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The center-of-mass energy of two particles colliding near the horizon of a maximally rotating black

hole can be arbitrarily high if the angular momentum of either of the incident particles is fine-tuned, which

we call a critical particle. We study particle emission from such high-energy collision and reaction in the

equatorial plane fully analytically. We show that the unconditional upper limit of the energy of the

emitted particle is given by 218.6% of that of the injected critical particle, irrespective of the details of

the reaction and this upper limit can be realized for massless particle emission. The upper limit of the

energy extraction efficiency for this emission as a collisional Penrose process is given by 146.6%, which

can be realized in the collision of two massive particles with optimized mass ratio. Moreover, we

analyze perfectly elastic collision, Compton scattering, and pair annihilation and show that net positive

energy extraction is really possible for these three reactions. The Compton scattering is most efficient

among them and the efficiency can reach 134.3%. On the other hand, our result is qualitatively

consistent with the earlier claim that the mass and energy of the emitted particle are at most of order

the total energy of the injected particles and hence we can observe neither super-heavy nor super-

energetic particles. The present paper places the baseline for the study of particle emission from high-

energy collision near a rapidly rotating black hole.
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I. INTRODUCTION

Bañados, Silk, and West (2009) [1] have indicated rap-
idly rotating Kerr black holes as particle accelerators
based on the demonstration that the center-of-mass
(CM) energy of two colliding particles can be arbitrarily
high near the horizon of a maximally rotating Kerr black
hole if the angular momentum of either of the particles is
finely tuned. Hereafter, we refer to this process as the
Bañados-Silk-West (BSW) process or BSW collision. In
fact, the collision with infinite CM energy has already
been noticed by Piran, Shaham, and Katz (1975) [2–4] in
the study of an energy extraction process by two colliding
particles in the ergo region, which is called a collisional
Penrose process. Recently, the particle acceleration by
Kerr black holes has been investigated in different re-
spects [5–12], while it turns out that this phenomenon can
be regarded as one of the general properties of extremal
and near-extremal black holes [13–22] and other gravitat-
ing objects which are near-extremal in some specific
sense [23–27].

As for observability, we need to consider the emission
from the BSW process. The observed flux and character-
istic spectrum from the pair annihilation of dark matter
particles through the BSW collision around a Kerr black
hole have been demonstrated in Refs. [28,29]. Since the
collision with high CM energy can produce very massive

particles, one might expect highly energetic particles can
escape to infinity and be observed by a distant observer as
the black hole is fed with product counterparts with largely
negative energy. On the other hand, Jacobson and Sotiriou
(2010) [6] have claimed that for the collision of two
particles of equal mass m0, an ejecta particle cannot be
more energetic than 2m0 and the energy upper limit of the
ejecta tends to m0 in the limit of infinite CM energy. If this
were the case, the BSW process would not be applicable to
a collisional Penrose process.
In the present paper, we give the general formulation

for the BSW collision and subsequent reaction. Based on
this, we study the mass and energy of the particle which
escapes to infinity and obtain the unconditional upper
limits of its mass and energy. We further derive the
upper limit of the energy extraction efficiency for this
upper limit of energy emission as a collisional Penrose
process. We find that net positive energy extraction is
really possible, although the efficiency is not very high
but modest. We also study the upper limits of the energy
of the emitted particle for specific physical processes and
find that the energy extraction is really possible. In sum-
mary, although the BSW process can be an applicable
energy extraction mechanism to a collisional Penrose
process, the mass and energy of the particles observable
to a distant observer are at most of order the total energy
of the injected particles.
We use the units in which G ¼ c ¼ 1 and follows the
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II. GEODESIC ORBIT, COLLISION
AND REACTION

A. Preliminaries

The line element in the Kerr spacetime in the Boyer-
Lindquist coordinates is written in the following form
[30–32]:

ds2 ¼ �
�
1� 2Mr

�2

�
dt2 � 4Marsin2�

�2
d�dtþ �2

�
dr2

þ �2d�2 þ
�
r2 þ a2 þ 2Mra2sin2�

�2

�
sin2�d�2;

where a and M are the spin and mass parameters, respec-
tively, �2ðrÞ ¼ r2 þ a2cos2� and �ðrÞ ¼ r2 � 2Mrþ a2.

If 0< a2 � M2, � vanishes at r ¼ r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
,

where r ¼ rþ and r ¼ r� correspond to an event and
Cauchy horizons, respectively. Here, we denote rþ ¼ rH.
Later, we will focus on the extremal case a ¼ M.

In this paper we concentrate on geodesic particles in the
equatorial plane � ¼ �=2. For a particle of massm, energy
E, and angular momentum L, the components of the four-
momentum are given by

pt ¼ 1

�

��
r2 þ a2 þ 2Ma2

r

�
E� 2Ma

r
L

�
; (2.1)

p� ¼ 1

�

��
1� 2M

r

�
Lþ 2Ma

r
E

�
; (2.2)

p� ¼ 0; (2.3)

and

1

2
ðprÞ2 þ VðrÞ ¼ 0; (2.4)

where VðrÞ is the effective potential given by

VðrÞ ¼ �Mm2

r
þ L2 � a2ðE2 �m2Þ

2r2

�MðL� aEÞ2
r3

� E2 �m2

2
: (2.5)

For a massless particle, we only have to choose m ¼ 0 in
the above. For a massive particle, the four-velocity ua,
which is normalized as uaua ¼ �1, is given by ua ¼
pa=m. The forward-in-time condition pt > 0 gives

1

�

��
r2 þ a2 þ 2Ma2

r

�
E� 2Ma

r
L

�
> 0: (2.6)

In particular, this condition in the vicinity of the horizon
r ! rH þ 0 reduces to

E��HL � 0; (2.7)

where �H ¼ a=ðr2H þ a2Þ is the angular velocity of the
horizon. We call Lc ¼ E=�H a critical angular momentum
and a particle with this value of angular momentum a
critical particle.

B. Escape to infinity

Next we discuss the escape of a particle to infinity based
on the effective potential. First we consider massless
particles. Solving VðrÞ ¼ 0 for the impact parameter
b ¼ L=E, we obtain

b ¼ b�ðrÞ ¼ �2aM� r
ffiffiffiffiffiffiffiffiffiffi
�ðrÞp

r� 2M
: (2.8)

This means that a massless particle with impact parameter
b ¼ b�ðrÞ has a turning point at r. In particular, for
a ¼ M, we have

bþðrÞ ¼ rþM; b�ðrÞ ¼ �
�
rþMþ 4M2

r� 2M

�
:

(2.9)

bþðrÞ begins with 2M and monotonically increases to
infinity as r increases from M to infinity. b�ðrÞ begins
with 2M, is larger than bþðrÞ, and monotonically increases
to infinity as r increases from M to 2M. As r increases
beyond 2M to infinity, b�ðrÞ begins with negative infinity,
monotonically increases to a local maximum �7M at
r ¼ 4M, and monotonically decreases to negative infinity.
Thus, for �7M< b< 2M, the particle escapes to
infinity, if it is moving outwardly outside the turning point
initially. For b ¼ 2M or b ¼ �7M, the particle escapes to
infinity, if it is moving outwardly outside the turning point
initially.
For massive particles, the situation is similar except for

energy dependence. For convenience, we define e ¼ E=m
and ‘ ¼ L=ðmMÞ. For a massive particle, solving VðrÞ ¼ 0
for ‘, we obtain

‘ ¼ ‘�ðrÞ ¼ �2aMe� r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðrÞ½ðe2 � 1Þ þ 2M=r�p
Mðr� 2MÞ :

(2.10)

This means that a massive particle with angular momentum
‘ ¼ ‘�ðrÞ has a turning point at r. For bound particles, i.e.
e < 1, VðrÞ becomes positive as r goes sufficiently large,
indicating that they cannot reach infinity but bounce back
inwardly. Therefore, we concentrate on marginally bound
and unbound particles, i.e. e � 1. For the maximal rotation
a ¼ M, ‘þðrÞ begins with 2e and monotonically increases
to infinity as r increases from M to infinity. ‘�ðrÞ begins
with 2e, is larger than ‘þðrÞ, and monotonically increases
to infinity as r increases from M to 2M. As r increases
beyond 2M to infinity, ‘�ðrÞ begins with negative infinity,
monotonically increases to a negative local maximum
value ‘�;maxðeÞ, and then monotonically decreases to

negative infinity. This means that the particle with ‘ sat-
isfying ‘LðeÞ< ‘< ‘RðeÞ, where ‘RðeÞ ¼ 2e and ‘LðeÞ ¼
‘�;maxðeÞ, escapes to infinity if it is moving outwardly

initially. If the particle with ‘ satisfying ‘ > ‘RðeÞ or
‘ < ‘LðeÞ is outside the outer turning point, it eventually
escapes to infinity irrespective of the sign of the initial
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radial velocity. For ‘ ¼ ‘LðrÞ or ‘ ¼ ‘RðrÞ, the particle
escapes to infinity, if it is moving outwardly outside the
turning point initially. In other cases, the particle cannot
escape to infinity.

C. Particle collision and reaction

Here we consider the reaction of particles 1 and 2 into 3
and 4. We assume geodesic motion of each particle. The
local conservation of four-momentum before and after the
collision is given by

p�
1 þ p�

2 ¼ p�
3 þ p�

4 : (2.11)

� ¼ t and � ¼ � yield the conservations of energy and
angular momentum before and after the collision, i.e.

E1 þ E2 ¼ E3 þ E4; (2.12)

and

L1 þ L2 ¼ L3 þ L4; (2.13)

respectively. � ¼ r yields

pr
1 þ pr

2 ¼ pr
3 þ pr

4: (2.14)

Given incident particles 1 and 2, if we specify m3, E3 and
L3, we can determine m4, E4, and L4. In fact, m4 can be
expressed in terms of the quantities of other three particles
as follows:

m2
4 ¼ �p4ap

a
4 ¼ �ðpa

1 þ pa
2 � pa

3Þðp1a þ p2a � p3aÞ:
(2.15)

On the other hand, the CM energy of particles 1 and 2 is
given by

E2
cm ¼ �ðpa

1 þ pa
2Þðp1a þ p2aÞ: (2.16)

From the energy conservation, the total rest mass of prod-
uct particles 3 and 4 must be smaller than or equal to the
CM energy, i.e.

m3 þm4 � Ecm: (2.17)

The BSW process is characterized by ~L1 ¼ 2E1,
~L2 < 2E2, and r � M for a maximally rotating black
hole a ¼ M, where we have put ~L ¼ L=M for brevity.
The CM energy in this special case is derived in
Refs. [1,6–9] in an explicit form as follows:

Ecm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2E1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
Þð2E2 � ~L2Þ

�

vuut
; (2.18)

where we denote the radius of the collision point as
r ¼ M=ð1� �Þ and 0< � � 1. For a critical particle,

E1 >m1=
ffiffiffi
3

p
must be satisfied. As � ! 0, the CM energy

is diverging.

III. COLLISION AND REACTION NEAR
THE HORIZON

A. Collision and reaction on the horizon

From now on, we assume that the black hole is maxi-
mally rotating or a ¼ M. We first consider the collision at
r ¼ rH ¼ M. We assume that particle 1 is critical, while
particle 2 is subcritical, i.e. ~L1 ¼ 2E1 and ~L2 < 2E2. Note
that although the collision we consider here is unphysical
because it takes infinite proper time for particle 1 to reach
the horizon, it helps us to consider physical processes later.
The forward-in-time condition on the horizon for particles
3 and 4 gives

2E3 � ð2E2 � ~L2Þ � ~L3 � 2E3: (3.1)

On the horizon r ¼ rH ¼ M, from Eqs. (2.4) and (2.5),
we obtain

pr ¼ �ð2E� ~LÞ; (3.2)

where� is the sign of pr and we have taken the forward-in-
time condition into account to open the square root. Using
Eq. (3.2), we can show that the left-hand side of Eq. (2.14)
becomes

�2ð2E2 � ~L2Þ; (3.3)

where we choose �2 ¼ �1. The right-hand side of
Eq. (2.14) is

�3ð2E2 � ~L2Þ (3.4)

for �3 ¼ �4, while it is

�3½4E3 � 2E2 � ð2 ~L3 � ~L2Þ� (3.5)

for �3 ¼ ��4. Hence, we can conclude �3 ¼ �4 ¼ �1
for the former case, while

2E3 � ~L3 ¼ 0 (3.6)

for �3 ¼ 1, and

2E3 � ~L3 ¼ 2E2 � ~L2 (3.7)

for �3 ¼ �1 for the latter case.
Note that particle 3 cannot leave the black hole because

it is released on the horizon. It is natural to introduce a
reaction in the vicinity of the horizon as a small perturba-
tion of the on-horizon reaction. It is clear that we should
concentrate on the case ~L3 ¼ 2E3, otherwise there is no
chance for a distant observer to observe particle 3 even if
the collision is slightly perturbed. This fixes �4 ¼ �1.

B. Near-horizon behavior of particles

We consider a collision near the horizon, where r ¼
M=ð1� �Þ and ~L3 ¼ 2E3ð1þ �Þ, where 0< � � 1 and
j�j � 1. We assume that � can be expanded in powers of �
as follows:

� ¼ �ð1Þ�þ �ð2Þ�2 þOð�3Þ: (3.8)
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This assumption will be justified later because it gives a
consistent expansion of the four-momentum conservation.

Here, we require particle 3 to escape to infinity. This is
possible in the following two cases: (a) e3 � 1, ‘Lðe3Þ<
l‘3 � ‘Rðe3Þ, and �3 ¼ 1 and (b) e3 � 1, ‘3 > ‘Rðe3Þ, and
r � rt;þðe3Þ, where rt;þðeÞ is the radius of the outer turning
point for a particle with e. The left and right panels of
Fig. 1 give the schematic figures for �3 ¼ 1 and �1,
respectively. The reason why the case ‘3 � ‘Lðe3Þ is not
considered is that the two turning points are both well
outside the horizon in this case.

Under these conditions, we will see the upper limits of
the mass m3 and energy E3 of particle 3. Since ‘RðeÞ ¼ 2e
for a maximally rotating Kerr black hole, we need to have
� � 0 and �3 ¼ 1 for case (a). For case (b), since the
turning points are given by

rt;�ðeÞ ¼ M

�
1þ 2e

2e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 1

p �ð1Þ�
�
þOð�2Þ; (3.9)

r � rt;þðeÞ implies

0 � �ð1Þ �
2E3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 þm2

3

q
2E3

¼ �ð1Þ;max: (3.10)

Note that the forward-in-time condition Eq. (2.6) onto
particle 3 in the vicinity of the horizon reduces to

� < �þ 7

4
�2 þOð�3Þ: (3.11)

Therefore, �ð1Þ < 1 gives a sufficient condition and this is

already guaranteed for both cases (a) and (b).
We can easily show that the above argument applies

for massless particles by the appropriate replacement of
‘ with b and taking the limit m ! 0 and e ! 1 in
Eqs. (3.9) and (3.10).

C. Local momentum conservation

To look into the local momentum conservation, we use a
series of jprj in powers of � for each particle as follows:

jpr
1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
�� E2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q �2 þOð�3Þ; (3.12)

jpr
2j ¼ ð2E2 � ~L2Þ þ 2ð ~L2 � E2Þ�

þ ~L2
2 � 4 ~L2E2 þ 3E2

2 �m2
2

2ð2E2 � ~L2Þ
�2 þOð�3Þ; (3.13)

jpr
3j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q
�

� E2
3½1� 4ð2�ð1Þ � �ð2ÞÞð1� �ð1ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q �2 þOð�3Þ;

(3.14)

jpr
4j ¼ ð2E2 � ~L2Þþ ½2ð ~L2 �E2Þþ 2E3ð�ð1Þ � 1Þþ 2E1��

þ
�ð2E2 � ~L2Þ

2
� 2ð2�ð1Þ ��ð2ÞÞE3

�ðE1 þE2 �E3Þ2 þm2
4

2ð2E2 � ~L2Þ
�
�2 þOð�3Þ; (3.15)

where in the last equationwe have used Eqs. (2.12) and (2.13)
to eliminate E4 and ~L4.
The first and second order terms of � in Eq. (2.14)

then give

ð2E1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
Þ þ 2E3ð�ð1Þ � 1Þ

¼ �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q
(3.16)

and

E2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3E2
1 �m2

1

q þ ~L2
2 � 4 ~L2E2 þ 3E2

2 �m2
2

2ð ~L2 � 2E2Þ

¼ ��3

E2
3½1� 4ð2�ð1Þ � �ð2ÞÞð1� �ð1ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q

�
�ð2E2 � ~L2Þ

2
� 2ð2�ð1Þ � �ð2ÞÞE3

� ðE1 þ E2 � E3Þ2 þm2
4

2ð2E2 � ~L2Þ
�
; (3.17)

respectively.

IV. UNCONDITIONAL UPPER LIMITS FOR
GENERAL REACTION

A. Mass and energy of the emitted particle

Taking the square of the both sides of Eq. (3.16), we can
derive

1� �ð1Þ ¼ A2
1 þ ðE2

3 þm2
3Þ

4A1E3

; (4.1)

where we put A1 ¼ 2E1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
> 0 for conve-

nience. Note that Eq. (4.1) immediately implies

FIG. 1 (color online). The left and right panels are the sche-
matic figures of reactions, where particle 3 has outward (�3 ¼ 1)
and inward (�3 ¼ �1) initial velocities, respectively.

TOMOHIRO HARADA, HIROYA NEMOTO, AND UMPEI MIYAMOTO PHYSICAL REVIEW D 86, 024027 (2012)

024027-4



�ð1Þ;max � �ð1Þ ¼
ðA1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 þm2

3

q
Þ2

4A1E3

� 0: (4.2)

First we consider case (a). Substituting Eq. (4.1) into the
left-hand side of Eq. (3.16), we obtain

A1 � E2
3 þm2

3

A1

¼ 2�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q
:

(4.3)

Since �3 ¼ 1, Eq. (4.3) implies

A2
1 � ðE2

3 þm2
3Þ � 0: (4.4)

This implies m3 � A1 and

E3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 �m2

3

q
¼ 	0: (4.5)

Since 	0 � ð2� ffiffiffi
2

p ÞE1 for E1 � m1, which we assume as
the injection of particle 1 from infinity to the system, we
cannot extract net positive energy with �3 ¼ 1.

For case (b), only the range given by Eq. (3.10) is
permitted. Although both �3 ¼ �1 are possible, we
cannot extract net positive energy for �3 ¼ 1 as we
have already shown. So, we will concentrate on the case
�3 ¼ �1. Equation (4.3) then implies

E2
3 � A2

1 �m2
3: (4.6)

�ð1Þ � 0 in Eq. (4.1) implies

A2
1 þ ðE2

3 þm2
3Þ � 4A1E3 � 0: (4.7)

The discriminant D and roots 	� of the left-hand side of
Eq. (4.7) as a quadratic of E3 are given by

D=4 ¼ 3A2
1 �m2

3 (4.8)

and

	� ¼ 2A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2

1 �m2
3

q
; (4.9)

respectively. The solution of Eq. (4.7) is given by

	� � E3 � 	þ; (4.10)

where D � 0 or m3 �
ffiffiffi
3

p
A1 must be satisfied. To

have E3 � m3, we need 	þ � m3, for which m3 �
A1=ð2�

ffiffiffi
2

p Þ must be satisfied. The condition (4.6) is
satisfied for E3 ¼ 	þ trivially if m3 � A1 and because
	þ > 	0 if 0 � m3 < A1. �ð1Þ ¼ 0 holds for E3 ¼ 	�.
We should note that 	þ ¼ E1 if both particles 1 and 3
are massless, 	þ < E1 if particles 1 and 3 are massless and
massive, respectively, but 	þ >E1 if particles 1 and 3 are
massive and massless, respectively. Since 	þ � E1 in the
limit E1=m1 ! 1, no net positive energy extraction is
possible if the incident critical particle is highly energetic
or massless.
From the above argument, the unconditional upper lim-

its of the mass and energy of the emitted particle 3 are
given by

m3 � ð2E1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
Þ=ð2� ffiffiffi

2
p Þ ¼ mB (4.11)

and

E3 � ð2E1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
Þ=ð2� ffiffiffi

3
p Þ ¼ EB; (4.12)

respectively. Note that 	þ ¼ EB can be realized only if
particle 3 is massless. Figure 2 shows the upper limits as
functions of E1=m1. mB=m1 ¼ 1 at E1=m1 ¼ 1 and

7� 4
ffiffiffi
2

p
and mB=m1 takes a minimum ð2þ ffiffiffi

2
p Þ=ð2 ffiffiffi

3
p Þ ’

0:9856 at E1=m1 ¼ 2=
ffiffiffi
3

p
. EB=m1 ¼ ð2þ ffiffiffi

3
p Þð2� ffiffiffi

2
p Þ ’

2:186 at E1=m1 ¼ 1 and 7� 4
ffiffiffi
2

p
and EB=m1 takes a

minimum 1þ 2=
ffiffiffi
3

p ’ 2:154 at E1=m1 ¼ 2=
ffiffiffi
3

p
. On

the other hand, both mB=E1 and EB=E1 monotonically
decrease as E1=m1 increases. mB=E1 takes a maximum 1

at E1=m1 ¼ 1 and approaches ð2� ffiffiffi
3

p Þ=ð2� ffiffiffi
2

p Þ ’
0:4574 as E1=m1 increases from 1 to infinity. EB=E1 takes

a maximum ð2þ ffiffiffi
3

p Þð2� ffiffiffi
2

p Þ ’ 2:186 at E1=m1 ¼ 1 and
approaches 1 as E1=m1 increases from 1 to infinity. The
mass and energy of the emitted particle can be at most of
order the energy of the incident critical particle. The upper

FIG. 2. Upper limits of the mass and energy of the emitted particle as functions of the energy of the incident critical particle. The left
and right panels show the ratios to the mass and to the energy of the incident critical particle, respectively. The mass and energy upper
limits are denoted by the solid and dashed lines, respectively.
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limit mB of the mass of the emitted particle is approxi-
mately equal to m1 for E1 ’ m1 but can be much larger
than m1 for E1 	 m1. Since EB > E1, we might obtain the
energy of the ejecta particle more than the total energy of
the injected particles. This possibility will be investigated
in Sec. IVB.

B. Energy extraction efficiency

Equation (3.17) can be solved for m2
4 as follows:

m2
4 ¼ ð2E2 � ~L2Þ

�
2E2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q � 4ð2�ð1Þ � �ð2ÞÞE3

þ 2�3

E2
3½1� 4ð2�ð1Þ � �ð2ÞÞð1� �ð1ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q
�

þ ðE2
2 þm2

2Þ � ðE1 þ E2 � E3Þ2: (4.13)

Since �ð1Þ is given by Eq. (4.1), we can obtain �ð2Þ usingm3

and E3 for givenm4. E4 and ~L4 are given by Eqs. (2.12) and
(2.13). For the collision to occur,m2

4 � 0must be satisfied.
We should note that since m2, E2, ~L2, and �ð2Þ, which do

not appear in Eq. (4.1), do appear in Eq. (4.13), the condi-
tion m2

4 � 0 can be generally satisfied. Equation (4.13)
seems to suggest that we can expect very large m4 as

E1 ! m1=
ffiffiffi
3

p
, although particle 4 cannot escape to infinity.

However, E1 ! m1=
ffiffiffi
3

p
is a singular limit in the series of

jpr
1j given by Eq. (3.12). In Appendix A, we demonstrate

that the apparently divergent term in this limit is replaced
with a finite term for a particle circularly orbiting near the
horizon.

In Sec. IVA, we have seen that the upper limit E3 ¼ 	þ
can be realized only for �ð1Þ ¼ 0. Here we show that this

emission can be realized and place the upper limit of the
efficiency of the energy extraction for this emission. The
expression form4 is reduced to a simpler form for �ð1Þ ¼ 0
and E3 ¼ 	þ as follows:

m2
4 ¼ ð2E2 � ~L2Þ

�
2E2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q � 2	2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	2þ �m2

3

q

� 4
2	þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	2þ �m2

3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	2þ �m2

3

q 	þ�ð2Þ
�

þ ðE2
2 þm2

2Þ � ðE1 þ E2 � 	þÞ2: (4.14)

This means that even if �ð1Þ ¼ 0, we can still have different
values for m4 by adjusting �ð2Þ.

As we have already seen, we can obtain net positive
energy gain only for � > 0. Since the upper limit E3 ¼ 	þ
is obtained for �ð1Þ ¼ 0, we need to assume �ð2Þ � 0.
Then, since rt;þ ¼ MþOð�2Þ, the collision point

r ¼ M=ð1� �Þ is outside the outer turning point. Since
	þ ¼ EB only if particle 3 is massless, we concentrate on
this case. In this case, we can prove that the first term on the

right-hand side of Eq. (4.14) is negative. The condition for
E2 is then given by

E2 � 1

2

�
ð	þ � E1Þ � m2

2

	þ � E1

�
¼ 
: (4.15)

The proof for this condition will be postponed until
Appendix B. This implies that E2 cannot vanish but greater
than or equal to ð	þ � E1Þ=2 even if particle 2 is massless
and that particle 2 must be unbound if 
 >m2. Conversely,
we can always find m4 and ~L2 satisfying m2

4 � 0 and
~L2 < 2E2 if the above inequality is satisfied.
Since Eq. (4.15) potentially gives a lower limit of E2,

this can constrain the efficiency of the energy extraction
� ¼ E3=ðE1 þ E2Þ for E3 ¼ 	þ. To estimate �, we here
assume E2 � m2 as usual, i.e. we inject the two incident
particles from infinity. If 
 >m2 or m2 < ð	þ � E1Þ=
ð ffiffiffi

2
p þ 1Þ, we find

� � 	þ
E1 þ 


¼ 1þ ð	þ � E1Þ2 þm2
2

	2þ � E2
1 �m2

2

: (4.16)

Therefore, the upper limit exceeds unity and hence we can

obtain net positive energy extraction. If 
 � m2 or m2 �
ð	þ � E1Þ=ð

ffiffiffi
2

p þ 1Þ, we find

� � 	þ
E1 þm2

: (4.17)

Hence, net positive energy extraction is possible with the
upper limit if and only if m2 < 	þ � E1.
We can here determine the unconditional upper limit of

� for E3 ¼ 	þ. Since 	þ does not depend on E2, to max-
imize the upper limit of �, we should first find the value for
m2 which minimizes E2 for fixed E1 and m1. This corre-

sponds to the case 
 ¼ m2 or m2 ¼ ð	þ � E1Þ=ð
ffiffiffi
2

p þ 1Þ.
� is then maximized for E1 ¼ m1. Therefore, the uncondi-
tional upper limit is given by

�B ¼ 	þ
m1 þm2

¼ ð ffiffiffi
2

p þ 1Þ	þffiffiffi
2

p
m1 þ 	þ

:

Since 	þ takes the upper limit EB ¼ ð2þ ffiffiffi
3

p Þð2� ffiffiffi
2

p Þm1

for m3 ¼ 0, the unconditional upper limit is given by

�B ¼ 2þ ffiffiffi
2

p þ ffiffiffi
6

p
4

’ 1:466;

where m2=m1 ¼ ð5 ffiffiffi
2

p � 4
ffiffiffi
3

p þ 3
ffiffiffi
6

p � 7Þ ’ 0:4913.
Because we impose the condition E2 � m2, the upper limit
of the efficiency is realized at the crossing point of the two
curves, E2 ¼ 
 and E2 ¼ m2. Figure 3 shows the upper
limit of � as a function of the mass ratio m2=m1, where we
choose particle 1 as marginally bound, i.e. E1 ¼ m1

for reference. It begins with 2ð54� 10
ffiffiffi
2

p þ 14
ffiffiffi
3

p þ ffiffiffi
6

p Þ=
97 ’ 1:372 and monotonically increases to ð2þ ffiffiffi

2
p þ ffiffiffi

6
p Þ=

4’1:466 as m2=m1 increases from 0 to 5
ffiffiffi
2

p � 4
ffiffiffi
3

p þ
3

ffiffiffi
6

p � 7 ’ 0:4912, where E2 ¼ 
. Then, the upper limit
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monotonically decreases to 0 as m1=m2 increases

beyond this value, where E2 ¼ m2. It becomes ð2þ ffiffiffi
3

p Þ

ð2� ffiffiffi

2
p Þ=2 ’ 1:093 at m1=m2 ¼ 1.

In the end of the general analysis, it should be noted that
the present mass, energy, and efficiency upper limits of the
emission from the BSW collision are applicable even if
product particles are more than two. This is because in such
cases we can regard more than one product particles other
than particle 3 as those produced as a result of the decay
of particle 4. Thus, the present upper limits are uncondi-
tional in the sense that they are applicable irrespective of
the details of the incident counterpart and the product
particles.

V. UPPER LIMITS FOR SPECIFIC
PHYSICAL REACTIONS

In this section, we specify physical reaction models and
discuss the upper limits of the energy of the emitted
particle and the energy extraction efficiency, based on the
result obtained in Sec. IV.

A. Perfectly elastic collision

We first consider perfectly elastic collision of equal
masses, i.e. m1 ¼ m2 ¼ m3 ¼ m4 ¼ m0. We choose par-
ticle 1 as marginally bound for reference, i.e. E1 ¼ m0.
Then, from Eq. (4.9), the upper limit of the energy of
particle 3 is given by

	þ ¼ ð7� 4
ffiffiffi
2

p Þm0 ’ 1:343m0; (5.1)

where E3 ¼ 	þ is realized for �ð1Þ ¼ 0. In fact, if

m1 ¼ m3, we can easily prove that the first term on the
right-hand side of Eq. (4.14) is nonpositive because
	þ � E1. Then, the argument similar to that given in

Sec. IVB applies. Since m2¼m0>ð	þ�E1Þ=ð
ffiffiffi
2

p þ1Þ,
we choose particle 2 as marginally bound, i.e. E2 ¼ m0,
and hence the upper limit of � for E3 ¼ 	þ is given by

� � 	þ
2m0

¼ 7� 4
ffiffiffi
2

p
2

’ 0:6716: (5.2)

Therefore, we can obtain no net positive energy extraction.
The above result will be discussed later in direct compari-
son with the claim in Ref. [6].
Next we assume that m1 ¼ m3 and m2 ¼ m4 but not

m1 ¼ m2. For E1 ¼ m1, the upper limit of E3 is given by

	þ ¼ ð7� 4
ffiffiffi
2

p Þm1: (5.3)

We can optimize m2 to m2 ¼ ð	þ � E1Þ=ð
ffiffiffi
2

p þ 1Þ ¼
2ð5 ffiffiffi

2
p � 7Þm1 ’ 0:1421m1 so that we can obtain the upper

limit of the energy extraction efficiency for E3 ¼ 	þ as
follows:

	þ
m1 þm2

¼ 18
ffiffiffi
2

p þ 11

31
’ 1:176: (5.4)

Therefore, net positive energy extraction is possible for
perfectly elastic collision if the mass of the counterpart is
in some range. The upper limit of the energy extraction
efficiency becomes 117.6%, where the mass ratio is
optimized.

B. Compton scattering

We here assume that particle 3 is massless. This is
motivated by the fact that the unconditional energy upper
limit EB can be realized only if particle 3 is massless. If we
consider the Compton scattering, we can identify either of
particles 1 and 2 with a massless particle.
First we assume particle 1 is massless and hence

m1 ¼ m3 ¼ 0 and m2 ¼ m4 ¼ m0. Then, the upper limit
of the energy of particle 3 is given by

	þ ¼ E1: (5.5)

With E3 ¼ E1 and �ð1Þ ¼ 0, Eq. (4.14) yields �ð2Þ ¼ 0. In
other words, up to this order particles 1 and 2 just passed
through each other and no energy nor angular momentum
is exchanged. We cannot determine whether particle 3 can
escape to infinity up to this order. Even if particle 3 can
escape to infinity, we have no net positive energy extraction
anyway.
Next, we assume particle 2 is massless and hence m1 ¼

m4 ¼ m0, m2 ¼ m3 ¼ 0, and E1 ¼ m0. In this case,

	þ ¼ ð2þ ffiffiffi
3

p Þð2� ffiffiffi
2

p Þm0 ’ 2:186m0: (5.6)

Sincem2 ¼ 0< ð	þ � E1Þ=ð
ffiffiffi
2

p þ 1Þ, the upper limit of �
for E3 ¼ 	þ becomes

FIG. 3. The upper limit of the energy extraction efficiency for
the upper limit of ejecta energy E3 ¼ EB as a function of the
mass ratio m2=m1, where E1 ¼ m1 and m3 ¼ 0 are chosen. The
solid and dashed lines denote the efficiencies for E2 ¼ m2 and
E2 ¼ 
, respectively. If the mass ratio is smaller than 0.4913, we
should adopt E2 ¼ 
, while if the ratio is greater than this value,
we should adopt E2 ¼ m2. The efficiency takes a maximum
1.466 at m2=m1 ¼ 0:4913, where the two curves cross each
other.
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� � 1þ 	þ � E1

	þ þ E1

¼ 2ð54� 10
ffiffiffi
2

p þ 14
ffiffiffi
3

p þ ffiffiffi
6

p Þ
97

’ 1:372: (5.7)

This is comparable with the unconditional upper limit
1.466. The (inverse) Compton scattering between a sub-
critical photon and a critical massive particle is rather
efficient as a collisional Penrose process.

C. Pair annihilation

We here consider pair annihilation of two equal masses
into two massless particles. Then, m1 ¼ m2 ¼ m0 and
m3 ¼ m4 ¼ 0. We additionally assume E1 ¼ m0 for refer-
ence. In this case, the upper limit of the energy of particle 3
is given by

	þ ¼ ð2þ ffiffiffi
3

p Þð2� ffiffiffi
2

p Þm0 ’ 2:186m0: (5.8)

In this case, since m2 ¼ m0 > ð	þ � E1Þ=ð
ffiffiffi
2

p þ 1Þm0, we
choose particle 2 as marginally bound, i.e. E2 ¼ m0, and
hence the upper limit of � is given by

� � ð2þ ffiffiffi
3

p Þð2� ffiffiffi
2

p Þ
2

’ 1:093: (5.9)

Thus, net 9.3% of the total injected energy can be
extracted. This result will be also discussed later in com-
parison with Ref. [6].

VI. DISCUSSION AND CONCLUSION

We have studied particle emission from the BSW colli-
sion and subsequent reaction, where a critical particle
collides with a generic counterpart particle near the hori-
zon of a maximally rotating Kerr black hole. Since the CM
energy of the two particles can be arbitrarily high, the
collision can produce very massive and/or energetic parti-
cles and one might speculate that such particles can poten-
tially escape to infinity through a collisional Penrose
process. We have however found that this is not the case.
We cannot observe a particle much more massive nor much
more energetic than the energy of the incident critical
particle. This is qualitatively consistent with the earlier
results [2–4,6].

We have derived the unconditional upper limits mB and
EB of the mass and energy of the ejecta particle, respec-
tively, which can be realized only if the emitted particle is
massless. The ratio of EB to E1 the energy of incident

critical particle takes a maximum ð2þ ffiffiffi
3

p Þð2� ffiffiffi
2

p Þ ’
2:186, for which the incident critical particle is massive
and marginally bound. In general, the most energetic parti-
cle that escapes to infinity must be ejected inwardly on the
production and subsequently bounces back outwardly at
the turning point which is very close to the horizon due to
the angular momentum which is slightly above the critical
value. We have also determined the upper limit �B of the
energy extraction efficiency for the upper limit of ejecta
energy from the near-horizon collision with an arbitrarily

high CM energy. �B is given by ð2þ ffiffiffi
2

p þ ffiffiffi
6

p Þ=4 ’ 1:466,
which can be realized for the collision of two marginally
bound massive particles with optimized mass ratio.
We have next analyzed perfectly elastic collision,

Compton scattering, and pair annihilation. In all these
cases, the energy of the emitted particle can be really
greater than that of the injected critical particle. We have
also found that net positive energy extraction is not pos-
sible for perfectly elastic collision of equal masses, while it
is possible for perfectly elastic collision with optimized
mass ratio, Compton scattering, and pair annihilation. In
particular, the (inverse) Compton scattering of a subcritical
photon by a critical massive particle is most efficient
among these three reactions as a physically realistic pro-
cess of energy extraction. Although the present analysis is
restricted in the equatorial plane, it is unlikely that the
result would be drastically changed even if we allow
non-equatorial reactions.
Jacobson and Sotiriou (2010) [6] claim that, for the

collision of two particles of equal mass m0, the energy of
the ejecta particle does not exceed 2m0 but drops to some-
thing just slightly above m0 in the limit of infinite CM
energy. The present result contradicts their claim. As we
have shown, the energy of the ejecta particle can be
1:343m0 and 2:186m0 for perfectly elastic collision of
two equal masses and for pair annihilation, respectively,
in the limit of infinite CM energy. The latter gives the
unconditional energy upper limit for the collision of two
equal masses and enables net positive energy extraction.
The disagreement of the claim in Ref. [6] with the present
result is probably due to the strong assumption adopted in
Ref. [6] that the four-momentum of the ejecta particle is
parallel to that of the incident critical particle. We think
that this assumption is not valid in estimating the energy of
the emitted particle. See also Ref. [33].
The present result directly implies that when we con-

sider gamma-ray emission from the pair annihilation of
dark matter particles of mass m near the rapidly rotating
Kerr black hole, the spectrum due to the BSW collision
continues up to 218.6 MeV (m=100 MeV) and is cut off
there. This is also the case for gamma-ray spectrum from
the inverse Compton scattering by dark matter particles.
On the other hand, since the CM energy of particle

collisions can be extremely high, high-energy reactions
which are prohibited in low-energy collision may occur
and leave their signatures in relatively low-energy gamma-
ray spectrum in general. In this context, it should be noted
that Cannoni et al. [34] discuss the possibility that collid-
ing dark matter particles in the form of neutralinos may be
gravitationally boosted near the supermassive black hole at
the galactic center so that they can have enough collision
energy to annihilate into a stau pair in some phenomeno-
logically favored supersymmetric models. They also
suggest the possibility that the signatures of the new chan-
nel of the reactions in gamma-ray spectrum might be
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discriminated by the Fermi-LAT satellite observation.
They take into account the gravitational boost with the
relative velocity is �0:1–0:2 light speed, which exists
also for a nonrotating black hole. The CM energy can be

2
ffiffiffi
5

p
m0 at maximum in the former effect, while it can be

�19m0 for a=M ¼ 0:998 in the latter effect [9], where m0

is the mass of the dark matter particle. This strongly
suggests the channel of the dark matter pair annihilation
may also be opened through the BSW process near a
rapidly rotating black hole in some supersymmetric mod-
els, although the detailed analysis with fully general rela-
tivistic treatment is yet to be done.

The present analysis is restricted to a maximally rotating
black hole, which is not expected to exist as an astrophys-
ical object. It is interesting to study the upper limits of
particle emission from the high-energy collision near a
non-maximally rotating black hole. However, we can natu-
rally expect that the upper limits of the emission do not
change so drastically even if a=M is slightly below unity,
although the maximum CM energy itself is sensitive to
a=M. This is because the present upper limits for the
maximal rotation are finite and determined by the spacetime
geometry near the horizon and the metric there can change
only smoothly as a=M increases to unity from below.

While the authors were finalizing the present paper, two
papers [35,36] appeared on the arXiv, in which the upper
limits of the mass, energy, and energy extraction efficiency
are studied. Although the present result is consistent with
the result of Ref. [35], not only does the present paper
contain further new findings but also place the baseline for
future research on this subject because of its systematic and
analytical approach.
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APPENDIX A: COLLISION WITH A CIRCULARLY
ORBITING PARTICLE

The expression for m2
4 given by Eq. (4.13) contains a

term which apparently diverges in the limit E1 ! m1=
ffiffiffi
3

p
.

To get a consistent approach, we here consider a massive
particle circularly orbiting near the horizon because its

energy approaches m=
ffiffiffi
3

p
and angular momentum asymp-

totically satisfies the critical condition in the near-horizon
limit as we will see below. See Ref. [37] for circular orbits
in the extreme Kerr spacetime in more general context.

The energy and angular momentum of the circular orbit
can be obtained by solving VðrÞ ¼ V0ðrÞ ¼ 0. Putting
r ¼ M=ð1� �Þ and solving VðrÞ ¼ V0ðrÞ ¼ 0 for E and
~L order by order, we obtain

E ¼ mffiffiffi
3

p
�
1þ 2

3
�þ 1

24
�2
�
þOð�3Þ (A1)

and

~L

2E1

¼ 1þ 1

4
�2 þ 1

16
�3 þOð�4Þ: (A2)

Assuming particle 1 belongs to this class, we find that
pr
1 ¼ 0 by definition, while

jpr
4j ¼ ð2E2 �L2Þþ ½2ðL2 �E2Þþ 2E3ð�ð1Þ � 1Þþ 2E1��

þ
�ð2E2 �L2Þ

2
� 2ð2�ð1Þ ��2ÞE3

�½ðm1=
ffiffiffi
3

p ÞþE2 �E3�2 þm2
4

2ð2E2 �L2Þ þ 5

6

m1ffiffiffi
3

p
�
�2 þOð�3Þ:

(A3)

Then, Eq. (3.16) is not changed with E1 ¼ m1=
ffiffiffi
3

p
, while

Eq. (4.13) is changed to

m2
4 ¼ ð2E2 � ~L2Þ

�
5

3
ffiffiffi
3

p m1 � 4ð2�ð1Þ � �ð2ÞÞE3

þ 2�3

E2
3½1� 4ð2�ð1Þ � �ð2ÞÞð1� �ð1ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð3� 8�ð1Þ þ 4�2

ð1ÞÞ �m2
3

q
�

þ ðE2
2 þm2

2Þ �
�
m1ffiffiffi
3

p þ E2 � E3

�
2
: (A4)

The apparently divergent term in Eq. (4.13) in the limit

E1 ! m1=
ffiffiffi
3

p
is now replaced with a finite term.

APPENDIX B: PROOF FOR THE CONDITION ON
THE ENERGY OF PARTICLE 2

First we calculate2
4 	2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3	2þ �m2
3

q
3
52

�
2
4 E2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2

1 �m2
1

q
3
52

¼ 	4þð3E2
1 �m2

1Þ � E4
1ð3	2þ �m2

3Þ
ð3	2þ �m2

3Þð3E2
1 �m2

1Þ
: (B1)

For m3 ¼ 0, the numerator can be written as follows:

	4þð3E2
1 �m2

1Þ � E4
1ð3	2þ �m2

3Þ
¼ ½ð3E2

1 �m2
1Þ	2þ � 3E4

1�	2þ þ E4
1m

2
3 ¼ E4

1E
2
BfðxÞ;

(B2)
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where

fðxÞ ¼ x2
�
2� x

2� ffiffiffi
3

p
�
2 � 3;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�m2

1

E2
1

s
: (B3)

For E1 � m1, we find
ffiffiffi
2

p � x � ffiffiffi
3

p
. fðxÞ monotonically

decreases in this domain and fð ffiffiffi
3

p Þ ¼ 0. Hence,

fðxÞ � 0 for
ffiffiffi
2

p � x � ffiffiffi
3

p
. The condition (4.15) follows

from Eq. (4.14) with �ð2Þ � 0, ~L2 < 2E2, 	þ � m3, and

m2
4 � 0. Q.E.D.
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