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The thermodynamic properties of a static and spherically symmetric hairy black hole solution arising in

massive gravity with spontaneous Lorentz breaking are investigated. The analysis is carried out by

enclosing the black hole in a spherical cavity whose surface is maintained at a fixed temperature T. It turns

out that the ensemble is well-defined only if the ‘‘hair’’ parameter Q characterizing the solution is

conserved. Under this condition we compute some relevant thermodynamic quantities, such as the thermal

energy and entropy, and we study the stability and phase structure of the ensemble. In particular, for

negative values of the hair parameter, the phase structure is isomorphic to the one of Reissner-Nordstrom

black holes in the canonical ensemble. Moreover, the phase diagram in the plan ðQ; TÞ has a line of first-
order phase transition that at a critical value ofQ terminates in a second-order phase transition. Below this

line the dominant phase consists of small, cold black holes that are long-lived and may thus contribute

much more to the energy density of the Universe than what is observationally allowed for radiating

black holes.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe [1] has revived interest in the theories of gravity
that can explain such observation without invoking dark
energy. One class of these models is called ‘‘massive
gravity.’’ Models of massive gravity fulfilling Lorentz
invariance have been recently constructed [2] and proved
to be free from ghosts and instabilities at a full non-
perturbative level [3,4]. However, there are very few
known solutions for such models. Instead, models of mas-
sive gravity with Lorentz violation are better understood
at present. In these scenarios the spontaneous breaking of
Lorentz symmetry is achieved by scalar fields that are
coupled to gravity in a covariant way through derivative
couplings [5–7]. As a consequence of this interaction,
Lorentz violation is transmitted to the gravitational sector
and the graviton becomes massive [6–8]. In a wide region
of the parameter space these Lorentz breaking models
are, at perturbative level, free from ghosts and tachyonic
instabilities around Minkowski [8] and curved back-
grounds [9]. They can also exhibit infrared modifica-
tions of the gravitational behavior [9]. Moreover, they are
expected to reach the strong coupling regime at energies
that are much higher than in Lorentz-invariant models
of massive gravity [6–9], even though it has not yet
been rigorously proven. Interestingly, these Lorentz break-
ing theories are formulated in a nonperturbative way,
making the study of black holes possible [10–13]. On
top of that, black hole solutions are far richer than in
general relativity (GR) due to the presence of ‘‘hair’’
parameters [11,12].

In GR the existence of black hole solutions raises
questions of consistency with the general laws of thermo-
dynamics. For instance, it has been argued [14] that black
holes have temperature and entropy. The same conclusion
was apparently reached by means of path integral methods
[15]. However, the proof turned out not to be fully con-
sistent because of a technical subtlety: the path integral
approach requires black holes in thermal equilibrium with
its surroundings and this situation is never fulfilled by
Schwarzschild solutions. Instead, anti–de Sitter (AdS)
black holes achieve thermal equilibrium, and the path
integral procedure proposed in Ref. [15] can be consis-
tently applied [16]. Moreover, it turns out that black holes
are just one of the phases permitted in AdS space, and
first order transitions between a black hole and globally
AdS spacetime may occur.1 On the other hand, it might be
expected that a similar result also arises for Schwarzschild
black holes if one mimics the AdS cosmological constant
by an infrared cutoff. In fact, as it was proven by York [19],
after having enclosed the Schwarzschild black hole inside
a spatial spherical surface at a fixed temperature, the
configuration reaches thermal equilibrium and its phase
structure turns similar to the AdS one.
It is interesting to understand whether one can apply the

York’s approach to investigate thermodynamics of hairy
black hole solutions in Lorentz breaking massive gravity.
This issue is the subject of the present paper and, as we will
see, the conclusion depends on whether the black hole hair

1In the context of the AdS/CFT correspondence [17], this
transition turns out to be dual to the confinement-deconfinement
phase transition in large-N gauge theories [18].
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parameter Q is conserved in the cavity. In particular, when
Q is assumed constant,2 we obtain a rich thermodynamical
phase structure that includes, for instance, first and second
order phase transitions and phases consisting of stable and
small, cold black holes (plausible dark matter candidates).

The paper is organized as follows. In Sec. II we briefly
review the model of massive gravity and we sketch the
eventual difficulties that may arise when applying the
York’s procedure. In Sec. III we review the static, spheri-
cally symmetric and asymptotically flat black hole solution
of massive gravity and we check whether it can be em-
bedded in a spacetime that has a periodic Euclidean time
coordinate and is bounded by a spatial sphere. This com-
patibility requirement is needed in order to apply the
York’s procedure, which we carry out in Sec. IV assuming
Q to be conserved in the ensemble. In particular, we first
regularize the black hole action by the ‘‘subtraction back-
ground’’ method [15], then we enclose the black hole
solution in a sphere at a fixed temperature and, finally,
we obtain the on-shell action of the ensemble. As we prove
in Sec. V, this procedure provides a well-defined ensemble
that we use to investigate black hole thermodynamics. It
turns out that, depending on the value of Q inside the
cavity, black holes can evolve in qualitatively different
ways. In any case, their evolution always respects the
Bekenstein-Hawking formula. In Sec. VI we relax the
assumption concerning the conservation of Q and we see
that in such a case the York’s procedure is inconsistent.
Finally, Sec. VII is dedicated to summarize the main results
of the paper and the Appendix contains some analytic
expressions valid for a specific choice of massive gravity
parameters.

II. MASSIVE GRAVITYAND THE
SADDLE-POINTAPPROXIMATION

Massive gravity is conventionally described by the
action [7–13]

I ¼
Z
M

d4x
ffiffiffi
g

p �
� 1

16�
Rþ�4F ðX;WijÞ

�

�
Z
@M

d3x
ffiffiffiffi
�

p 1

8�
K; (1)

with

X ¼ ��4g��@��
0@��

0; Vi ¼ ��4@��i@��
0;

Wij ¼ ��4@��i@��
j � ViVj

X
;

where Latin (Greek) indices run on space (spacetime) com-
ponents. The first integral in Eq. (1) is evaluated on the
manifoldM with metric g and contains two contributions:

the usual Einstein-Hilbert term and a function F of four
scalar fields �� that are minimally coupled to gravity by
covariant derivatives. The second integral is instead the
Gibbons-Hawking-York boundary term [15,20], where
�ab is the metric induced on the boundary @M and K is
the trace of the extrinsic curvature Kij ¼ 1

2�
k
irknj of @M

with unit normal ni. Such a boundary term is required to
have a well-defined variational principle in the presence of
the border @M.
The action (1) describes a low-energy effective

theory valid below the ultraviolet cutoff �, which pertur-
bative analyses estimate to be Oð ffiffiffiffiffiffiffiffiffiffiffiffi

mMPl

p Þ [6–9], where

MPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1=8�

p
and m are the Planck and the graviton

masses, respectively. Its vacuum flat-spacetime solution
has the form

g�� ¼ ���; �0
flat ¼ �2t; �i

flat ¼ �2xi; (2)

which induces a spontaneous breaking of Lorentz symme-
try. The background (2) preserves rotational symmetry
when the function F is invariant under rotations in the
internal space of the fields �i. Moreover, the action (1) is
invariant under the symmetry

�i ! �i þ�ið�0Þ; (3)

where �i are arbitrary functions of �0. This symmetry
ensures that perturbations around the vacuum contain only
two propagating degrees of freedom [7], corresponding to
the two polarizations of a massive graviton.
To study the thermodynamics of this model, we use the

Euclidean path integral

Z ¼
Z

DgD� expð�I½g;��Þ; (4)

which is evaluated by integrating over all metrics and
scalar fields satisfying particular boundary conditions. In
the semiclassical limit Z is dominated by the stationary
points of the action. This can be checked by expanding the
path integral around a classical solution. Indeed, if the
expansion provides a leading term that is finite, a linear
term that vanishes on-shell, and a quadratic term that is
positive definite, then the function Z can be expressed as

Z � e�I½gcl;�cl�
Z

D�gD��e��2I½gcl;�cl;�g;��� (5)

and can be interpreted as the partition function of the
model. However, such a derivation is not straightforward
for the action (1) since the three properties listed above
might not be fulfilled. In fact:
(1) The on-shell leading term of the action diverges.

This is a familiar problem in general relativity that is
addressed using the background subtraction regu-
larization technique [15]. Following this subtraction
scheme, we take the vacuum solution (2) as back-
ground ðg0; �0Þ and we consider IE as regularized
action, defined as

2In practice, we expect that the results obtained under this
hypothesis can be extended to situations where Q varies very
slowly.
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IEðg;�Þ � Iðg;�Þ � Iðg0; �0Þ: (6)

In this way IE is finite for the class of fields ðg;�Þ that
asymptotically approach the background ðg0; �0Þ;

(2) The linear term may eventually not vanish for all
perturbations around the classical solution. The non-
vanishing behavior of such a term comes from the
boundary contributions:

�Ijcl ¼
Z
@M

d3x
ffiffiffiffi
�

p ½�ab��ab þ ��
�����: (7)

For the action (1) �ab and ��
� are given by

�ab ¼ � 1

16�
ðKab � �abKÞ; (8)
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��j� @F
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X

�@�ð�0�i
�þ�i�0

�Þ
�
; (9)

where n� is the outward pointing unit normal to@M.
Therefore, some boundary conditions on the fields
g�� and �� should be imposed in order to have a

well-posed variational problem, i.e. �Ijcl ¼ 0;
(3) The Gaussian integral in Eq. (5) corresponds to the

one-loop contribution. Such contribution may di-
verge since the integration involves the determinant
of second-order elliptic operators that cannot be
regularized when negative eigenvalues are present.
Indeed, if there exist negative eigenvalues, the den-
sity of states grows so rapidly that the ensemble
turns out to be ill-defined and Z cannot be used to
determine thermodynamical quantities. For this rea-
son, in order to be able to study the thermody-
namical properties of black holes, we need first to
stabilize the ensemble. This can be performed as in
Ref. [19]: we place the black hole inside a surface
maintained at a fixed temperature.

In the next sections we explicitly show how to imple-
ment these three procedures for black hole solutions in
massive gravity.

III. THE BLACK HOLE SOLUTIONS

By the coordinate transformations r0 ! r ¼ rðr0Þ and
t0 ! t ¼ tþ 	ðr0Þ, the generic ansatz for the static spheri-
cally symmetric solution in Euclidean spacetime can be
written as [11,12]

ds2 ¼ �ðrÞdt2 þ 
ðrÞdr2 þ r2ðd�2 þ sin2�d’2Þ;

�0 ¼ �2½�itþ hðrÞ�; �i ¼ �ðrÞ�
2xi

r
:

(10)

For black hole solutions in massive gravity the explicit
expression of this ansatz can be obtained by imposing

Eq. (10) to fulfill the equations of motions of the action
(1). The black hole solution has then to be an extremum
of the variation of the action with respect to the fields g��

and ��:

�I ¼
Z
M
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�
:

(12)

For asymptotically flat black holes, the solution of Einstein
and Goldstone’s equations, respectively, E��

ð1Þ ¼ 0 and

Eð2Þ
� ¼ 0, has a known analytical expression if the function

F takes the form [12]

F ¼ 12

�X
þ 6

�
2

�
þ 1

�
w1 � w3

1 þ 3w1w2 � 2w3 þ 12;

(13)

where � is a positive constant and wn ¼ TrðWnÞ. In such a
case, for � � 1, the ansatz (10) provides the black hole
solution

�ðrÞ ¼ 1� 2M

r
�Q

r�
; 
ðrÞ ¼ 1

�ðrÞ ;

hðrÞ ¼�
Z dr

�

�
1��

�
Q

12m2

�ð�� 1Þ
r�þ2

þ 1

��1
�
1=2

;

�ðrÞ ¼ r;

(14)

which depends on the two arbitrary integration constantsM
and Q. In the following we restrict our analysis to the class
of solutions (14) with � > 1, so that the gravitational po-
tential is asymptotically Newtonian and the parameter M
coincides with the Arnowitt-Deser-Misner (ADM) mass.3

Moreover, we forbid naked singularities, i.e.�ðrÞmust have
real roots and the largest of them determines the radius of
the event horizon. Depending on the signs and relative
values of the parameterM andQ, the following cases arise:
(i) Q � 0 and M> 0: The existence of the horizon

is guaranteed: at all distances, the gravitational

3These features have been discussed in Ref. [12] for � < 1.
For the particular case � ¼ 1, yielding a different solution from
(14), see Appendix F of Ref. [11]. Such a solution produces a
divergent ADM mass.
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potential is attractive and stronger than (or, for
Q ¼ 0, equal to) the usual Schwarzschild black
hole potential. Therefore, rþ is never smaller than
in the standard case.

(ii) Q � 0 andM< 0: The Newton’s potential is repul-
sive at large distances and attractive near the hori-
zon. This possibility is interesting because, even for
Q ¼ 0, it does not have a corresponding case in
GR.4 Nonetheless, we do not analyze such negative
mass configurations since they are incompatible
with black hole thermodynamical laws [13]. As
stated in Ref. [23], it seems likely that the cause
of these incompatibilities is not Lorentz violation
but the existence of negative energy states.

(iii) Q< 0 and M> 0: The horizon only exists when
the condition

2M � �jQj1=�
�

1

�� 1

�ð��1Þ=�
(15)

is fulfilled. In this case the Newton’s potential is
always attractive until reaching the horizon, but the
attraction is weaker (whichmakes the event horizon
radius rþ smaller) than in the Schwarzschild case.

A. The boundary conditions

As it has already been mentioned in Sec. II, the proce-
dure to study equilibrium thermodynamics requires us to
enclose the asymptotically flat black hole within a finite
volume surface and then to send the surface to infinity [19]
(see Sec. IV for details). In the following, we consider a
spherical cavity of radius rB as the boundary and, to
analyze the system at finite temperature, we impose peri-
odicity on the Euclidean time. Due to the presence of this
border, the black hole solution (14) must fulfill some
boundary conditions in order to satisfy �Ijcl ¼ 0. The

momentum ��
0 conjugate to the scalar field �0 on @M

vanishes when evaluated at the solution (14). Then, there is
no need to fix the scalar field �0 at the boundary.
Analogously, as a remnant of the internal spherical sym-
metry of the scalar fields�i, i.e. ð�iÞ2j@M ¼ rB, no bound-
ary conditions emerge on the scalar sector. Instead, the
momenta �ab conjugated to the induced metric �ab are
not null when evaluated at the background solution (14).
For this reason we conclude that we only need to impose
��ab ¼ 0 to have vanishing boundary terms. Further con-
ditions arise due to the compactification of the Euclidean

time. Regularity of the metric at the horizon fixes the
periodicity as t� tþ H, where H is related to the
Hawking temperature TH by the equality

T�1
H ¼ H ¼ 4�

@r�

��������rþ
¼ 4�rþ

1þ ð�� 1Þ Q
r�þ

: (16)

Interestingly, the Hawking temperature behaves differently
for positive and negative scalar charges (see Fig. 1). For
Q> 0 the temperature is larger than for Q ¼ 0 and de-
creases with the increasing of the event horizon radius rþ,
as in the case of the conventional Schwarzschild black
hole. For Q< 0 the temperature is smaller than in the
Schwarzschild case and its nonmonotonic dependence on

rþ reaches a maximum at rþ ¼ rmax � ½ð�2 � 1ÞjQj�1=�.
The periodicity of t also imposes a periodicity on the scalar
field �0ðt; rÞ ��0ðtþ H; rÞ which is linearly dependent
on time. This does not provide any further constraint on the
solution (14) since the periodicity of �0 is allowed due to
the presence of the global shift symmetry�0 ! �0 þ C in
the action (1).
Notice that the Hawking temperature measured by an

observer at the position r is given by

TðrÞ ¼ �1
Hffiffiffiffiffiffiffiffiffiffi
�ðrÞp ¼ 1

4�rþ

ð1þ ð�� 1Þ Q
r�þ
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rþ
r þ Q

r��1
þ r

� Q
r�

q : (17)

In case of thermal equilibrium, setting the temperature
measured at the surface r ¼ rB univocally determines
the temperature of the configuration contained in the cav-
ity. Once one has set rB and TðrBÞ the boundary @M is
unambiguously fixed.

IV. THE ON-SHELL ACTION

In this section we briefly review the background sub-
traction procedure needed to obtain a finite on-shell action.
Subsequently, we compute the Euclidean action of the
black hole solutions (14) in terms of the boundary

Q 0

Q 0

Q 0

0 rmax

r

T
H

FIG. 1. The Hawking temperature TH as a function of the
event horizon radius rþ for positive and negative scalar
charge Q and for the conventional Schwarzschild case Q ¼ 0.
For Q< 0 the Hawking temperature reaches a maximum at
rþ ¼ rmax � ½ð�2 � 1ÞjQj�1=�.

4The choice M< 0 is problematic in GR where (i) it leads to
naked singularities; (ii) it violates the null energy condition
T��k

�k� � 0 (being k� a future-pointing null vector field),
which holds for the matter stress tensor [21] and implies the
positivity of the ADM mass. Neither of the arguments exist in
massive gravity: (i) at short distance the repulsion changes to
attraction, which creates the event horizon; (ii) the stress-energy
tensor of the scalar fields T�

�� does not satisfy the null energy
condition, allowing for negative mass states to be constructed,
e.g., as in the ghost condensate model [22].
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conditions ðTðrBÞ; rBÞ under the assumption that Q is a
conserved quantity in the cavity.

A. The regularization procedure

A priori, the Euclidean action (1) may present an inte-
gration problem at r ¼ rþ and another at r ! 1. The
former is solved as usual by assigning the period H to t,
as in such a case the metric (14) extends smoothly onto the
event horizon. The latter is instead more cumbersome. To
regularize it [19], we perform the integration from r ¼ rþ
up to the infrared cutoff r ¼ rB, we subtract off the action
of the vacuum flat space (2),5 and finally we send rB to
infinity. In this way the Euclidean action is regularized and
defined as in Eq. (6).

Notice that in a spherical cavity of finite volume the
on-shell action (with the metric regularized at r ¼ rþ) is
always finite and, in addition, the thermodynamic stability
is guaranteed [19]. Hence, as long rB is finite, in principle
there is no need to subtract any background to make the
action finite. Instead, this procedure is necessary to have no
divergent thermodynamical properties when the limit
rB ! 1 is taken. Then, in view of this limit, we apply
the regularization procedure as a first step to analyze black
hole thermodynamics.

B. The regularized action for hairy black holes

An apparent ambiguity may arise in the procedure to
regularize the action (1): since the subtracted background
(2) is regular everywhere, it does not require any specific
periodicity of the time coordinate. However, black hole and
background metrics have to match at the boundary surface
r ¼ rB. Thus, the time periodicity of the background has
to be

 ¼ TðrBÞ�1; (18)

where TðrBÞ�1 ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðrBÞ

p
as in Eq. (17).

Once the action (1) has been regularized, the evaluation
of IE for the black hole solution (14) with radial integration
rþ 	 r 	 rB is straightforward. Indeed, as the metric (14)
and F of Eq. (13) are stationary, the time integration in IE
just gives rise to a multiplicative factor . Moreover, the
integration on the other variables can be performed in a
closed manner. The regularized (quasilocal) action of the
black hole then results to be

IE ¼ EBY � 1

4
ABH; (19)

with

A�4�r2þ;

EBY ¼ rB½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðrBÞ

q
�¼ 1

8�

Z
B�t

d2x
ffiffiffiffi
�

p ðk�k0Þ; (20)

where k is the trace of the extrinsic curvature of the two-
boundaryB�t � @Mjt¼�t,� is the induced metric onB�t and
k0 refers to the extrinsic curvature of B�t embedded in the
vacuum space (2).
The last equality in Eq. (20) shows explicitly that EBY is

the Brown-York quasilocal energy [24], corresponding to
the Hamiltonian that generates the time translation at the
two-boundary B�t. For this reason we can interpret EBY in
Eq. (19) as the energy of the black hole.6 On the other
hand, plugging Eq. (14) in Eq. (20) reads

M ¼ EBY � E2
BY

2rB
� Q

2r��1
B

; (21)

showing that the ADM mass M is the total energy of the
black hole in the limit rB ! 1. For this reason, when we
send the cavity surface to infinity, the regularized on-shell
action is given by

IE ¼ HM� 1

4
ABH; (22)

which still vanishes when the event horizon goes to zero as
it reproduces the action of the subtracted vacuum space-
time.7 A detailed discussion about the finite energy of the
black hole solutions (14) can be found in Ref. [25].

V. THERMODYNAMICS AND
PHASE TRANSITIONS

Equation (17) evaluated at r ¼ rB produces a function
of the ADM mass M in terms of the parameters of the
ensemble, rB, andQ. Depending on the particular values
of these parameters, there can exist zero, one, or multiple
black hole solutions that are allowed inside the cavity.
When several configurations are permitted, phase transi-
tions may occur. In the present section we analyze this
issue under the hypothesis that the scalar charge is con-
served inside the cavity (for considerations without this
assumption see Sec. VI).

A. The phases

In order to determine the number of black hole solutions
allowed inside a cavity containing a given scalar charge,
we work out the temperature at the boundary, �1, as a
function of rþ for fixed Q. This can be done by taking
Eq. (17):

�ðx;QÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q

x��1
1�x��1

1�x

q
1þ ð�� 1ÞQ

x�

; (23)

5Of course, this subtracted background is not R4 but S1 � R3

since the periodicity of time is maintained.

6Remind that by construction EBY ¼ 0 for the vacuum space-
time (2).

7Of course, this conclusion is correct just forM> 0, as we are
assuming.
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where x � rþ=rB, Q � Q=r�B, and � � =4�rB.
Observe that � positivity is guaranteed for Q> 0 and is
equivalent to require Eq. (15) for Q< 0.

The plot of �ðx;QÞ is presented in Fig. 2 for specific
values ofQ. The curves are obtained for a certain � but the
general features of the solution are independent of this
choice.

For the case Q> 0 (right panel of Fig. 2) the function
�ðx;QÞ exhibits a simple behavior: if � is below a certain
value �max, two black hole configurations with the same Q
are allowed; otherwise, no black hole (with the assumed
scalar charge) is permitted. Moreover, the value of �max

gets larger as Q decreases and it is bounded by the relation
�max	2=

ffiffiffiffiffiffi
27

p
where the equality occurs for Schwarzschild

black holes.
For the case Q< 0 (left panel of Fig. 2) � exhibits three

different qualitative behaviors. For jQj> jQcritj (with
Qcrit < 0 quantified later) at each temperature there is
one single solution. In particular, the event horizon of the
black hole grows as the temperature and reaches the
boundary only when � ¼ 0. For jQj< jQcritj there is an
interval of temperatures outside which � behaves as in the
previous case, i.e. only large (nearly extremal) black holes
exist at very high (very low) temperature. Instead, for �
within this interval, three black hole configurations are
allowed. These three solutions approach the same event
horizon for jQj ! jQcritj� and for this reason jQcritj can
be defined as the value of Q at which the extrema of �,
located at @ �=@x ¼ 0, coincide. For instance, when � ¼ 2
it turns out to be (see the Appendix for details)

jQcritj ¼ 1

9þ 4
ffiffiffi
5

p : (24)

B. The local stability

The local stability in the saddle point approximation is
related to the convergence of the integral in the on-shell
partition function [26], as we briefly review now.

The on-shell partition function Z can be expressed as

Z ¼
Z

dEe�IðEÞ ¼
Z

dE�ðEÞe�E; (25)

where �ðEÞ is the density of classical states with energy E.
Applying the saddle point approximation, which consists
in expanding the action up to quadratic order around the
stationary points Estat, the integration in Eq. (25) can be
evaluated and the result is finite only if �2IjEstat

> 0. On the

other hand, in the saddle point approximation the energy
and heat capacity can be approximated as hEi � �@ lnZ=
@ � Estat and C � @hEi=@�1 � @Estat=@

�1 and,
finally, it turns out to be

C � 2ð�2IjEstat
Þ�1: (26)

Consequently, since a configuration of a thermodynamic
system is locally stable when its heat capacity is positive,
one concludes that the convergence of the integral in the
partition function is equivalent to the thermal stability of
the system [26].
From this argument we can infer the stability property of

the configurations depicted in Fig. 2. In fact, negative
(positive) slopes of the isocharge curves �ðxÞ are equiva-
lent to positive (negative) heat capacity. Thus, for the case
Q> 0 (right panel of Fig. 2), when two black hole solu-
tions are allowed at a given temperature, the smallest is
thermodynamically unstable and the largest is stable.
Instead, for Q< 0 (left panel of Fig. 2), when three black
holes configurations with the same � and Q are possible,
the smallest and largest are stable while the intermediate is
unstable. This unstable solution thus corresponds to a
maximum of the Euclidean action whose value is associ-
ated to the tunnelling rate between the two stable configu-
rations [27].
Therefore, the result presented in Fig. 2 might have

striking implications for cosmology. By taking rþ 
 rB
we expect to mimic the black hole conditions in the present
Universe, since the Universe is much larger than any event
horizon radius. In such a case Fig. 2 shows that black holes

Q0 Qcrit

Qcrit

Q1 Qcrit

Q0

Qcrit

Q1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x x

Q 0

Q3 0

Q4 Q3

Q3

Q4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 2. Left panel: � as a function of the event horizon for negative scalar charges. Depending on the value of the scalar charge, the
number of solutions is one or three. Right panel: � as a function of the event horizon for positive scalar charge. Depending on the value
of �, there exist two or no solutions. Negative slopes correspond to thermally stable states.
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with Q � 0 have high temperature and tend to evaporate.
Their relic abundance is then constrained by the usual
astrophysical bounds valid for radiating black holes [28].
On the contrary, black holes withQ< 0 are cold long-lived
configurations, which in general are poorly constrained and
may be plausible dark matter candidates [28]. Of course,
the discovery of such stable objects would be an important
finding in favor of massive gravity. Moreover, even though
massive gravity can qualitatively explain either dark en-
ergy and dark matter by tuning the gravitational force at
long and intermediate distances [29], the presence of black
hole energy density might be a fundamental ingredient to
fit the data. As a last remark, we highlight that for locally
stable black hole configurations, the action IE fulfills the
three requirements of Sec. II. Thus, for such configurations
Z can be interpreted as the partition function of the system.
From Eq. (22) one can therefore compute thermodynam-
ical quantities as, for instance, the entropy:

S ¼ 

�
@IE
@

�
� IE ¼ 1

4
ABH; (27)

which is the usual Bekenstein-Hawking formula [14] and
agrees with the result found in Ref. [13] by means of
Wald’s formula [30]. Hence, the Euclidean action reduces
to the free energy in the semiclassical approximation, i.e.
IE ¼ F with F ¼ M� THS, so that the first law of black
hole thermodynamics is recovered by requiring F to have a
minimum. Moreover, as demonstrated in Ref. [31] for

static spherically symmetric gravitational systems, the
thermal energy is identical to the quasilocal energy:

E BY ¼ hEi ¼ @IE
@

: (28)

C. Global stability, phase structure,
and critical behavior

In the previous section we have determined when the
black hole solutions (14) are locally stable. In particular,
we found that under certain conditions multiple locally
stable solutions are allowed. However, for some fixed
values of Q and , only one of these solutions can be
globally stable (i.e. it corresponds to the global minimum
of IE) while the others have to be metastable (i.e. they are
local but not global minima of IE).
In order to make manifest the phase structure of the

black hole solutions (14), we analyze IE as a function of
temperature for a fixed Q. The result is shown in Figs. 3
and 4, respectively, for negative and positive scalar charge.
To read off the information the figures contain, it can be
useful to take into account also Fig. 2. When Q is negative
and jQj � jQcritj (top right and bottom panels of Fig. 3),
there is only one solution independently of the specific
temperature, as we already inferred from Fig. 2. Instead,
when Q is negative but jQj< jQcritj (top left panel of
Fig. 3), the competition between the black hole phases is
more curious. Starting at very low temperature and then
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FIG. 3. The Euclidean action as a function of � for negative scalar charge in the three relevant cases. The values ofQ are the same as
in Fig. 2.
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heating up the system, we see that at the beginning only
one solution exists. This phase remains globally stable up
to the critical temperature ��1

c ( �c ’ 0:33 in the example
of the Figs. 2 and 3) above which it becomes metastable.
Subsequently, a first order phase transition may occur and,
interestingly, above a certain temperature ( � & 0:17 in the
example) it has to. This property of the phase transition
holds also starting at high temperature and then cooling
down the system.8 Such a phase structure is isomorphic to
the case of Reissner-Nordstrom black hole in AdS [33] and
in a cavity [34] for the canonical ensemble (fixed electric
charge). To test the similarity, we examine in detail the
behavior of our case at Q ¼ Qcrit near the critical tem-
perature Tc ¼ ��1

c . The entropy and the heat capacity
scale as (see the Appendix for details)

S� Sc / ðT � TcÞ1=3; (29)

C / ðT � TcÞ�2=3; (30)

implying that there is a second order phase transition at the
critical temperature Tc. The value of the critical exponent
of the heat capacity has thus the same value as for Reissner-
Nordstrom black holes in AdS, dS, and flat space in a
cavity at fixed electric charge [33–35]. Such a universal
behavior is remarkable, knowing that the Euclidean action
is different.

In some sense, the phase structure for Q< 0 and
jQj< jQcritj looks like the one for Q ¼ 0 (left panel of
Fig. 4) apart from two main differences: (i) at high tem-
perature the allowed phase is not a black hole solution but
the vacuum spacetime (2) (dashed line in the figure);
(ii) starting at low temperatures and then heating up the
system, the first order phase transition (possible at � & 0:3
in the figure) is not always guaranteed since the vacuum

phase is allowed at high temperature.9 Instead, for Q> 0
(right panel of Fig. 4) the phase structure is different: no
phase is allowed at low temperature ( �> �max ’ 0:38 in
the example). A possible explanation of this result might be
that at low temperature the existing phase is a state that has
scalar charge and no event horizon. This could perfectly be
a star with low free energy [11,12], which could not
emerge from our analysis. On the other hand, one might
guess that this peculiarity arises because we are assuming
that Q is conserved. In the next section, we assume other
boundary conditions where the scalar charge is allowed to
vary inside the cavity.

VI. OTHER BOUNDARY CONDITIONS

In principle, one can assume the scalar charge not to be
conserved inside the cavity. In such a case the phase
evolution is no longer constrained by the initial value of
Q but by the value of �, the scalar-charge ‘‘potential’’ at
the surface of the cavity. In this ensemble it is straightfor-
ward to see that the Euclidean action compatible with the
regularity condition (17) is given by

IE ¼ ðEBY þ�QÞ � 1

4
ABH; (31)

where

� ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðrBÞ

p ½r1��þ � r1��
B �: (32)

One may prove that the present ensemble is always domi-
nated by a configuration with a negative heat capacity and
is therefore ill-defined, as we shortly see now.
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FIG. 4. The Euclidean action as a function of � in the case Q ¼ 0 (left panel) and Q> 0 (right panel). The solid and dashed lines
correspond to a black hole and vacuum phase, respectively.

8This feature might have interesting applications, as for in-
stance in Randall-Sundrum or QCD models, which typically
suffer from a too long-lived metastable phase [32].

9Although the presence of the scalar fields, such a phase
structure is very similar to the one arising in GR for
Schwarzschild black holes enclosed in a cavity [19] and
Schwarzschild-AdS black holes [16].
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By combining Eqs. (18) and (32),  can be expressed as function of rþ and �. This relation can be more conveniently
rewritten as

� ¼ x2þ�ð1� x��1Þ2 ��
x2ð�1þ �Þ � 2x1þ�ð�1þ �Þ � x3� ��2 þ x2�ð�1þ �þ ��2 þ ð�1þ xÞ� ��2Þ ; (33)

where x � rþ=rB, � � =4�rB, and �� � 2�r��1
B . The

behavior of the solution is plotted in Fig. 5 (solid lines) for
several values of �. The scalar charge changes along the
curve and it is positive (negative) when the solution is
below (above) the dashed line. The radius at which this
cross occurs is marked as xschw in Fig. 5 (top panels, the left
plot being for ��< ��c and the right one for ��> ��c).
Furthermore, when ��> ��c, the black hole event horizon
radius is bounded from above by the extremal case limit
and can never reach the spherical cavity (see the Appendix
for some analytic results).

The behavior of � described above seems problematic
since the positiveness of the heat capacity depends on the
sign of the slope of �. For a positive slope, as in the case
here, the heat capacity is negative. As we have discussed in
Sec. VB, this necessarily implies a divergent integral for
the partition function, i.e. the partition function in the
saddle point approximation is not well-defined and pro-
duces an imaginary result. This may be interpreted as the
effect of an unidentified metastable phase. However, the

present framework does not offer an unambiguous
description and such interpretation should be taken with
precaution.

VII. CONCLUSIONS

Lorentz breaking massive gravity is an interesting theory
that may explain the recent acceleration of the Universe
without invoking dark energy. It also provides peculiar
black hole solutions due to the presence of hair parameters
that modifies the standard gravitational potential. In this
theory the analog of the Schwarzschild black hole—the
asymptotically flat spherically symmetric solution—
depends on two parameters: the mass and the ‘‘scalar
charge’’ (characterizing the hair strength). In this paper
we have analyzed equilibrium states and phase structures
of such a solution enclosed in a spherical surface kept at a
fixed temperature.
We have proven that when the scalar charge inside the

cavity is not conserved, the ensemble is ill-defined. On the

xSchw

Q 0

Q 0

Q 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

x

xSchw

E
X

T
R

E
M

A
L

 L
IM

IT

Q 0

Q 0

Q 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

x

c

1

2

34

Q 0

1 2 c 3 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

FIG. 5 (color online). Top left panel: � as a function of the event horizon for a particular value of ��< ��c. At x ¼ xSchw the scalar
charge of the solution changes of sign. Top right panel: � as a function of the event horizon for a value of ��> ��c. The black hole
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no event horizon. Bottom panel: � as a function of the event horizon for different values of ��.
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contrary, when the scalar charge is held fixed, the saddle
point approximation can be applied to obtain the partition
function Z ¼ e�IE , where IE is the regularized on-shell
Euclidean action. With that formalism, we were able to
study the black hole thermodynamics and phase struc-
ture. In particular, the black hole entropy follows the
Bekenstein-Hawking formula.

Depending on the value of the scalar chargeQ contained
in the cavity, the phase structure presents completely dif-
ferent behaviors that can be summarized as follows (being
Qcrit a critical value of the scalar charge):

(i) Q> 0: Above a certain temperature there exist two
black hole solutions with different event horizon
radii. The smaller black hole is unstable while the
larger is globally stable and describes the phase
present in the cavity. Below that temperature we do
not find any solution with event horizon, probably
because the analysis is not suitable for this phase.

(ii) Q ¼ 0: Below a certain temperature no black hole
solution exists and the phase consists of the usual
globally flat background of massive gravity. Above
that temperature the previous phase competes with a
new phase consisting of a large black hole.

(iii) Qcrit <Q< 0: There is an interval of temperatures
where there are three black holes solutions with
different sizes of event horizon. The smallest and
the largest are locally stable and therefore corre-
spond to local minima of the free energy, but the
intermediate is unstable as it corresponds to a
maximum of the free energy. Hence, a tunnelling
between the two stable phases may occur and this
first order phase transition is forced to happen when
the temperature crosses the whole interval.

(iv) Q ¼ Qcrit: Only one black hole solution is allowed
at each temperature. At a certain temperature a
second-order phase transition happens and at this
moment the critical exponent of the heat capacity
is �2=3.

(v) Q<Qcrit: There is a single (both globally and
locally) stable black hole at every temperature.

Further investigations on the cases with negative Q
are worthwhile. Indeed, their isomorphism to Reissner-
Nordstrom black holes in AdS, dS, and flat space in the
canonical ensemble [33–35] is peculiar, knowing that their
Euclidean actions are different. Furthermore, at low tem-
perature the globally stable configurations are small cold
black holes. These objects overcome most of the astro-
physical constraints [28] and, in principle, might be the
dark matter candidates of massive gravity. Dedicated dark
matter analyses would be needed to check this possibility
but, as a first step, one should understand whether the black
hole scalar charge is actually conserved (or at least varies
very slow) in nature. In order to address this question one
should probably comprehend the origin of the modified
character of black hole horizons [10,36], which is hard to

understand without a known UV completion of the theory.
However, with the use of the AdS/CFT correspondence one
may attempt to study such problems [37]. In that context,
the study of the phase structure may play an important role
as a valuable test of the AdS/CFT correspondence. Since
the phase structure emerging for AdS boundary conditions
appears as well as for asymptotically de Sitter black holes
and asymptotically flat black holes in cavities [35], one
should expect the CFT side to have a rich variety of phases
(such as deconfinement and confinement) dual to what has
been studied in this paper. Moreover, Lorentz symmetry
violation should arise in the CFT side [38]. Trying to
understand regimes in which Lorentz violation is sizeable
will hopefully allow us to devise the right experimental
tests to decide whether massive gravity is or is not realized
in nature.

ACKNOWLEDGMENTS

Weare grateful to P. Tinyakov for stimulating discussions
and useful advice. The work of F. C. is supported in part by
the IISN, Belgian Science Policy (under Contract No. IAP
V/27) and by the ‘‘Action de Recherche Concertés’’ (ARC),
project ‘‘Beyond Einstein: Fundamental aspects of gravita-
tional interactions.’’

APPENDIX: SOME ANALYTIC RESULTS
FOR � ¼ 2

In this Appendix, we consider the case � ¼ 2. This
particular choice allows us to determine the main feature
of the general case by some analytic calculations. In the
first section of the Appendix we focus on the ensemble
with fixed scalar charge Q ¼ Qcrit, and in the second
section we determine the behavior of � for the ensemble
with fixed scalar charge potential.

1. Case with fixed scalar charge Q

For negative values of the scalar charge, the function �
has two extrema (see left panel of Fig. 2): one maximum
and one minimum. The location of such extrema is ob-
tained by solving the equation

5Q2 þ ð2� 2Q� 3xÞx3 � 6Qxð�1þQþ xÞ ¼ 0:

(A1)

The critical scalar charge is obtained when both extrema
are degenerate, i.e. when the discriminant of the polyno-
mial equation (A1) is vanishing. By performing the explicit
computation, the discriminant of the equation (A1) takes
the form

4 ¼ ��0Q4
X9
n¼3

�nQn; (A2)

where �i are real and positive constants. Therefore, several
values forQ are allowed for a vanishing discriminant (A2).
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However, only one value of Q corresponds to a positive
event horizon radius:

Q crit ¼ 1

�9� 4
ffiffiffi
5

p : (A3)

By replacing the critical value of the scalar charge in
Eq. (A1), we obtain the critical value of the event horizon
radius:

xcrit ¼ 5� 2
ffiffiffi
5

p
: (A4)

By substituting both xcrit and Qcrit in �, we have the
critical inverse temperature

� crit ¼ 5

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
85� 38

ffiffiffi
5

pq
: (A5)

We note that such critical values are similar to the
Reissner-Nordstrom case [35]. At Q ¼ Qcrit, we can ex-
pand � around the critical point xcrit:

�� �crit ¼ 1

3!

@3

@x3

��������x¼xcrit

ðx� xcritÞ3 þ � � � : (A6)

The second derivative of � vanishes, when evaluated at the
critical point. From here, one can very easily obtain the
behavior of the entropy and heat capacity near the critical
temperature:

S� Scrit / ðT � TcritÞ1=3; (A7)

C / ðT � TcritÞ�2=3: (A8)

As we have already mentioned in Sec. VC, the critical
exponent for the heat capacity has the same value�2=3 as
for Reissner-Nordstrom black holes in AdS, dS, and flat
space in a cavity at fixed electric charge [33–35]. This
implies that at the critical value of the scalar charge, we
have a second order phase transition. Moreover, this

conclusion is independent of the value of � since the point
xcrit is a stationary point of inflection as one can see
from Fig. 2.

2. Case with fixed scalar charge potential �

Depending on the value of the scalar charge potential,
we have two qualitatively different behaviors for �:

(i) For 0< ��< ��c ¼ 1: the extremal black hole limit
is not allowed inside the cavity and the event horizon
radius can therefore take all the possible values in-
side the cavity, i.e. 0< x < 1. At some temperature,
the black hole engulfs the cavity.

(ii) For �� � ��c ¼ 1: the black hole event horizon is
bounded from above by the extremal black hole

limit that takes place at x ¼ 1= ��. Therefore, at
very low temperatures the ensemble is dominated
by nearly extremal black holes. In such a case, the
black hole can never reach the cavity wall.

In both situations, depending on the value of the event
horizon radius, we can have positive or negative scalar
charge configurations. The change of sign ofQ takes place at

xschw ¼ � 1

2 ��2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ��2

��4

s
; (A9)

which is the value where the scalar charge vanishes, turning
the hairy black hole into the conventional Schwarzschild
black hole. Positive scalar charge configurations are in the
domain where x < xschw, implying therefore that black holes
with negative scalar charge have x > xschw.
At high temperatures, the ensemble is dominated by

black holes with positive scalar charge. As the temperature
drops, the scalar charge becomes smaller and the event
horizon becomes larger.
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