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We test the stability of various wormholes and black holes supported by a scalar field with a

negative kinetic term. The general axial perturbations and the monopole type of polar perturbations are

considered in the linear approximation. Two classes of objects are considered: (i) wormholes with

flat asymptotic behavior at one end and anti-de Sitter on the other (Minkowski–anti-de Sitter wormholes)

and (ii) regular black holes with asymptotically de Sitter expansion far beyond the horizon (the so-called

black universes). A difficulty in such stability studies is that the effective potential for perturbations forms

an infinite wall at throats, if any. Its regularization is in general possible only by numerical methods, and

such a method is suggested in a general form and used in the present paper. As a result, we have shown

that all configurations under study are unstable under spherically symmetric perturbations, except for a

special class of black universes where the event horizon coincides with the minimum of the area function.

For this stable family, the frequencies of quasinormal modes of axial perturbations are calculated.
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I. INTRODUCTION

Modern observations [1] indicate that the Universe is
expanding with acceleration. The most favored explana-
tion of this acceleration is nowadays that the Universe is
dominated (to about 70%) by some unknown form of
energy density with large negative pressure, termed dark
energy (DE), while the remaining 30% consisting of bar-
yonic and nonbaryonic visible and dark matter. It is often
admitted that DE can be modeled by a self-interacting
scalar field with a potential. Such a field acts as a negative
pressure source; it is called quintessence if its pressure
to density ratio p=� ¼ w>�1 and a phantom field if
w<�1 while w ¼ �1 corresponds to a cosmological
constant �. Since observations admit a range of w includ-
ing w ¼ �1, all sorts of models are under study.

One should note that values w<�1 seem to be not only
admissible but even preferable for describing an increasing
acceleration, as follows from the most recent estimates:
w ¼ �1:10� 0:14 (1�) [2] (according to the 7-year
WMAP data) and w ¼ �1:069þ0:091

�0:092 [3] (mainly from

data on type Ia supernovae from the SNLS3 sample). In
this connection, cosmological models with phantom scalar

fields, i.e., those with a negative kinetic term, have gained
considerable attention in the recent years [4].
If such fields can play an important role in cosmology,

it is natural to expect that they manifest themselves in

local phenomena, for instance, in the existence and prop-

erties of black holes and wormholes [5]. Quite a number of

scalar field configurations of this kind have been described

in the literature, see, e.g., examples of black holes with

scalar fields (the so-called scalar hair) in [6] and worm-

holes supported by scalar fields in [7–9] and references

therein. Thus, in [9] it was shown that, in addition to

wormholes, a phantom scalar can support a regular black

hole where a possible explorer, after crossing the event

horizon, gets into an expanding universe instead of a

singularity. Thus such hypothetical configurations combine

the properties of a wormhole (absence of a center, a regular

minimum of the area function) and a black hole (a Killing

horizon separating R and T regions). Moreover, the

Kantowski-Sachs cosmology that occurs in the T region

is asymptotically isotropic and approaches a de Sitter re-

gime of expansion, which makes such models potentially

viable as models of our accelerating Universe. Such

configurations, termed black universes, were later shown

to exist with other scalar field sources exhibiting a

phantom behavior such as k-essence [10] and some brane

world models [11] (in the latter case, even without a

phantom field).
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Both wormholes and black universes have been shown
to exist as well in models where a scalar field exhibits
phantom properties only in a strong-field region while in
the weak-field region it obeys the canonical field equation
(the so-called trapped-ghost models) [12,13].

To see whether or not such solutions can lead to
viable models of black holes and wormholes, one needs to
check their stability against various perturbations.
Previously, gravitational stability as well as passage of
radiation through wormholes supported by a phantom sca-
lar field were considered, in particular, in [14–18], with a
special emphasis on massless wormholes (see also refer-
ences therein).

In the present paper, we consider the linear stability of
various static, spherically symmetric solutions to the field
equations of general relativity with minimally coupled
scalar fields, describing compact objects of interest
such as asymptotically flat and AdS wormholes (M-AdS
wormholes, for short, where M stands for ‘‘Minkowski’’)
and black universes (in other words, M-dS regular black
holes), and use as examples solutions obtained in [9].
We show that M-AdS wormholes are unstable in the
whole range of the parameters while among black uni-
verses there is a stable subfamily which corresponds to
the event horizon located precisely at the minimum of the
area function.

The particular solutions whose stability is studied here
are certainly not general. A more comprehensive study is
prevented by the fact that a sufficiently general solution
describing self-gravitating scalar fields with nonzero poten-
tials is unknown, therefore it seems to be a natural decision to
study the properties of known special solutions. On the other
hand, in [9] all possible regular static, spherically symmetric
solutions to the field equations were classified for phantom
minimally coupled scalar fields with arbitrary potentials.
One can see that the solution studied here, being certainly
special, still represents a very simple but quite typical
example reproducing the generic features of such configura-
tions with flat, dS and AdS asymptotics; its other advantage
is that it reproduces as a special case the well-known
Ellis wormhole, for which the stability results are already
known [14–16].

The paper is organized as follows. Section II presents the
backgrounds to be considered. Section III develops a gen-
eral formalism for axial gravitational and Maxwell field
perturbations in a static, spherically symmetric back-
ground. Section IV is devoted to polar spherically sym-
metric perturbations. Section V discusses the stability of
the black universes and wormholes under consideration
and analyzes the quasinormal radiation spectrum for the
cases where the background configuration is linearly sta-
ble. In addition, we then develop a numerical tool for
reducing the wavelike equation with a singular potential
to the one with a regular potential. In Sec. VI we summa-
rize the results and mention some open problems.

II. STATIC BACKGROUND CONFIGURATIONS

Let us consider Lagrangians of the form

L ¼ ffiffiffiffiffiffiffi�g
p ðRþ �g���;��;� � 2Vð�Þ � F��F

��Þ; (1)

which includes a scalar field, in general, with some poten-
tial Vð�Þ, and an electromagnetic field F��; � ¼ �1 dis-

tinguishes normal, canonical scalar fields (� ¼ þ1) and
phantom fields (� ¼ �1). In what follows, we present a
perturbation analysis for static, spherically symmetric solu-
tions for this general type of Lagrangian and then study the
stability of some particular (electrically neutral) solutions.
The general static, spherically symmetric metric can be

written in the form

ds2 ¼ AðrÞdt2 � AðrÞ�1dr2 � RðrÞ2d�2; (2)

where d�2 ¼ d	2 þ sin2	d’2 is the linear element on a
unit sphere.
We will consider the following static background [9]:

RðrÞ ¼ ðr2 þ b2Þ1=2; b ¼ const> 0;

AðrÞ ¼ ðr2 þ b2Þ
�

�
c

b2
þ 1

b2 þ r2
þ 3m

b3

�
br

b2 þ r2
þ tan�1 r

b

��
;

� ¼ ffiffiffi
2

p
tan�1ðr=bÞ: (3)

It is a solution to the Einstein-scalar equations that follow
from (1) with F�� � 0 and the potential

Vð�Þ ¼ � c

b2

�
3� 2cos2

�
�ffiffiffi
2

p
��

� 3m

b3

�
3 sin

�ffiffiffi
2

p cos
�ffiffiffi
2

p

þ �ffiffiffi
2

p
�
3� 2cos2

�ffiffiffi
2

p
��

: (4)

The solution behavior is controlled by the scale b and
two integration constants: c that moves the curve BðrÞ �
A=R2 up and down, and m showing the position of the
maximum of BðrÞ. Both RðrÞ and BðrÞ are even functions if
m ¼ 0, otherwise BðrÞ loses this symmetry. Asymptotic
flatness at r ¼ þ1 implies

2bc ¼ �3
m; (5)

where m is the Schwarzschild mass defined in the
usual way.
Under this asymptotic flatness assumption, for m¼c¼0,

we obtain the simplest symmetric configuration, the Ellis
wormhole [7]: A � 1, V � 0. With m< 0, we obtain a
wormhole with an AdS metric at the far end, corresponding
to the cosmological constant Vð�Þjr!�1 ¼ V� < 0. Further
on, such configurations will be referred to as M-AdS worm-
holes (where M stands for Minkowski, the flat asymptotic).
Assumingm> 0, at large negative rwe obtain negativeAðrÞ,
such that jAðrÞj � R2ðrÞ, and a potential tending to V� > 0.
Thus it is a regular black hole with a de Sitter asymptotic
behavior far beyond the horizon, precisely corresponding to
the above description of a black universe.
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In black universe solutions, the horizon radius depends
on both parameters m and b (minRðrÞ ¼ b), which also

plays the role of a scalar charge since�=
ffiffiffi
2

p � 
=2� b=r
at large r. Since Að0Þ ¼ 1þ c, the minimum of RðrÞ,
located at r ¼ 0, occurs in the R region if c >�1, i.e., if
3
m< 2b (it is then a throat, like that in wormholes), right
at the horizon if c ¼ �1 (i.e., 3
m ¼ 2b) and in the T
region beyond it if c <�1, that is, 3
m> 2b. It is then
not a throat, since r is a time coordinate, but a bounce in
one of the scale factors RðrÞ of the Kantowski-Sachs
cosmology; the other scale factor is AðrÞ.

Let us mention that another important case of the
system (1), the one with V � 0, has already been studied
in a number of papers. In this case we are dealing with
Fisher’s famous solution ([19], 1948) for a canonical
massless scalar in general relativity (� ¼ þ1) and three
branches of its counterpart for � ¼ �1, sometimes called
the anti-Fisher solution, found for the first time by
Bergmann and Leipnik [20] in 1957 and repeatedly redis-
covered afterwards (as well as Fisher’s solution). In the
latter case the solution consists of three branches, one
representing wormholes [7,8], the other two also contain-
ing throats but with singularities or horizons of infinite area
at the far end instead of another spatial infinity [8,21]. An
instability of Fisher’s solution under spherically symmetric
perturbations was established long ago [22], a similar
instability of the wormhole branch was discovered in
[14,16] and the same for the other two branches in [23].
The case of zero mass in the anti-Fisher solution represents
the Ellis wormhole and is common with the solution under
study, (3), m ¼ 0.

In what follows, we will assumem � 0 and use the mass
m (which has the dimension of length and is equal to half
the Schwarzschild radius in the units employed) as a
natural length scale, putting, for convenience, j3mj ¼ 1.
Then the constant c is used as a family parameter while b is
found from the relation (5).

We should remark that in all particular examples to be
tested here for stability the background electromagnetic
field is zero, but the general perturbation formalism is
developed in Sec. III for axial perturbations of systems
with nonzero F�� as well. Actually in Sec. IV nonzero F��

is also allowed, simply because the monopole perturba-
tions do not excite an electromagnetic field in a spherically
symmetric background. Perturbations of the electromag-
netic field appear in higher multipoles of polar modes. The
general formalism developed for nonzero F�� is intended

to be used in further studies of systems with both scalar and
electromagnetic fields.

III. LINEAR AXIAL PERTURBATIONS:
GENERAL ANALYSIS

In our analysis of axial perturbations, we use
Chandrasekhar’s notations: x0¼ t, x1¼�, x2 ¼ r, x3¼	,
so that the coordinates along which the background

has Killing vectors are enumerated first. Following
Chandrasekhar [24], we consider the metric (2) as a special
case of the metric

ds2 ¼ e2�dt2 � e2c ðd�� �dt� q2dr� q3d	Þ2
� e2�2dr2 � e2�3d	2: (6)

Thus in (2)

e2� ¼ AðrÞ; e2�2 ¼ A�1ðrÞ;
e2�3 ¼ RðrÞ2; e2c ¼ RðrÞ2sin2	: (7)

The background electromagnetic field is taken in the
form

F02 ¼ �Q�=RðrÞ2; (8)

that is, only a radial electric field, and Q� is the (effective)
charge.
All calculations and results can be easily rewritten for

magnetic fields, with nonzero F13, owing to the Maxwell
field duality. One can bear in mind that configurations like
wormholes and black universes can possess electric or
magnetic fields without any real electric charges or mag-
netic monopoles, due to their geometry, actually realizing
Wheeler’s concept of a ‘‘charge without charge’’.
It is easy to see that axial perturbations of a scalar field

vanish. Then, �, q2 and q3 are perturbed, while c , �2, �3

and � remain unperturbed.
The axial gravitational perturbations obey the equations

�R13 ¼ 0; �R12 ¼ 2Q�R�2F01: (9)

Let us introduce new variables:

Qik ¼ qi;k � qk;i; Qi0 ¼ qi;0 � �;i; (10)

with i, k ¼ 2, 3, and

E � F01 sin	: (11)

Recall that we use the numbers 0, 1, 2, 3 for t, �, r and 	
coordinates, respectively. The Maxwell equations, subject
to only first-order perturbations, have the form

ðecþ�2F12Þ;3 þ ðecþ�3F31Þ;2 ¼ 0; (12)

ðecþ�F01Þ;2 þ ðecþ�2F12Þ;0 ¼ 0; (13)

ðecþ�F01Þ;3 þ ðecþ�3F13Þ;0 ¼ 0; (14)

ðe�2þ�3F01Þ;0 þ ðe�þ�3F12Þ;2
þ ðe�þ�2F13Þ;3 ¼ ecþ�3F02Q02: (15)

After some algebra the Maxwell equations can be writ-
ten in the form

Re��E;0;0 � ðe2�ðRe�EÞ;rÞ;r þ e�

R
sin	

�
E;	

1

sin	

�
;	

¼ �Q�ð�;2;0 � q2;0;0Þsin2	: (16)
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From �R13 ¼ 0 and �R12 ¼ 2Q�R�2F01 it follows

ðe3cþ���2��3Q23Þ;2 �ðe3c��þ�2��3Q03Þ;0 ¼ 0 (17)

and

ðe3cþ���2��3Q23Þ;3 �ðe3c����2þ�3Q02Þ;0
¼ e2cþ�þ�3Q�R�2F01: (18)

After introducing the new function

Q � R2AQ23sin
3	; (19)

Eqs. (17) and (18) can be written in the form

A

R2sin3	

@Q

@r
¼ �;3;0 � q3;0;0; (20)

A

R4sin3	

@Q

@	
¼ ��;2;0 þ q2;0;0 þ 4Q�e�E

R2sin2	
: (21)

Let us differentiate Eq. (20) in r and Eq. (21) in 	 and then
add the results. After some algebra we have

R4 @

@r

�
A

R2

@Q

@r

�
þ sin3	

@

@	

�
1

sin3	

@Q

@	

�
� €QR2e�2�

¼ 4Q�e�Rsin3	
@

@	

�
E

sin2	

�
: (22)

Now let us return to the Maxwell field perturbation
equation (16). Using (21), we can get rid of the term
containing �;2;0 � q2;0;0 in (10). After some algebra and

using the relations E� ei!t, Q� ei!t, we obtain

ðe2�ðRe�EÞ;rÞ;r þ Eð!2Re�� � 4Q2�e�R�3Þ
� e�R�1 sin	

�
E;	

1

sin	

�
;	
¼ � Q�

R4 sin	

@Q

@	
: (23)

The angular variable can be separated by the following
ansatz:

Qðr; 	Þ ¼ QðrÞC�3=2
‘þ2 ð	Þ; (24)

Eðr; 	Þ ¼ EðrÞ
sin	

dC�3=2
‘þ2 ð	Þ
d	

¼ 3EðrÞC�1=2
‘þ1 ð	Þ; (25)

where Cb
a are Gegenbauer polynomials. Eqs. (22) and (23)

then read

�
d

dr

�
�

R4

dQ

dr

�
��2 �

R4
Qþ!2Q ¼ � 4Q��2�e�E

R3
;

(26)

ðe2�ðRe�EÞ;rÞ;r � ð�2 þ 2Þe�R�1E

þ Eð!2Re�� � 4Q2�e�R�3Þ ¼ �Q�QR�4; (27)

where � ¼ R2e2�, �2 ¼ ð‘� 1Þð‘þ 2Þ, and we use the
tortoise coordinate r� defined by d=dr� ¼ �R�2d=dr.
After passing over fromQ and E to the new functionsH1

and H2 using the relations

Q ¼ RH2; Re�E ¼ �H1

2�
; (28)

Eqs. (26) and (27) can be reduced to

�2H2 ¼
�
R;r�r�
R

� 2R2
;r�

R2
��2 �

R4

�
H2 � 2Q���

R5
H1; (29)

�2H1 ¼ �

R4

�
ð�2 þ 2Þ � 4Q2�

R2

�
H1 � 2Q��H2; (30)

where we have introduced the operator

�2 ¼ d2

dr2�
þ!2: (31)

For an electrically neutral background Q� ¼ 0, H1 ¼ 0,
and Eq. (29) reduces to the Schrödinger-like equation

d2H2

dr2�
þ ð!2 � VeffðrÞÞH2 ¼ 0; (32)

with the effective potential

VeffðrÞ ¼ AðrÞ ð‘þ 2Þð‘� 1Þ
R2

þ RðR�1Þ;r�;r� : (33)

As a partial verification of the above relations, we
can check that Eqs. (29) and (30) reproduce some known
special cases. Thus, Eq. (33), obtained here in the
Chandrasekhar approach [24], coincides with Eq. (4.13)
of [25], obtained in the Regge-Wheeler approach. In addi-
tion, Eqs. (29) and (30) coincide with Eqs. (144) and (145),
p. 230 of [24] in the Reissner-Nordström limit, and, as a
result, the potential (33) coincides with the well-known
Regge-Wheeler potential for Schwarzschild black holes.

IV. POLAR PERTURBATIONS

For polar perturbations let us consider the Einstein-
scalar equations following from (1) with F�� ¼ 0

R��þ�@��@������Vð�Þ¼0; �h�þV�¼0;

V��dV=d�;
(34)

where h ¼ r�r� is the d’Alembert operator. In the polar
case we can put � ¼ q2 ¼ q3 ¼ 0, while ��, ��2, ��3,
and �c do not vanish. In addition, we perturb the
scalar field,

�ðr; tÞ ¼ �ðrÞ þ ��ðr; tÞ:
Let us restrict ourselves to the lowest frequency modes,
corresponding to spherically symmetric (or radial)
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perturbations, ‘ ¼ 0. This gives �c ¼ ��3. Then we can
use the gauge freedom and fix1

�c ¼ ��3 � 0 ) �Rðr; tÞ ¼ 0: (35)

Tedious calculations allow us to reduce the perturbation
equations to a single wave equation

e�2�2�2�� €�� ��00 � ��0ð�0 � 2�0
3 þ�0

2Þ þU�� ¼ 0;

(36)

where

U � e�2�2

�
�ðe2�3 � VÞ ð�

0Þ2
ð�0

3Þ2
� 2�0

�0
3

V;� þ �V;��

�
: (37)

Introducing the new function � by putting

�� ¼ �e�3þi!t; (38)

we bring the wave equation to the Schrödinger-like form

d2�

dr2�
þ ð!2 � Veffðr�ÞÞ� ¼ 0; (39)

with the effective potential

Veff ¼ Uþ 1

R

d2R

dr2�
; (40)

U

A
¼ ��02

R02 ðR2V � 1Þ þ 2�0RV;�

R0 þ �V;�;�: (41)

V. STABILITYANALYSIS

A. Methods

Finite potentials.—If the effective potential Veff is finite
and positive-definite, the differential operator

W ¼ � d2

dr2�
þ Veff (42)

is a positive self-adjoint operator in L2ðr�; dr�Þ, the space
of functions satisfying proper boundary conditions. Then
W has no negative eigenvalues, in other words, there are no
normalizable solutions to the corresponding Schrödinger
equation with well-behaved initial data (smooth data on a
compact support) that grow with time, and the system
under study is then stable under this particular form of
perturbations. Therefore, in our stability studies, our main
concern will be regions where the effective potentials

are negative since possible instabilities are indicated by
such regions.
The response of a stable black hole or wormhole to

external perturbations is dominated at late times by a set
of damped oscillations, called quasinormal modes
(QNMs). Quasinormal frequencies do not depend on the
way of their excitation but are completely determined by
the parameters of the configuration itself. Thus quasinor-
mal modes form a characteristic spectrum of proper oscil-
lations of a black hole or a wormhole and could be called
their ‘‘fingerprints’’. Apart from black hole physics, QNMs
are studied in such areas as gauge/gravity correspondence,
gravitational wave astronomy [26,27] and cosmology [28].
The quasinormal boundary conditions for black hole

perturbations imply pure incoming waves at the horizon
and pure outgoing waves at spatial infinity. For asymptoti-
cally flat solutions, the quasinormal boundary conditions are

� / e�i!r� ; r� ! �1: (43)

The proper oscillation frequencies correspond in a sense
to a ‘‘momentary perturbation’’, that is, to the situation
where one looks at a response of the system (say, a worm-
hole) to initial perturbation when the source of the pertur-
bation stopped to act. This is the essence of the word
‘‘proper’’. Thus, in the wormhole case, no incoming waves
are allowed coming from either of the infinities. The issue of
the boundary conditions for quasinormal modes of worm-
holes is not completely new and was considered in [29].
Therefore, for wormholes the condition ‘‘pure incoming

waves at the horizon’’ is replaced with ‘‘pure outgoing
waves at the other spatial infinity’’ [29,30]. For asymptoti-
cally anti-de Sitter black holes or wormholes, the AdS
boundary creates an effective confining box [26], so that
on the AdS boundary one usually requires the Dirichlet
boundary conditions

� ! 0; r� ! 1: (44)

This choice is not only dictated by the asymptotic of the
wave equation at infinity but is also consistent with the
limit of purely AdS space-time: the QNMs of an AdS black
hole approach the normal modes of empty AdS space-time
in the limit of a vanishing black hole radius [31]. Thus
quasinormal modes of a compact object (a black hole or
wormhole) in AdS space-time look like normal modes of
empty AdS space-time ‘‘perturbed’’ by the compact object.
If the effective potential is negative in some region,

growing quasinormal modes can appear in the spectrum,
indicating an instability of the system under such pertur-
bations. It turns out that some potentials with a negative
gap still do not imply instability. If there are no growing
quasinormal modes in the black hole or wormhole spec-
trum, this object is stable against linear perturbations.
Singular potentials and their regularization.—It can be

seen from (40) (provided that VR2 < 1) that the effective
potential Veff for radial perturbations forms an infinite wall

1See more details on gauges and gauge-invariant perturbations
in [14,23]. The present notations are related to those in [23] as
follows:

r � u; � � �; RðrÞ � rðuÞ;
�2 � �; �3 � �:
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located at a throat, with the generic behavior Veff�
ðr� rthroatÞ�2, since we have there R0ðrÞ � r� rthroat. As
a result, perturbations are independent at different sides of
the throat, necessarily turn to zero at the throat itself, and
we thus lose part of the information on their possible
properties. To remove the divergence, one can use a
method on the basis of S deformations as described in
[32,33] for solutions with arbitrary potentials Vð�Þ. For
anti-Fisher wormholes (Vð�Þ � 0) it was applied in [14].

If the scalar potential Vð�Þ is zero, the effective poten-
tial (40) takes the form

VeffðrÞ ¼ A

R2
� A2R02

R2
� �A�02

R02 : (45)

In this case the general static solution (! ¼ 0) to
Eq. (39) is

�0ðrÞ ¼ C1R

�
1� �AR�02

A0R0

�

þ C2

R

�
�

A0 �
�AR�03

A02R0

�
�

�0 �
2A

A0

��
; (46)

and its special cases with C1 ¼ 0 and C2 ¼ 0 were used in
[14,23] to remove the divergence in Veff . Indeed, we can
introduce the new wave function

�� ¼ S�� d�

dr�
; where S ¼ 1

�0

d�0

dr�
; (47)

which satisfies the equation

d2 ��

dr2�
þ ð!2 � �Veffðr�ÞÞ �� ¼ 0 (48)

with the effective potential

V eff ¼ 2S2 � Veff ; (49)

and the new effective potential is everywhere regular if
either C1 ¼ 0 or C2 ¼ 0. This transformation was used to
prove the instability of anti-Fisher wormholes [14] and
other anti-Fisher solutions [23],
It turns out that C1 and C2 can be both nonzero, leading

to regularized effective potentials with the same quasi-
normal spectrum, though not preserving the symmetry
� $ ��. This means that we can fix the boundary con-
ditions arbitrarily and, if we find a ‘‘good’’ static solution,
we can use it to remove the singularity of the effective
potential.
For nonzero scalar potentials Vð�Þ, analytical expres-

sions for static perturbations are unknown. Therefore, such
suitable solutions must be found numerically under proper
boundary conditions.
First we notice that since �0 is a static solution to

Eq. (39), S satisfies the Riccati equation

dS

dr�
þ S2 � Veff ¼ 0: (50)

Substituting (40) into (50), we find an expansion for S near
the throat as [23]

SðrÞ ¼ � 1þ c

r
� 4c2

3m
2
þ 4c2ð4c2 þ ð1þ cÞ
2Þ

9m2ð1þ cÞ
4
r

þ Kr2 þ . . . ; (51)

where K is an arbitrary constant.
With this expression we find the boundary condition

for the function SðrÞ at some points close to the throat on
both sides. Then we integrate (50) numerically and find
SðrÞ between the throat and both asymptotical regions.
Having SðrÞ at hand, we find the regularized effective
potential (49); it is finite at the throat due to (51).
We assigned different values to the free constant K. As a

rule, we were able to integrate Eq. (50) numerically in a
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V eff r

FIG. 1 (color online). Effective potentials for spherically symmetric perturbations of M-AdS wormholes with m ¼ �1=3, c ¼ 0:3
(red), c ¼ 0:5 (green), c ¼ 0:8 (blue) with divergences at the throat (left panel) and the corresponding regular ones found numerically
(right panel). Larger values of c correspond to larger absolute values of Veff at the AdS boundary (they are positive for divergent
potentials and negative for regular ones).
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sufficiently wide range of r near the throat. The regularized
effective potentials obtained in this way always lead to the
same growth rate of the perturbation function. However,
for some particular values of K, the numerical integration
with the Wolfram MATHEMATICA built-in function encoun-
ters a growing numerical error. Apparently, in these cases
some alternative methods of integration should be used.

In addition, we used the same method to find numeri-
cally the regularized potential for the Branch B anti-Fisher
solution whose stability properties had been studied pre-
viously [23]. Although the numerically found potential
differs from Eq. (68) of [23], the time-domain profile again
shows the same growth rate. This confirms the correctness
of the method suggested and used here.

B. M-AdS wormholes with negative mass

Polar perturbations.—Now we are in a position to apply
the above method to the special case of M-AdS wormholes
(3) withm< 0, which are asymptotically AdS as r ! �1.
In Fig. 1 one can see that although the initial (singular)
effective potentials Veff are positive-definite, the regular-
ized potentials Veff are negative in some range around the
throat and at the AdS boundary. This behavior usually
indicates an instability but does not guarantee it [34].
Therefore, to prove the instability of M-AdS wormholes,
we have used the time-domain integration method pro-
posed by Gundlach et al. [35] and later used by a number
of authors (see, e.g., [36]). The method shows a conver-
gence of the time-domain profile with diminishing the
integration grid and increasing the precision of all compu-
tations. We imposed the Dirichlet boundary conditions at
the AdS boundary, as described in [37]. Figure 2 shows
examples of time-domain profiles for the evolution of
perturbations. The growth of the signal allows us to con-
clude that such wormholes are unstable against radial
perturbations. At larger c we found the regularized poten-
tial with deeper negative wells and observed a quicker

growth of the signal. Therefore we conclude that all such
M-AdS wormholes are unstable.
Axial perturbations.—The effective potentials Veff for

axial perturbations of M-AdS wormholes Veff are plotted in
Fig. 3. One can see that above some threshold value of c,
VeffðrÞ has a negative gap. This threshold value of c is
c � 1:737 in units for which m ¼ �1=3. A further in-
crease of c makes the negative gap deeper, however,
time-domain profiles for the evolution of axial perturba-
tions show a decay of the signal without any indication of
instability (see Fig. 4).

C. Black universes

Polar perturbations.—Black universes correspond to the
metric (2) and (3) with m> 0, c < 0. Black universes with
c � �1, or equivalently 3
m 	 2b, have no throat in the
static region. From Fig. 5 one can see that for c ¼ �1 the
effective potential has a negative gap, however, time-
domain integration proves that in this case the black uni-
verse is stable. For smaller values of c, an additional

1 2 3 4 5
t

0.005

0.010

0.050

0.100

0.500

1.000

FIG. 2 (color online). Time-domain evolution of spherically
symmetric perturbations of M-AdS wormholes with m ¼ �1=3,
c ¼ 0:5 (green, bottom), and c ¼ 0:8 (red, top).
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FIG. 3 (color online). Effective potential as a function of the radial coordinate r (left figure) and of the tortoise coordinate r� (right
figure) for axial gravitational perturbations of M-AdS wormholes with m ¼ �1=3 for ‘ ¼ 2, c ¼ 0:8 (no negative gap), 1.0, 1.8 (a
negative gap), 2.2 (a deep negative gap).
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negative gap appears between the peak and the horizon,
leading to an instability even for c ¼ �1:001. For large
negative c the potential peak disappears, and the potential
becomes negative everywhere (see Fig. 6), which inevita-
bly creates an instability.

At c >�1 the throat r ¼ 0 is in the static region. In this
case we numerically find the regularized effective poten-
tials which have large negative gaps leading to instabilities
(see Figs. 7 and 8). As c approaches zero, the growth rate of
time-domain profile decreases, still remaining positive
because the effective potential remains negative in a wide
region near the throat (Fig. 7).

As jcj grows the negative gap becomes deeper and
narrower, giving way to a small positive hill, which be-
comes broader (see Fig. 8) as c approaches �1. However,
we do not observe a decrease in the growth rate as expected
when approaching the parametric region of stability near
c ¼ �1. This can be an indication that the only parameter
for which a black universe can be stable is c ¼ �1.
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FIG. 4 (color online). Time-domain profiles of the evolution of axial (‘ ¼ 2) perturbations of M-AdS wormholes (m ¼ �1=3) with
c ¼ 1 (left) and c ¼ 5 (right).
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FIG. 5 (color online). Left panel: Effective potentials for radial perturbations of a black universe with ‘ ¼ 0,m ¼ 1=3, c ¼ �1 (red,
top), c ¼ �1:001 (green), c ¼ �1:01 (blue, bottom). The potentials vanish at the horizon. Right panel: time-domain perturbation
evolution for c ¼ �1 (red, stable), and c ¼ �1:001 (green, unstable).
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FIG. 6 (color online). Effective potential for radial perturba-
tions of a black universe with ‘ ¼ 0, m ¼ 1=3, c ¼ �1:5 (red,
top), c ¼ �2 (green), c ¼ �3 (blue, bottom). The potentials
vanish at the horizon.
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FIG. 7 (color online). Regularized effective potentials (left panel, top to bottom) and time-domain profiles (right panel, bottom to
top) for radial perturbations of a black universe with ‘ ¼ 0, m ¼ 1=3, c ¼ �0:1 (red), �0:2 (green), �0:3 (blue).
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FIG. 8 (color online). Regularized effective potentials (left panel) and time-domain profiles (right panel) for radial perturbations of a
black universe with ‘ ¼ 0, m ¼ 1=3, c ¼ �0:90 (blue),�0:95 (green), �0:99 (red). Larger negative values of c correspond to deeper
negative gaps and later growing phase of the signal.
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FIG. 9 (color online). The effective potential (left panel) and the time-domain profile (right panel) for axial gravitational
perturbations of black universes for ‘ ¼ 2, m ¼ 1=3, c ¼ �1. The potential vanishes at the horizon r ¼ 0.
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Axial perturbations and quasinormal oscillation fre-
quencies.—From Fig. 9 we can see that in the static region
the effective potential is positive-definite. Therefore, if we
perturb a black hole ‘‘on the right’’ of the event horizon
(Fig. 9), such perturbations are stable. Beyond the event
horizon, in the cosmological region, the effective potential
can take large negative values, but this has no effect on
perturbations propagating outside the horizon. We there-
fore conclude that the black universes under consideration
are stable against axial perturbations in the static region.

As we have shown, black universes at c ¼ �1
(b ¼ 3
m=2) are stable against polar monopole perturba-
tions, and their response to external perturbations is domi-
nated at late times by the quasinormal (QN) frequencies.
Supposing � / e�i!t, quasinormal modes can be written
in the form

! ¼ !Re � i!Im;

where a positive !Im is proportional to the decay rate of a
damped QN mode. The low-lying axial QN frequencies
have the smallest decay rates in the spectrum and thus
dominate in a signal at sufficiently late times. They can
be calculated with the help of the WKB approach [38,39].

Introducing Q ¼ !2 � Veff , the sixth order WKB
formula reads

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

q � X6
k¼2

�k ¼ nþ 1

2
; n ¼ 0; 1; 2 . . . ; (52)

where the correction terms �k were obtained in [38,39].
Here Q0 and Q

k
0 are the value and the kth derivative of Q at

its maximumwith respect to the tortoise coordinate r�, and n
labels the overtones. The WKB formula (52) was effectively
used in a lot of papers (see, e.g., [40] and references therein).

The WKB formula gives an accurate result for large
multipole numbers (see Table I). Expanding the WKB
formula it powers of ‘, we find the following asymptotical
expression for c ¼ �1:

!b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2



tan�1

�
2




�s �
‘þ 1

2
� i

�
nþ 1

2

��
þO

�
1

‘

�
:

In Table I, the asymptotic formula for the fundamental
mode (the one that dominates at late times) is presented
in units m ¼ 1=3, so that b ¼ 
=2.

The WKB formula (52) used here is developed for
effective potentials which have the form of a barrier with
only one peak (see, e.g., Fig. 9 for black universes), so that
there are two turning points given by the equation
!2 � Veff ¼ 0. Therefore, it cannot be used for effective
potentials which have negative gaps, that is, for testing the
stability of all questionable cases.

VI. CONCLUSIONS

We have developed a general formalism for analyzing
axial gravitational perturbations of an arbitrary static,
spherically symmetric solution to the Einstein-Maxwell-
scalar equations where the scalar field, which can be both
normal and phantom, is minimally coupled to gravity and
possesses an arbitrary potential. This can be used for study-
ing the stability and QNM modes of diverse charged and
neutral scalar field configurations in general relativity. As
to polar perturbations, we have restricted ourselves to the
monopole mode, i.e., to spherically symmetric (radial, for
short) perturbations.
We have applied this formalism to some electrically

neutral wormholes and black holes supported by a phantom
scalar field. The main results which were obtained here are:
(1) M-AdS wormholes described by the solution (3) with

negative mass are shown to be unstable under radial
perturbations, although the initial effective potential
with a singularity at the throat is positive everywhere.
These features are similar to those of anti-Fisher
wormholes [14] which are twice asymptotically flat.

(2) Black universes (i.e., regular black holes with
de Sitter expansion far beyond the horizon),
described by the solution (3) without throats in
the static region, are shown to be stable only in the
special case where the horizon coincides with the
minimum of the area function RðrÞ (the parameters:
c ¼ �1, b ¼ 3
m=2) and unstable for c � �1.

(3) Quasinormal modes of axial perturbations have
been calculated for stable black universes.

Quite a lot of other problems of interest are yet to be
studied. One can mention a full nonlinear analysis of
perturbations in all relevant cases. Next, the formalism
developed here for linear perturbations allows us to include
the electromagnetic field into consideration and study
charged solutions with both normal and phantom scalar
fields. Last but not least, using the well-known conformal
mappings that relate Einstein and Jordan frames of scalar-
tensor and curvature-nonlinear theories of gravity, one can
extend the studies to solutions of these theories.
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