n, n’). The
normalization constants N and N are determined by
the Wronskian of the pair of solutions chosen, i.e.,
N = —(z2 = DW[P;"(2), /()] and N = —(z*> — )X
WP, "(2), Q; ¥(z)] where W[P, Q] is the Wronskian. For
the pair of solutions {P; ”(n), Q] (n)}, the Wrosnkian takes
a particularly simple form [14]:

wip;v, 01 = P PAE P g
_ elV’?T
-~ 7= 2.18)

and so
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1 . .
n') = Zepr;v(W)Q;(m) where v = imy.
(2.19)

Xim(M,

The final form of the static retarded Green’s function is
therefore

1 & & (I—m)!
G;?atltlc(x’ XI) - —b Z Z ¢ lmA¢(2[ * 1)(l + m)!
X P(cos) P (cos e "T"P " (n<) QY (n=),

(2.20)
where Agp = ¢’ — .

The form of this Green’s function looks similar to those
that are known in closed form. In particular, considering
the three-dimensional Euclidean Green’s function in sphe-
roidal coordinates gives us a product of four Legendre
functions of integer order similar to the mode sum above.
In [15], we have shown how one may also obtain a quasi-
closed form for a product of four Legendre functions of
noninteger order and degree by considering the Green’s
function on a three-dimensional cosmic string space-time
in spheroidal coordinates. In the static Kerr case however,
one has both integer and noninteger (pure imaginary) order
Legendre functions and it is precisely this mixing that has
made this problem so elusive for so long. In the following
sections we shall show that the mode sum above may
indeed be performed, leading to a completely closed-
form expression for the static Kerr Green’s function. In
this paper, we offer one particularly neat application of this
closed-form Green’s function, where we obtain an analytic
expression for the self-force on a static scalar charge in the
Kerr space-time and we compare our result to the conjec-
tured result of Ref. [13]. We note also that the result of
Ref. [13] relies on a conjecture for the mode-sum regulari-
zation prescription (MSRP) parameter D, which has re-
cently been computed, along with higher order parameters,
for the Schwarzschild [16] and Kerr [17] space-times.

III. THE STATIC KERR GREEN’S FUNCTION
IN CLOSED FORM

In this section, we derive the static Kerr Green’s function
in closed form for the field satisfying retarded boundary
conditions; the derivation for the advanced field is analo-
gous. Obtaining the closed-form solution relies crucially on
two formulas involving the associated Legendre functions,
the results of which may well prove useful in other contexts.

In Ref. [12], it is shown that a product of associated
Legendre functions of arbitrary order may be written in the
following integral form:

e_iWTP_V(”’?<)Q;’(TI>)

*vcosh" (X)Pl(x)
fl(n + 0% —2nn/x — 1 + x2)'/2

dx, (3.1
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where

nn' —x
(772 _ 1)1/2(n/2 _ 1)1/2‘

This is a generalization of a result obtained in Ref. [18] for
a product of associated Legendre functions of integer
order. The derivation in [12] involves obtaining a closed-
form solution for the wave equation on a dimensionally
reduced Bertotti-Robinson space-time and equating with
the equivalent mode-sum expression. Employing our result
(3.1) in our expression for the Green’s function (2.20), we
obtain

1 J > ~
GS[aliC(X) XI) = —f Z Z e im(A ¢ +ycosh ]()())’

8mb J-1 o0 | STl

X = (3.2)

(I —m)! P"(cosf') P (cosb)P,(x)

X,
(l + m)! (,)72 + ,)7/2 _ 27777/3‘ -1+ x2)l/2

(3.3)

where we have changed the order of summation in the
expression above.

Q1+ 1)

Gatic (X: X/) =

exp[—im(A¢ + ycosh™'(x))]cos[mcos™1(¢)]dx
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In the Appendix, we derive the following summation
formula for the product of three Legendre functions,

- (I—m)
Y @r+1) Pl (cosf) P (cosf)P,(x)
flarpl (I +m)!
2 cos(mcos™1(¢))
_z_ . G4
7 (sin?@sin%6’ — (x — cos@ cosh’)?)!/?
where
x — cosf cosf’
{=——""" (3.5)

sind siné’

and x = cosA must lie in the range 6 — 6' <A<
min{f + 6',277 — 0 — 6'}. For A outside of this range,
the series sums to zero. An equivalent form of this result
can be found in Ref. [19], though our derivation general-
izes the method of Baranov [20] who proves the m = 0
case. This summation formula allows us to perform the /
sum in our Green’s function expression yielding

m=—

1 Xt e
412b [x, Zoo (sin?6sin?0’ — (cosf cosh’ — x)2)/2((gn' — x)? — (n — 1)(n* — ))V?’

(3.6)

where the integral vanishes whenever x lies outside the range (x_, x,) where x. = cosf cos#’ = sinf sinf’. The
appearance of the integral may be greatly improved with the introduction of the independent variable W, defined by

x = cosA = cosf cos@’ + sinf sind’ cosV,

dv 1

- =+ )
dx {sin?6sin?6’ — (x — cos6 cosh’)?

(3.7)

where the choice of sign here is determined by the fact that x, as a function of W, decreases from x, at the point ¥ = 0
to x_ at the point ¥ = 77, and it increases symmetrically to x, at ¥ = 2. Therefore,

exp(im(¥ — A¢ — ycosh™!(x)))

dv

1 27
Gatic (X, X/ =—f
statlc( ) 167sz 0 m:Zm(n2+7”2—2777]'008)1—Si112)\)1/2

exp(im(¥ — A¢ — ycosh™!(x)))
(n*+ 12 —279n'cosA —sin?A)' /2"

1 27 &
+
16772b[0 n‘L:ZOO

where

nn' — cosA

nn' — cosf cosf’ — sind sind’ cosV

(3.8)

X= (% — )22 — 1)12 -

(772 _ 1)1/2(7’/2 _ 1)1/2 ’ (3'9)

and we have written the cosine in the numerator in Eq. (3.6) as a sum of exponentials. It is easy to see that these integrals are
invariant under the change W' — —W in the integrand, so we obtain the single integral

Gtatic (X’ x') = S72b

1 27 & expim(W — Ag — ycosh™'(x)))
I E

dv (3.10)

(n? + 5 — 2mm' cosA — sin?A)V/2 "

The m = 0 term gives the static, axisymmetric Green’s function

1

1 29
G o(n,60,7,0) = f dv,
stdtlc(n n ) 872h 0 (,)72 + ,)7/2 _ 27777/ COSA — sinz)t)l/z

(3.11)
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which has been previously noted by Linet [21] using axisymmetric potential theory. The m sum can be performed using the
Fourier representation of a periodic delta function

(oo}

3(x)—— Z ik, (3.12)

which gives

static (X 4mb Jo (n® + 5 — 2mn’ cosA — sin?A)!/2

dv. (3.13)

The integral is now somewhat trivial, since we pick up contributions only at the zeros of the delta function, though this is
complicated by the fact that the zeros are solutions of a transcendental equation, which we cannot solve analytically.
Nevertheless, the integral may be performed using the definition of the delta composition,

S(x —
5(f(x) = (3.14)
G =S
where the sum is over all roots x; of f(x) = 0. In particular, we have
_ S(W — W,)(n? + 9 — 2yn’ cosA; — sin?A,)!/2
(W — A — ycosh™! = ! ! ! , 3.15
( ¢ ) Z [(n2 + 1> — 27’ cosA; — sin?A,)"/2 — (a/b) sinf sind’ sinW,| ©-15)
where cosA; = cosf cosf’ + sinf sind’ cosW; and ¥, are solutions of the transcendental equation
_ _(nm' — cosB cosf’ — sinf sinf’ cosV;
WV, = A¢ + ycosh < = ) = 1)1 (3.16)
The Green’s function is therefore
(x, %) = — Z : (3.17)
bdlC X X . . . . . .
at 4arb & |(n? + 0% — 2mm’ cosA; — sin?A,)V/2 — (a/b) sinf sinf’ sinV,|
It turns out to be useful to rewrite Eq. (3.16) in the form
b _ nn' — cosA;
cosh(; (P, Aqb)) = = )2 = 1) (3.18)
from which we obtain
b
(n* + 0% = 2mm’ cosA; — sin?A)'/2 = (2 — D)V2(n2 — 1)1/2 sinh(—l‘]}'i - A¢|), (3.19)
a

where we have assumed, without loss of generality, that a > 0. This expression may now be used to greatly simplify our
Green’s function,

1 1
Gsaic X, Xl = . 3.20
saie (X, X') 47Tb; l(n? — DV2(n? — 1)/2 sinh(2|¥; — Ag|) — (a/b) sinf sind’ sin'V| (3-20)
We now define
_ b . B nn' — cosA
f(r) = cosh(; (P Aq’))) = D)2 — )1 3.21)
so that the W; are roots of f(W). Solving for the turning points, f'(¥) = 0 is equivalent to solving
. (b _ (a/b)sin@sin@’ sin¥ b asinf asind’
Slnh(; (W - A¢)> - (n? — 1)1/2(77/2 — 112 Ca A2 AN sinW. (3.22)

For points outside the ergosphere, which are the only physically relevant points to consider for a static Green’s function, we
have the following inequalities:

A2 > gsing, A2 > gsind’, for a > 0, 0<o<m, (3.23)
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so that the turning points W satisfy the inequality

_be sinh(é (¥ — A¢)) <t o

a a a
Since sinhx is monotonic, there is precisely one turning
point in the interval

Ad — Esinh’l(é) <W<Ad+ gsintrl@). (3.25)

b a b a

Furthermore, it is easy to verify that this turning point is a
minimum. Hence there are, in general, two solutions to the
transcendental equation (3.16) which are approximately
symmetric about the turning point. It turns out, however,
that one of these solutions ought to be discarded since its
inclusion in the Green’s function yields the wrong
Hadamard singularity structure. We take the solution that
lies to the right of the turning point [which means we can
discard the absolute value sign enclosing the denominator

b

Gaiic (x,x) =

PHYSICAL REVIEW D 86, 024036 (2012)

of Eq. (3.20)] since only this root yields the correct
Hadamard singularity structure for the retarded field. We
can justify this mathematically by virtue of the ambiguity
in the integral (3.10) which may be taken over any interval
of length 27 since the integrand is periodic; thus we simply
choose any interval which includes the root of Eq. (3.16),
which gives the correct singularities but which excludes
the other root. Taken over such an interval, the integral in
Eq. (3.13) only picks up the contribution from the appro-
priate root. One can show that the discarded root actually
corresponds to the advanced Green’s function, which im-
plies that the boundary conditions, which were completely
fixed by the choice of Legendre functions in the mode-sum
expression, became ambiguous again in the process of
summation.

If we denote the appropriate root as V), we obtain the
following closed-form expression for the Green’s function
for a static source in the Kerr black hole space-time:

1

where we have reverted back to Boyer-Lindquist
coordinates.

IV. THE SELF-FORCE ON A STATIC SCALAR
CHARGE IN KERR SPACE-TIME

In this section, we shall use our expression for the static
Kerr Green’s function obtained in the previous section to
calculate the self-force on a static (with respect to an
undragged, static observer at infinity) scalar particle in
the Kerr background space-time. Since we have a closed-
form expression for the appropriate Green’s function, we
can derive completely analytic expressions for the self-
force. We restrict our attention to the simplest case of a
point-like scalar charge g of mass m coupled to a massless
scalar field ®(x). This calculation has previously been
considered in [13] using the MSRP developed by Barack,
Ori and collaborators [22-25], as well as Detweiler and
collaborators [26-28]. The conjectured result for the self-
force in [13] is

wr _ 1 5 aM?Asin?6

b 39 (A — a%sin?9)3/231/2

This derivation, however, is somewhat unsatisfactory in
that the authors are forced to conjecture the unknown
MSRP coefficient D, based on its known form in other
space-times as well as inferring from numerical results that
the contribution from the tail integral is zero. By calculat-
ing the self-force by other more direct means, we can
establish whether or not the authors’ conjecture for the
coefficient D, is correct (although this coefficient as well
as higher order MSRP coefficients have been recently

87. 4.1)

4ar AV2AN2 sinh(2| ¥y — A¢l) — absind sind’ sin'¥,,

,(3.26)

|

computed for the Schwarzschild [16] and Kerr [17]
space-times) and verify the accuracy of the numerical
results. Moreover, since the MSRP appears to be an
efficient method for calculating the self-force for more
difficult trajectories such as circular and eccentric orbits
in Kerr [1,2], it is important to establish the accuracy of this
method by comparing with the results obtained by alter-
native methods. More recently, a method known as the
m-mode regularization prescription has been developed
and applied to the Kerr case [29-31], and again the calcu-
lation presented in this section may serve as a standard
nontrivial check of the accuracy of the m-mode regulari-
zation scheme.

A. General considerations

The massless scalar field ®(x) satisfies

(O = ER)D(x) = —4mp(x), (4.2)

where [ is the wave operator (d’Alembertian) on the
background geometry, R is the Ricci scalar which is zero
for vacuum space-times such as Kerr, and ¢ is the coupling
of the field to the curvature. The charge density p(x) of the
point particle is

4(ya _ a
p(x)=q/75 (x \/gz (T))dT,

where z(7) describes the worldline vy of the particle with
proper time 7, g = |det(g,,)| where g,, are the back-
ground metric coefficients and &*(-) is the four-
dimensional Dirac distribution. The scalar field ®(x)
moves on null geodesics of the background space-time,

(4.3)
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whereas the scalar particle itself is massive and therefore
moves along timelike curves of the background. In addi-
tion, the field may scatter off the curvature of the space-
time and reinteract with the particle. This radiation
reaction process gives rise to a self-force

= gV, Pr(z(7)).

This self-force then appears on the right-hand side of the
equations of motions for the scalar particle,

mab = (g7 + wPu)f = glg" + uPu )V Dr(e(r)),
4.5)

where u’” = dz’/dr and a® = Du’/dr are the four-
velocity and four-acceleration of the particle, respectively.
The crucial step in obtaining the correct self-force is
identifying the correct radiative field that is regular at the
particle’s position, which we have called ®g. The mass m
appearing in the equations of motion is the ’dynamical”
particle mass, which in the scalar case evolves according to
D — — gV Dy a(r).
dr
An expression for the derivative of the radiative field that
is regular at the particle’s position can be obtained in terms
of an integral of the retarded Green’s function over the
entire history of the particle’s motion,

(4.4)

(4.6)

Y, Br(e(r) = B(e(r) 1 (1 - 66)Rqu,

1 1
+ Q(gbc + ubuc)<§dc + ngiud) (47)

where R“, is the Ricci tensor of the background metric and
a® = Da®/dr is the Fermi derivative with respect to
proper time of the four-acceleration. The last two terms
are purely geometrical and easily evaluated. The global
radiative term, the so-called tail integral term ®%!, is

Duil(z(7)) = ¢ lim fj_svaGret(Z(T)’ 2))dr,  (4.8)

where G (z, 7') is the retarded scalar Green’s function
satisfying

(O = éR)G,y(z, 7)) = —g 7128z — 2.

Since the Green’s function is singular at coincidence
z = 7/, we require some limiting process in order to regu-
larize the self-force. When z is within a normal neighbor-
hood of 7/, then the retarded Green’s function has the
following Hadamard representation [32]:

4.9)

Guals, ) = 3 (A2 25, (05 )
—V(z,2)0, (—0o(z )}

where o(z, 7') is the Synge world function which is half the
square of the geodesic distance between z and z/, 8, (o) is

(4.10)
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the past light-cone delta distribution and ®, (—o) is the
past light-cone step function. The biscalar A(z, z) is
the Van Vleck—Morette determinant which is regular and
symmetric, as is V(z, z’). The presence of the 8, (o(z, 7))
in the direct part of the retarded Green’s function implies
that the direct part has support only on the past light cone
and therefore does not contribute to the self-force since the
tail integral in Eq. (4.8) is entirely inside the past light
cone. Hence, it is the tail part of the Green’s function that
is responsible for the self-force.

The causal regions are defined by the intersection of the
past and future null cones of an arbitrary field point, x say,
with the worldline 7y of the scalar charge. Following
Poisson [32], we shall call the intersection of the past light
cone of x with the worldline 7y the retarded point associated
with x and we denote it x' = z(7,), Where 7. is the
retarded time. Similarly, the future light cone intersects
the worldline at the advanced point x" = z(7,,), Where
Ty 18 the advanced time. The retarded Green’s function
depends on the entire history of the particle up to the
retarded point. One can define an advanced Green’s func-
tion in an analogous way where the dependence is now on
the entire future of the particle from the advanced point to
infinity. This dependence is seen in Fig. 1.

B. The radiative field for a static particle

Rather than adopting the expression (4.7) for the gra-
dient of the radiative field, in the static case it is more direct
to begin with the definition of the radiative field as the
difference between the retarded and singular fields,

(I)R(x) = CI)ret(-x) - (I)S(x)

— 4mq [ Graalr, 2())dr — 477 [ Gs(x, 2(7)d,
Y Y

(4.11)

X "'=2(Tadv)

retarded advanced

FIG. 1 (color online). The retarded field at x depends on the
entire particle’s history from —oo <7 = 7. The advanced
field at x depends on the entire future of the particle from
T,qv = T < 00. The singular field depends only on the trajectory
of the particle between the advanced and retarded points.
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where in order to calculate the self-force the radiative field
must be evaluated on the worldline of the scalar particle.
Detweiler and Whiting [33] have identified the singular
Green’s function that yields the correct radiative field
which has the following Hadamard construction:

Gs(x, 2) = % [AY2(x, 2)8(0(x, 2)) + V(x, 2)O(o(x, 2))]
(4.12)

The singular (direct) part of this Green’s function has
support only on the light cone due to the 5(o) term. For
2(7) < z(7) and z(7) > z(7,qy), it is clear that x and z(7)
are timelike related, meaning that o(x, z(7)) <0 in these
regions. Moreover, for 7. <7 < T,,, the points x and
z(7) are spacelike related and therefore o(x, z(7)) > 0 in
this region. These considerations combined with the pres-
ence of the ® (o) in the tail term of Eq. (4.12) imply that the
singular Green’s function has support only in the region
Tt = T = T,y (see Fig. 1).

We consider now the retarded field appearing in
Eq. (4.11). We take the coordinates of the scalar charge
at some proper time 7 to be X = z%(7) and change the
integration variable to run over the coordinate time 7 using
u'dr = df, which gives

o0 _ . drf

q)ret(x) = 47Tq [ Gret(tr X; 1, X) ?r (413)

where X is the spatial position of the field point and X is the

spatial position of the scalar charge. Generally speaking,

the spatial points will depend implicitly on the time,

x = x(¢), but in the static case, by definition, there is no

temporal dependence. For a stationary metric, the Green’s

function may be decomposed into Fourier frequency
modes

1 00 00 . _
D (x) = 47g— f f e 08GO (x R)dwdi,  (4.14)
u —00 J —00

where At = 7 — ¢ and G is a three-dimensional Green’s
function on a dimensionally reduced metric. For a static

particle, GY is independent of 7 and this integration may
be performed, yielding a 6(w) term. The w integral is now
trivial, yielding

. 1 i 1 _
DR(x) = dmg— GY(x, x) = 4mq — Gaaie (%, %),
(4.15)

where, in the particular case of the Kerr geometry,
Gguic(X, X) is given by Eq. (3.26).

Consider now the singular field. From Eqs. (4.11) and
(4.12), we obtain

D5 = 3q [ 1425 (05, 9)

— V(x, x)O®(o(x, ¥))}dr. (4.16)

PHYSICAL REVIEW D 86, 024036 (2012)

In the first integral here, we change the variable of inte-
gration to o using o ;u’dT = do, where by o.; we mean
the covariant derivative with respect to the coordinates x“.
The only contributions are when o = 0, i.e., at the ad-
vanced and retarded points. The second integral vanishes
outside of the range enclosed by these two points as a
consequence of the step function. Therefore, we have [32]

Al/z(x, x') N Al/z(x, x")
2rret 2radv
1

+2 f U, x(f))df),

Dy(x) = q(
(4.17)

where, for a static particle, 7o = a',tru” is the retarded
distance between x and the worldline and r., =
—a qu' is the advanced distance between x and the world-
line. The integral term is regular in the limit as x
approaches the worldline. The geometrical nature of the
direct part is now explicit as the worldline is approached
(r—0).

Therefore, for a static particle in a stationary space-time,
the self-force is given by

4 A1/2 ’ !
7t = ] 9,47 68 ) - 25
r= u 2rpet
A0, x") 1 fru
] stnyar) |
adv Tret
(4.18)

where GS):O is the zero frequency Fourier mode of the
four-dimensional retarded Green’s function.

C. Calculating the retarded and advanced
distance for a static particle

In this section, we shall outline our method for calculat-
ing the retarded and advanced distances, 7 and r,qy,
respectively, for a static particle in a stationary space-
time. Calculating these quantities requires evaluations of
a derivative of the geodesic distance at the retarded point x’
and the advanced point x”, which are connected to the field
point x by a null geodesic defined by o (x, ¥) = 0. One may
obtain a coordinate expansion of o by assuming the form

20(x, %) = g Ax*Axb + A Ax*Axb Ax¢

+ B pegAx*AxPAxAx¢ + O(AXY)  (4.19)

and then substituting this ansatz into the defining equation
for o,

200 = g“bO';aa';b. (4.20)
Equating powers of Ax yields
1 1 1
Aabc = zg(ab,c)» Buped = gg(ab,cd) - Egefrfabrifd)’
(4.21)
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where, in our conventions Ax? = ¢ — x%, i.e., field point
expanded about the particle worldline and round brackets " = (t" %)
around indices imply symmetrization. Then

20; = 2g,At + 28, Ax% + 3A,,A2 + 6A,,, AtAx®
+ 3Aa5,Ax"‘Axﬁ + 4B,,Af + 12B,,,,, Ax*Ar?
+ 12B, 5 Ax*AxP At + 4B, 5, Ax* AxP Ax”
+ O(Ax%), (4.22)

x = (t,x)

which we wish to evaluate at the retarded and advanced
points. This requires two additional steps: first, the tensors
8ab> Aupe and B4 are each evaluated at the field point x.
However, we wish to evaluate them at the retarded and
advanced points which are on the particle’s worldline.
Therefore, we Taylor expand these coefficients about the
worldline. Second, we solve the equation o(x, %) =0
iteratively to obtain the advanced and retarded times as
expansions in Ax?®. Substituting into our expressions for
o ;7 gives us the advanced and retarded distances.

Taylor expanding the coefficients in expression (4.22)
about the worldline yields

v=z=(,X)

FIG. 2 (color online). The spatial coordinates of the worldline
of a static particle are fixed over coordinate time.

207 = €28, A1 + 284, Ax®) + €(—28,, o Ax* At — 284, gAX*AXP + 34, A% + 6A,, AtAx* + 34,5 Ax* AxP)
+ € (81,apAIAXYAXP + 84y 5, AXYAXPAXY — 3A,, (AXYAP — 64 4y, gAtAX* AXP — 3A 5, , Ax* AxPAx?
+ 4B, AP + 12B 4 AP Ax® + 12B, 5, Ax*AxP At + 4B, 5, Ax*AxPAx?) + O(e*), (4.23)

where an overbar means that the tensor is evaluated at X which is on the worldline and we have introduced a bookkeeping
parameter, €, in order to keep account of powers of Ax. It is worth noting that there is no need to distinguish metric
dependent tensors Z,,, Ay and B,,., from those evaluated at x’ or x” since these tensors depend only on the spatial
coordinates for any metrics of interest, which have the same spatial dependence for a static particle (see Fig. 2). The
difference in evaluating Eq. (4.23) at various points on the worldline of a static particle arises in the Az term.

The difference Ar corresponding to the advanced and retarded times we shall denote as At,4, and At respectively.
These times are defined by the intersection of the null light cones with the worldline -y and we are therefore required to
solve o(x, ¥) = 0 as a function of Az. A coordinate expansion for o has been given in Eq. (4.19) along with expressions
(4.21). As before, the metric dependent tensors A,,. and B,,.; ought to be evaluated on the worldline and so a Taylor
expansion about the worldline is required, yielding

20(x, X) = €X(g AP + 28, AtAXY + 3, g Ax*AxP) + €3 (A AP +[3A10 = G110 JAPAXY + [3A,,5 — 2810 p]A1AX* AxP

+ [Aaﬁy - gaﬁ’y]AxanBAxy) + 64(BzmAl4 + [4Bttla - Am’a]AlSAx“

_ - 1 _ -
+ [6Blt01,3 - 3A[ta,,3 + Eg”’alg]AtzAxaAX'B + [4Bt0(,3‘y - 3Am,13,.y + gta’lg.y]AtAXaAXBAx’y

_ _ 1
+ I:Ba375 - Aaﬁ'yﬁ + zgaﬁ,yg]AxanBAxVAx‘s) + O(ES). (424)

We wish to solve o = 0 iteratively for At so we further expand
At = At; + eAt, + €?Ats. (4.25)

Upon substitution of Eq. (4.25) into (4.24), we obtain
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20(x, %) = €X(g, A1 + 28, At Ax® + 2,5 Ax*AxP) + (A, A} + [BA10 — §1y 0 AT AX®
+ [314[(1[5’ - zgta,B]Atleanﬁ + [Aaﬂy - gaﬁ,y]Ax“AxﬂAxy + 2gttAtlAt2 + Zg,aAtzAx“)

_ _ B} a B} 1
+ 64(BttttAt? + [4Bya — Am,a]At?Axa + [6Bttaﬁ —3Asap T Egn,aﬁilAt%AxanB

_ - 1

+ [4Btaﬁy - 314[&'3‘,}, + gta,B,y]AtleaAX'BAx’y + [Baﬁ‘y§ - ACY,B’V,@ + —gaB’wS]AxanBAxyAx‘s

2

+ 34, ABAl + [6A,4 — 281 AL AL AXY + [3A14p — 2810, p)ALAXYAXP + 25, At ALy

+ 2,A8 +28,,At;Ax%) + O(€).

Setting o (x, X) equal to zero and equating equal orders of €
gives an iterative solution for Az. In particular, at O(e?),
we have

(4.26)

The higher order corrections are linear in the dependent
variables and so it is straightforward to calculate the O(e?)
and O(e*) solutions

gy} + 28, AL AXY + §,5Ax*AXP =0,  (4.27) 1 _
At2,ret == 2(_ Ar Tz Axa) (AmAt?,ret
which is a quadratic in A¢; with solutions g_,, Lret T 8ra
+ [3Att01 - gtt,a]At%,retAxa
A = _gtana * J(gt,BAx'B)z - gttga,BAxan'B + [3A1a3 - tha,B]Atl,retAxanﬂ
: & ' + [Aupy = ZapyJAX*AxPAXY), (4.30)
(4.28)
These two solutions correspond to the first order approxi- 1 _
mation to the advanced and retarded times. From Fig. 2, it At2,adv = - 2(z, A1 T 2, Ax%) (AmAf?,adv
is clear that Az, = ( — ) <0 and At,y, = (' — 1) > 0. g_,, Lady ™ 8ia
Since g,, <0 (a = 0...3), the appropriate identification + [3Asq — gn,a]AtiadvAx“
of the retarded and advanced times is +[3 Ataﬂ —2 gta’ﬁ] A 1 ady Ax®AxB
Aty = Aff, Aty 4, = Aty (4.29) +[Aupy = BapyJAX*AXPAXY), (4.31)
1 _ _ _
At3,ret = — 2(gnAt1,ret T gtana) (B””At‘l‘,ret + [4Bttta Attt,a]AtiretAxa
_ _ 1 _ _ )
+ [6Bttaﬁ - 3Atta,ﬁ + zgtt,aB]At%,re[Axan'B + [4Btozﬂy - 3Ata,3,’y + g,a,ﬁy]Atl,mAxan'BAxy
_ - 1_ z - @
+ [Baﬁyé - Aa,B‘y,5 + Egaﬂ,yﬁ]Axan'BAxyAxa + [6Atta - 2gtt,a]At1,retAt2,retAx
+ [3Ataﬁ - tha,ﬂ]AtZ,retAxanB + SAtttAt%,retAtZ,ret + gttAt%,ret)’ (432)
1 _ _ _
At3,adv = — Z(gttAll,adv T gtana) (BmfAt‘ll,adv + [4Bttta — Attt,a]AtiadvAxa
i} _ 1 i} _ . .
+ [6Brap — 3Auap Eg,,yaB]AtiadvAx“Axﬁ +[4B10py — 3Aiapy + Giapy Al aay Ax* AxPAXY
_ - 1._ - _
+ [Boz/}yé - Aaﬁy,ﬁ + Egaﬁ,yB]AxanBAxyAxa + [6Ana - 2gtz,a]Atl,advA12,advAxa
+ [3Ata,6 - ngﬁ]Atz,advAx"‘Axﬁ + 3AtttAt%,advAt2,ret + gtl‘At%,adV)' (433)
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We are now in a position to write down expressions for
the retarded and advanced distances as coordinate expan-
sions. Combining Egs. (4.23) and (4.25) with Egs. (4.28),
(4.29), (4.30), (4.31), (4.32), and (4.33) implies

Frog = O g’ = (Prot€ + Qri€® + Ri€%),  (4.34)
t

1
2\/_gt

where
Py = thtAtl,ret +28,,Ax%, (4.35)
Oret = 3AZIIA[%,ret + [6Atta - 2gtt,a]Atl,retAxa
+ [BA1ap = 2810 g IAXYAXP + 25, Aty o, (4.36)

Ret = 4By At o + [12B 110 — 34, o JAR o Ax®
+ [125naﬁ - 6Attoz,,3 + gtz,aB]Atl,retAxanﬁ
+ [4Bta,8y - 31&1‘0(&7 + gmiﬁy]Ax"‘Ax[’)A)ﬂ
+ 6AtttAt1,retAt2,ret + [6A_tta - 2gtt,a]At2,retAxa

+ 28, A et (4.37)
Analogously
i 1
Vagv = _O-,Z”MI = - = (Padve + Qadve2 + RadvES):

2= 8u
(4.38)

where P4, Q.4 and R4, are obtained from Egs. (4.35),
(4.36), and (4.37) by replacing the Az, expressions with
At,q, terms.

‘We may now use these expressions for the advanced and
retarded distances in Eq. (4.18). We first note that covariant
expansions for the bitensors A'/2(x, X) and V(x,X) are
found in [34], which for a massless field in a Ricci-flat
space-time are given by

AY2(x, %) = 1 + O(Ax?), V(x, ) = O(Ax?),  (4.39)

which implies that the integral term involving the bitensor
V(x, %) in Eq. (4.18) will vanish in the limit x — % and
so will not contribute to the self-force. The self-force
reduces to

4 1 1
fzelf=q2}g[va(u—?GSLo<x, %)= - )]

2r, ret 2r adv

(4.40)

Substituting our expansions for the retarded and advanced
distances in Egs. (4.34) and (4.38), respectively, we obtain
the self-force on a static, massless scalar charge in a sta-
tionary, Ricci-flat space-time

1 = 4 lim[y =7,V (Gl (X, %) = Gang(x, X))
(4.41)

where

PHYSICAL REVIEW D 86, 024036 (2012)

1 1 1 .
Gsing(X, )_() _ _I: . o Q;et + Q;dv
4w LP ret P adv P ret P adv
+ (Qrzet - Prethel) _ (dev - PadvRadv)]
P?et Pzdv

(4.42)

It is easy to check that Eqs. (4.41) and (4.42) give us zero
self-force for a static particle in the Schwarzschild case, as
expected [8,35].

D. Self-force on a static particle in the Kerr space-time

We now calculate the self-force on a scalar charge with
arbitrary fixed spatial Boyer-Lindquist coordinates outside
the ergosphere (the notion of a static particle breaks down
on the ergosphere where the Killing vector 9/d¢ becomes
null). The algebra involved is unnecessarily cumbersome
for arbitrary separations, so we calculate each component
of the self-force separately, which allows us to set two of
the three separations to zero. For example, if we wish to
calculate the radial component of the self-force, then from
Eq. (4.41) we require partial radial derivatives of the
Green’s function and the singular field before taking a
coincidence limit. However, in this case, one can take
partial coincidence limits A¢p = 0 and Af = 0 from the
outset since these terms just pass through radial deriva-
tives. This procedure makes the calculation more palatable
from an algebraic perspective.

There are several steps involved in the calculation: first,
we derive analytic expressions for W, for small separa-
tions. We then use our results for W, to obtain analytic
expressions for the Green’s function for the various sepa-
rations. Then the singular terms are calculated. Finally we
compute derivatives of the regular field and take coinci-
dence limits to obtain the self-force.

1. Calculating "V, for small separations

In order to calculate the Green’s function up to order
O(Ax) (which is what is required for the self-force), we
require W, up to O(Ax?), where W, satisfies the transcen-
dental (3.18), which in Boyer-Lindquist coordinates is

(r — M)(¥ — M) — b?>cosA
AI/ZAI/Z

’

b
cosh(; (W — Ad))) =
(4.43)
where

cosA = cosf cosf + sinf sinf cosVy,. (4.44)

As discussed in the previous section, we cannot solve this
equation analytically in general. However, we shall show
that it can be solved for small separations up to any order.
Reintroducing the bookkeeping parameter € to keep track
of orders of Ax, we write

v, = \If((]l)e + ‘Ifgz)e2 + \If§)3)e3 + O(e*). (4.45)
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Substituting this into Eq. (4.43), writing r = 7 — €Ar, 6 =
0 — eAl, ¢ = ¢ — eA¢, expanding about € =0 and
then equating equal orders of € gives a simple set of
recursion relations for \Iff)l), \If(()z) etc. For example, equat-
ing powers of € yields the following quadratic in \I’él):

2005A A2A¢p? — a2s?
(w2220 QAP ) 44
A — a%sin’6  A(A — a?sin?6)
where
s2 = Ar2 + A?A. (4.47)
The two solutions of this quadratic are
AA ¢
\I,(ll_ = =F—F5=
0% A — a%sin’6
2R i AA 2 2.2
L JOASIOADT a4
(A — a?sin?0)?>  A(A — a’sin%6)

where we recall that W is the particular choice that yields
the correct singular field, and as explained in Sec. III,
corresponds to choosing the more positive solution

AA
Wi = 2T
0 A — a%sin%6
2A in2A 2 2.2
L |AsiOAdT a4
(A — a%sin?0)>  A(A — a’*sin®6)

The higher order coefficients are linear in the dependent
variable and therefore uniquely defined in terms of the

appropriate ‘I’(()l) solution. However, for arbitrary separa-
tions they become increasingly cumbersome from an
algebraic perspective so we calculate each component of
the self-force individually by specializing to a particular
separation.

Throughout the remainder of this section we shall as-
sume, without loss of generality, that Ar >0, A6 >0,
A¢ >0 and a > 0. Then the limit in Eq. (4.41) is a one-
sided limit from the left. In fact, the two-sided limit does
not exist since the Green’s function expansion for small
separations involves terms like Ax®/|Ax]|.

For radial separation, we obtain

1) _ alAr
Fo'(an AV2(A — a2sin26)1/%’
) _ a(f - M)(ZA - azsinzé)Arz
Yo' (an 2032 (A — a%sin26)32
T (Ar) = a [4A2(6A + 8b2)

240°2(A — a?sin26)>/
— a?Asin?A(36b* + a* + 24A)

+ 3a*sin*0(4b% + 3A)], (4.50)

PHYSICAL REVIEW D 86, 024036 (2012)

which along with Eq. (4.45) defines W, for radial separa-
tion up to O(e?) terms.
Similarly, for 6 separation, we have

alAf

WA = e,
0 (49) (A — a®sin?6)1/2
3 cosf sinfA §>
\I’(Z) AH _ a_cos - ,
o (A0) 2(A — a?sin?6)3/2
AFSITN) P S— Y )
0 (40) 24(A — a2sin20)5/2[ ( )
+ 4a%sin?0(A — 2a%) + 4a*sin*0],  (4.51)
while for ¢ separation, we have
ApA'?
\Ir(l) A =,
o (4¢) (A'? — asind)
\I,(()Z)(A ®) =0, (4.52)

~aA"Zsind(A + bsin?0)A

3) _
Yi(ae) 24(A'? — asind)*

2. The Green’s function for small separations

We now employ these expansions for W, in order to
calculate the retarded Green’s function expansions for
small separations up to O(Ax) [or O(e)].

We begin with radial separation. The Green’s function
expression Eq. (3.26) for radial separation is given by

_ b 1
Gl . (rr0)=— = — ,
st ) 4m AV2A'2sinh[2 W] — absin®Gsin ¥,
(4.53)
where W, = ‘Ifgl)(Ar)e + ‘lft()z)(Ar)ez + \Ifg)(Ar)e3 +
O(e*) with ¥V, \P(()Z) etc. given by Eq. (4.50). Writing

r =7 — €Ar and doing a series expansion about € = (
(this is equivalent to a small Ax expansion), we obtain

Gliic(r: 7, 0)
ZLI: A2 N a®(F — M)sin*@
4aL(A — a®sin20)2Ar  2AV2(A — a2sin26)3/2
N a®sin20[ A(4A + 4b% — a?) — a®sin0(A + 2b2)]Ar
8A2(A — a?sin2f)>/2

+ o(Arz)], (4.54)
where we have set € = 1.
For 6 separation, Eq. (3.26) becomes
Gsatatic(?’ 9’ é)
_b !
4 A sinh(s W,) — absin(6 — €Af)sinfsin¥,’
(4.55)
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where W, is given by Eqs. (4.45) and (4.51). Expanding about € = 0 gives

1 1 a’® cosf sinf
statlc(r 0, 9) - 7[ by oY
dmL(A —a sm26)1/2A0 2(A — a%sin?f)3/2
[A(A — 3b2) + 2a%sin?0(3a® — 4A) — 2a 51n20]A0 O(AHZ):I. 4.56)
24(A — a’sin6)>/?
For ¢ separation, the Green’s function is
- b 1

Gluic(7 0, A) = (4.57)

47 Asinh[2 (W, — A¢p)] — absin20 sin¥,’
where W is given by Egs. (4.45) and (4.52). In this case, the series expansion for the Green’s function is

| A
12 5infA ¢ 24&1/2(5 — a’sin6)?

Gsmnc(r 0,Adp) = ! [A {A3 csch — 3A%sind(M? + a2) — 8aM?A3/%sin26

— 3a?Asin’02M? — a?) + a*b*sin® 6} + O(Ad)z)]. (4.58)

3. Analytic expression for the self-force

We now have expansions for both the Green’s function and the singular field required to compute the self-force. As
mentioned above, a particular component of the self-force may be evaluated by taking partial coincidence limits inside the
derivative. For example, the radial component is given by

i = Al =70, (Gluie(r, 7, 0) = Gy (7. 0))) 39
where G',..(r, , 6) and Gling (1 T, 6) are the radially separated Green’s function and singular field, respectively. We have

computed the Green’s function for the various separations in the previous section; the singular field for a particular
separation is given by Eq. (4.42) in the partial coincidence limit. After some algebra, we obtain

1 A2 a?(7F — M)sin6
Glnelri7.0) = | T LU i
e 4 L(A — a%sin?0)2Ar  2A'2(A — asin26)3/2

a’sin?O[A(4A + 4b% — a?) — a?sin20(A + 2b%)]Ar
+ - - - + O(Ar? ], 4.60
SA2(A — asind)? (A7 (460
1 1 a® cosf sinf
Go 0,6 [ = = - — —
sing(7 6 0) = 4w L(A — a’sin®0)'/2A0  2(A — a®sin?9)*/?

[A(A — 3b%) + 2a%sin?0(3a® — 4A) — 2a smzﬁ]A@
24(A — a’sin?0)%/2

omoz)], 4.61)

| A
12 5inBA ¢ 2451/2(5 — a’sin’6)>

1 - — - _
Smg(" 0,Ap) = [A {A%csch — 3A%sinf(M? + a?)

— 3a2Asin*02M? — a?) + a*b*sin’6} + O(A¢2)] (4.62)

Comparing Eq. (4.54) with Eq. (4.60), we see that (7,0,0) — G%_(7 6,0) = O(A6?) (4.65)

statlc sing

(r, 7, 6) = O(Ar?) (4.63)  and hence Eq. (4.41) yields
fEr=o. (4.66)

Gglatlc ( 6) smg

and therefore Eq. (4.41) clearly gives
Therefore the only component of the self-force lies in the

feelf =, (4.64)  azimuthal direction, as suggested by the numerical results
of Burko and Liu [13]. Subtracting Eq. (4.62) from
Similarly, from Eqgs. (4.56) and (4.61), we have Eq. (4.58) gives the regular field
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Giatic(f’ é’ A¢) smg(r 0 A¢)

aM*Asin’0A ¢
= — = —— + O(A¢?).
127(A — a®sin?6)? (4¢7)

(4.67)

Differentiating with respect to ¢, including the 47/./=g,;
term and taking the limit ¢ — ¢ according to Eq. (4.41),
gives the azimuthal component of the self-force on a static
particle in the Kerr space-time

M2
(A — a%sin20)3/23 V"

q 2qAsin?6

3@ = (4.68)

Our results clearly agree with the numerical results of [13].
We infer from this agreement that the MSRP parameter D,,
that the authors of Ref. [13] conjecture is correct, at least
for a static particle. Our analytic results ought to offer a
good standard test for any numerical regularization pre-
scription in the nonspherically symmetric case. We note
also that the result presented here is trivially extended to
the Kerr-Newman black hole by taking M? — M?* — Q?,
where Q is the charge of the black hole.

Combining the results of Egs. (4.64), (4.66), and (4.68)
and assuming, for notational convenience, that the scalar
charge is located at Boyer-Lindquist coordinates (r, 6, ¢)
gives the following representation of the self-force on a
static scalar charge in the Kerr background geometry:

MZ
(A — a?sin?0)3/231/2

87, (4.69)

1
Sl = 34 2aAsin’6

V. CONCLUSIONS

In this paper, we derived a completely closed-form
representation of the retarded Green’s function for a scalar
particle at fixed spatial Boyer-Lindquist coordinates in the
Kerr space-time. This representation relied on two results
for the associated Legendre functions, one of which is
derived in the Appendix and the other we derive elsewhere
[12]. These formulas will likely prove useful in other
contexts. As a check of the validity of our closed-form
Green’s function, we computed, analytically, the self-force
on a static scalar particle in Kerr space-time and showed
that our result agrees with the conjectured result of Burko
and Liu [13]. The calculation presented in this paper is
therefore the first proof of the result implied by the
numerical work of Ref. [13].

Unfortunately, the method presented here relies strongly
on the charge being scalar and at fixed Boyer-Lindquist
coordinates since only in this case does the Green’s func-
tion separate into a mode sum involving known functions.
It is therefore not likely that closed-form solutions can be
obtained for charges with nonzero spin or charges that are
not static.

PHYSICAL REVIEW D 86, 024036 (2012)

APPENDIX: SUMMATION FORMULA FOR THE
PRODUCT OF ASSOCIATED LEGENDRE
FUNCTIONS

In this appendix, we shall derive the following summa-
tion formula for associated Legendre functions,

z%l(zl v El + ;' Py (cosf) Py (cost') Py(x)
_2 cos(mcos" ()
- Al
7 (sin?0sin26’ — (x — cosf cosd’)?) /2’ (AD
where
_ X~ cosfcost’ 42)

sin@ sin@’

and x = cosA must lie in the range 6 — 6' <A<
min{6 + 6,277 — 6 — 6'}. For A outside of this range,
the series sums to zero. Though not a new result, it is not
well known; the only reference of which we are aware that
includes this formula is Ref. [19]. We have therefore
included a proof of this result, following closely the
method of Baranov [20] who has proven the m = 0 case,
as the technique might be valuably extended in other
directions. We begin with the well-known Christoffel-
Darboux formula [36]

i (21 +1)
Z Pi(1)P(x)
_ n+1 Pn+1(x)Pn(t) - Pn(x)Pn+1(t). (A3)
2 x—t
Taking
X = COSA, t = cospu = cosf cosf’ + sinf sind’ cose,

(A4)
we may employ the Legendre addition theorem to obtain

(21+1)(l—m)!

ZZCO( 5

P*(cos@)P}'(cosh’)P,(x)

& & (I+m)!
=n+1Pnﬂ(x)Pn(t)—Pn(X)Pnﬂ(t)' (AS)
2 x—t

Reversing the order of summation, multiplying across by
cos(m’ ) and integrating from 0 to 27 gives

(I —m)!
(I +m)!

T i I+1) P"(cosB) P} (cos’)P(x)
1=|m|
n+1
> cos(me)
P, ()P, (1) — P (X)Pn+1(t)

x—1

(A6)

We change the integration parameter from ¢ to ¢ using
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dt
* ,
J(cos(8 — 68') — 1)(t — cos(6 + 6))

de = (A7)

where the choice of sign here is determined by the fact that ¢, as a function of ¢, is symmetrical about ¢ = 7, decreasing
from cos(@ — 0’) at ¢ = 0 to cos(6 + 6') at ¢ = 77, and then increasing symmetrically to cos(6 — ') at ¢ = 2. Hence,
we obtain

(I — m)! cos(0—0')

P (cos@)P]'(cosf')Py(x) = (n + 1) cos(mo(1))

(l m)' cos(6+6")

Pn+1(x)Pn(t) - Pn(x)Pn+1(t)

T i Q1+1)
I=|m]|

dt, (A8)
(x — 1)4/(cos(8 — 6') — 1)(t — cos(0 + 0'))
where
o) = cos—l(M) (A9)
siné sinf

In order to obtain the result (A1), we require an asymptotic analysis of the integral in Eq. (A8) for large n so that the limit as
n — o0 may be taken. Such an asymptotic analysis is complicated further by the fact that one needs to allow for the
possibility of small or vanishing x — ¢ (which only occurs when x lies inside the integration range). Using the large n
asymptotic formula [14]

2 1/2 1 2 3/2 3
P,(cosz) = ( _ ) cos[(n + —)z - z] - 1( . ) cos[(n + —)z + z:l +0(n=5/?), (A10)
7Tn sing 2 4 16 \7n sing 2 4

we can deduce

2[sin(3 (A — p)) cos((n + D(A + w)) — sin(G (A + p)) sin((n + DA — p))]

P P,(t) — P,(x)P 1) = + A, (x 1),
n+1(x) n() n(-x) n+1( ) 77_(” + l)m n(-x )
(A11)
where t = cosu, x = cosA and the remainder A, (x, t) is given by
A G t) = 1 (cos[(n + DA = Tlcos[(n +Hu + 7] _cos[(n + DA —Zcos[(n +)u + 7]
4an® /sinAsin’ u sinAsin’ u
3 a 3 o T o
N cos[(n + A + Flcos[(n + Hu — F]  cos[(n + DA+ Zcos[(n + HDu — Z]) T oY), (A12)
Vsin® A sinu Vsin® A sinu

One can choose a function of x such that the trigonometric terms in the brackets are bounded for all values of ¢, i.e.,

c(x)
|4, (x, )] < 2 (AI3)
where c(x) is independent of n and ¢. The approximation (A11) with Eq. (A13) is valid whenever x is not close to ¢ but as
mentioned above, we require an alternative estimate to that of Eq. (A13) that accounts for small or vanishing x — ¢. To

achieve this, we can use the asymptotic formula for the associated Legendre function of order 1,

P}(cosz) = ( 2n )1/2 cos[(n + l)z + Z:I + 37 (2_n)3/2 cos[(n + %)z + %Tﬂ-] +0(n=3/2), (A14)

7 sing 2 4 1612 \7rsinz

as well as Eq. (A10) to obtain the estimate

2[sin( (A — w)) sin((n + 1D(A + p)) = sin(G (A + p)) cos((n + (A — p))]

T4/sinu sinA

P, ()P, (1) = Py ()P (1) = + B, (x, 1),

(A15)

where
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3cos[(n + 3)A — Flcos[(n + ) + 7] 3cos[(n + A — Flcos[(n + Hu + ]

1
Buxn =4 (

VsinAsin’ u VsinAsin® u
N cos[(n + A + Flcos[(n + Pu +F]  cos[(n +3)A + Flcos[(n + Hu + Z]) +O(n-2) (AL6)
Vsin® A sinu sin® A sinu
Given that
dP,(t
P}(1) = —sinu ( ), (A17)
dt
we may divide both sides of Eq. (A15) by sinu and integrate from x to ¢ to get
2[sin(3 (A — p)) cos((n + (A + p)) — sin(3 (A + p))sin((n + 1)(A — p))]
Pui1(0)P,(1) = Py(x)Ppi (1) = 2 —
a(n + 1){/sinu sinA
B,(x,t
+ f Balx ) (A18)
x sinp
Comparing with (Al1), we see that
tB,(x,t
A,(x 1) = f B 1) ;. (A19)
x sinp

Again the trigonometric terms in B, (x, t)/ sinu are bounded. If we take m to be the lower bound and M the upper bound
and define the positive constant ¢; = | max{m, M}|, then we get the following bound for A,,,

cilx—1

B,(x, ¢t
a0 = | [P g < (A20)
x sinu n
The geometric mean of Eqs. (A13) and (A20) yields a new estimate for the remainder term:
—t
A, ol < Yl =1 (A21)
n
Employing Eq. (A11) with the estimate (A21), we have
i (I —m)!
21+ 1 P!"(cos@) P (cosf’) P
™ 3 Q1+ 1) (o PHeost)Prcost )
_ /‘cos(ﬁ*ﬁ/) 2 cos(me(1))
cos(0+0') ar(x — 1) /sinu sinAy/(cos(8 — ') — 1)(t — cos(f + €'))
1 1 1
x [sm(E (A — M)) cos((n + 1A + w)) — sm(E (A + M)) sin((n + 1)(A — ,u))]dt + 0(7_). (A22)
n
It is convenient to integrate over u rather than ¢, and express the singularity as
1 1 1
= + f(A ), (A23)

X—1 COSA— cosu - (e — A)sinA

where f is a continuous function. Since f contains no singularities, and in view of Eq. (A13), it is easy to see that the
contribution of the integral containing f in the integrand is O(n~!). Therefore,

(I —m)!
I+ m)

Wi(2l+1)

1=|m|
W 2 cos(me(w))
n- 1r+f(cos(6 — 0') — cosu)(cosu — cos(6 + 6'))

sinp,rsin(l(/\ — w))cos((n + 1)(A + w)) —sin(t (A + w))sin((n + 1)(A — w)) 1
sin3AL : w— A : ]d,u - O(\/_ﬁ)’

P"(cosB) P} (cos’')P(x)

(A24)
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where u_ =6 — 0 and w, = min{f + 6’27 — 6 — 6'}.
Without loss of generality, in what follows, we shall as-
sume that § + 8’ < 7 sothat u, = 6 + 6'.

The first integral in Eq. (A24) may be written as

[ " cos(me(w))

2sin( (A — w))cos((n + 1)(A + u))
myf(cos(@ — 6") — cosu)(cosp — cos(f + 7))

sing  du
x‘, S
sinPAu — A

- [ " gl cos((n + DA + w)du,

(A25)

where ¢,, is independent of n but not of m. One can further
write

A,
Ju—(6-29)

Qm(:“) = + qml(l’l")

_"_ m
JO+0 —u
(A26)

for particular constants A,, and B,, and some continuous
function ¢, ;(u). Considering the first singular term here,

wrcos((n + 1)(A + w))
pe A —(0—6)

F
—2 [ ? cos((n + DA+ 0 — 6 + s2))ds
0

=2cos[(n + 1)(A + 6 — 0] [\/ﬁ cos[(n + 1)s2]ds
0

7

—2sin[(n + DA + 6 — 6)] f sinf(n + 1)s2]ds,
0

(A27)

where we adopted the transformation s = /. — (6 — ')
in the first line. We further make the transformation

S = s+/n + 1 which gives
we cos((n + 1)(A + w))

pe Au—(0—-0)
2cos[(n + 1)(—? +6—0"] -f L2(n+1)6’ cos(52)dS
_ 2sin[(n + 1;1)(: +6- 6] [ VY Gin(s)ds.
(A28)

These last two integrals are the well-known Fresnel inte-
grals and they converge for large values of the argument
(n — o). Since cos(nx)//n — 0 and sin(nx)/\/n — 0 as

n — oo, we must have
ws cos((n + 1)(A + w))

pe Ap—(0-9)

mw—0 asn—oo (A29)
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An identical analysis for the other singular term in
Eq. (A26) reveals

j‘m cos((m + 1)(A + ,u,))d
i} N )

m=—0 asn— oo

(A30)

Hence, the contributions from the singular terms in
Eq. (A26) vanish for large n.

Turning our attention now to the regular part of
Eq. (A26), taking our integral over the entire real line
[since consideration of Egs. (A8), (A11), and (A13) shows
that g, 1 (u) is O(n~!) outside the range of integration and
therefore does not contribute in the large n limit], we
obtain

[ anatwrcostta + D + )i

1

) _/-_Z Gm1 () cos((n + 1)(A + w))du

+ % /_io gmi(v)cos((n + 1)(A + v))dv.  (A31)

Making the substitution
T
n+1

v=pu — (A32)

in the second integral yields

[ amitweostn + D + w)du

_ % [fm[qm,lw - qm,l(ﬂ o 1)]

X cos((n + 1)(A + u))du

(A33)

which vanishes as n — 0.
Finally, we consider the second integral in Eq. (A24).
This integral may be written as

j’#+ sin((n+ 1)(u — A))

A T,(n)du

" fsin((n + 1)(w — A)

y7.

T, (M) +sin((n + D(p — A))

X [T,0(1) — TAA)]}%W (A34)
where
T () = 2 cos(me(u)) sinz (A + )
S J(cos(6 — 6') — cosu)(cosu — cos(f + 6))
sinu
R (A35)

For the second integral in the expression above, one can
write
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Tm(/*'L) - Tm(/\) _ Cm
pA w= =0

+ (A36)

D,
" pu(w),
JO+60 —pu

where p,, is a continuous function. Applying a similar
analysis as that above, one can show that the contribution
coming from this integral converges to zero as n — 0.

The only contribution to the sum in (A24) therefore
comes from the first integral on the right-hand side
of (A34)

0+6' +1 —A

py [0 D= ),
m—A

(n+1)(6+6'—A) sinT

=T,(A) (A37)

(n+1)(0—60'-2) T

In the limit as n — oo, this integral converges to the
Dirichlet integral,
(n+1)(6+6'- 1) sinT
lim[Tm(A) —dT]
n—00 +1)(6-0'-2) T

—T(/\)[ yd = 7T, (A)

2 cos(mgo()\))

— (cosA — cosf cosh’)?

. (A38)

\/ sin®@sin%0
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where

COSA —

A39
sin@ sin@’ ( )

) cos’1< cosf cos0’>
(2 == .

We note here that for A outside the range (u_, ), the
integral (A34) would have no singularities and the integral
would have vanished in the limit n — oo. Therefore we
have shown

Z 21+1) x ; P7(cosf) P7(cos8') Py(x)
I1=|m|
_2 cos(mcos™1(¢))
7 (sin’6sin?0’ — (x — cosf cosd')?)' />’ (A40)
where
— /
[ = X — cosf cost’ (A4D)

sin@ sin@’

and x = cosA must lie in the range 6 — 6' <A<
min{6 + 6,27 — 6 — 6'}.
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