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In the six-dimensional Kaluza-Klein model with the multidimensional cosmological constant �6,

we obtain the black brane with spherical compactification of the internal space. The matter source

for this exact solution consists of two parts. First, it is a fine-tuned homogeneous perfect fluid which

provides spherical compactification of the internal space. Second, it is a gravitating massive body with

the dustlike equation of state in the external space and tension p̂1 ¼ �ð1=2Þ"̂ in the internal space. This

solution exists both in the presence and absence of �6. In the weak-field approximation, we also get

solutions of the linearized Einstein equations for the model with spherical compactification. Here, the

gravitating matter source has the dustlike equation of state in the external space and an arbitrary equation

of state p̂1 ¼ �"̂ in the internal space. In the case �6 > 0 and � � �1=2, these approximate solutions

tend asymptotically to the weak-field limit of the exact black brane solution. Both the exact and

asymptotic black branes satisfy the gravitational experiments at the same level of accuracy as general

relativity.
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I. INTRODUCTION

In our recent paper [1] (see also [2]), we investigated
classical gravitational tests (the deflection of light and the
time delay of radar echoes) in the six-dimensional Kaluza-
Klein (KK) model with spherical compactification of the
two-dimensional internal space. These studies were moti-
vated by our previous papers [3–5] devoted to KK models
with toroidal compactification, where we have shown that
these models failed with the gravitational experiments in
the case of a pointlike1 mass with the dustlike equation of
state in all spatial dimensions. It was surprising to us
because this approach works well in general relativity
[7]. In the models with toroidal compactification, latent
solitons (in particular, black strings and black branes) are
the only astrophysical objects which satisfy the gravita-
tional experiments at the same level of accuracy as general
relativity [4,5]. They are the exact solutions of the Einstein
equations in vacuum, i.e. outside of the gravitating source.
To get these solutions, the matter source2 must have ten-
sion in the internal space instead of the dustlike equation
of state. In other words, the energy-momentum tensor

for these solutions has negative components T�� for

� ¼ 4; 5; . . . , i.e. for the extra dimensions. Taking into
account that, up to the terms of the order 1=c2, these
components define pressure in the �th space (T���p�),

we get negative pressure/tension in the internal spaces.
This is a distinctive feature of these solutions. For black
strings and black branes, the notion of tension is defined,
e.g., in [8] and it follows from the first law for black
hole spacetimes [9–11]. However, the physical meaning
of tension for ordinary astrophysical objects (such as
our Sun) is still not clear. Black strings/branes have a
topology ðfour-dimensional Schwarzschild spacetimeÞ �
ðflat internal spaceÞ.
In the case of models with spherical compactification,

the background metrics is not flat. To create such curved
background, we should introduce the additional matter in
the form of a homogeneous perfect fluid. Then, we perturb
this background by a pointlike mass. In the weak-field
limit, we have shown that a pointlike mass with the dust-
like equation of state can satisfy the gravitational experi-
ments if the model contains a positive cosmological
constant [1]. It happens if the Yukawa interaction, gener-
ated by the conformal variations of the volume of the
internal space [12], becomes negligible and we can drop
the admixture of such interaction to the metric perturba-
tions h00 and h��, � ¼ 1; 2; 3, resulting in equality of h00
and h��. A natural question arises whether this approach is
the only way to satisfy the gravitational experiments
in the case of spherical compactification. Can we find a
solution similar to the black strings/branes? In the present
paper we give a positive answer. We find the black brane
with spherical compactification of the internal space.
This is the exact solution of the Einstein equations
that is important in itself. We are not aware of such
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1In most cases, when we use the word ‘‘pointlike,’’ we usually

mean a gravitating mass which has a delta-shaped form in the
external space and is uniformly smeared over the internal space.
In this case, the nonrelativistic gravitational potential exactly
coincides with the Newtonian one [6].

2This matter source is compact and spherically symmetric in
the external/our three-dimensional space and uniformly smeared
over the internal space. It follows from the fact that the metric
coefficients for these solutions depend only on the absolute value
of the three-dimensional radius vector [4,5].

PHYSICAL REVIEW D 86, 024025 (2012)

1550-7998=2012=86(2)=024025(6) 024025-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.024025


solutions in the literature. Our black brane has the
topology ðfour-dimensional Schwarzschild spacetimeÞ�
ðtwo-sphereÞ. This solution exists both in the presence
and absence of the multidimensional cosmological con-
stant and has the negative pressure (tension) in the internal
space with the equation of state p̂1 ¼ �ð1=2Þ"̂ in full
analogy with the case of toroidal compactification (where
such equation of state takes place in each extra dimension
[5]). Additionally, we consider the weak-field limit of the
model with spherical compactification in the case of a
pointlike (with respect to the external space) mass with
an arbitrary equation of state p̂1 ¼ �"̂ in the internal space
and find the solution of the linearized Einstein equations. If
� ¼ �1=2, then we reproduce the weak-field limit of the
black brane solution. For arbitrary � (except for � ¼
�1=2), our approximate solution tends asymptotically to
the weak-field limit of the black brane in the model with
positive cosmological constant. It happens in regions
where we can drop the admixture of the Yukawa interac-
tion. This type of approximate solutions we call the asymp-
totic black branes. Obviously, the exact and asymptotic
black branes satisfy the gravitational experiments at the
same level of accuracy as general relativity.

The paper is structured as follows: In Sec. II, we obtain
the exact black brane solution for the model with spherical
compactification of the internal space. In Sec. III, we get
solutions of the linearized Einstein equations in the case of
a pointlike mass with an arbitrary equation of state in the
internal space and single out the asymptotic black brane.
The main results are summarized in concluding Sec. IV.

II. EXACT BLACK BRANE

It is well known (see, e.g., [4,5]) that black strings and
black branes satisfy the gravitational experiments at the
same level of accuracy as general relativity. They have the
topology ðfour-dimensional Schwarzschild spacetimeÞ �
ðD0-dimensional flat internal spaceÞ with D0 � 1, and
they are exact solutions of the Einstein equations. In this
section wewant to get a black brane solution with spherical
compactification of the two-dimensional internal space. To
obtain such solution, we consider the metrics in the follow-
ing form:

ds2 ¼ ~Að~r3Þc2dt2 þ ~Bð~r3Þd~r23 þ ~Cð~r3Þðd�2 þ sin2�d’2Þ
þ ~Eð~r3Þðd�2 þ sin2�d�2Þ; (1)

where tilde denotes the ‘‘Schwarzschild-like’’ parametri-
zation for the metrics and the three-dimensional radial
coordinate. Similar to the black strings/branes with the
flat internal space, here the metric coefficients depend
only on the absolute value of the three-dimensional radius
vector. These metric coefficients can be found with the
help of the six-dimensional Einstein equation:

Rik ¼ �6

�
Tik � 1

4
Tgik � 1

2
�6gik

�
; (2)

where�6 is a bare cosmological constant, �6 � 2S5 ~G6=c
4,

S5 ¼ 8�2=3 is the total solid angle (the surface area of the

four-dimensional sphere of a unit radius) and ~G6 is the
gravitational constant in the six-dimensional spacetime.
In the usual four-dimensional spacetime, the

Schwarzschild metrics is created by a compact (e.g., point-
like) spherically symmetric gravitating matter source.
However, in the case of the six-dimensional spacetime
with spherical compactification of the internal space, we
should introduce additional matter3 which provides such
compactification. Let the components of the energy-
momentum tensor of this matter read

Tik ¼
�
"ð~r3Þgik for i; k ¼ 0; . . . ; 3;

�!1"ð~r3Þgik for i; k ¼ 4; 5:
(3)

Its trace reads T ¼ 2ð2�!1Þ"ð~r3Þ. In the language of a
perfect fluid, we have a vacuumlike equation of state in the
external space, but an arbitrary equation of state with the
parameter !1 in the internal space. Then, taking into
account that R33 ¼ R22sin

2�, R55 ¼ R44sin
2� and T33 ¼

T22sin
2�, T55 ¼ T44sin

2�, we reduce the Einstein equation
[Eq. (2)] to the following system of fundamentally differ-
ent equations:

R00

~A
¼ � 1

4 ~A0 ~C2 ~E2

� ~A02 ~C2 ~E2

~A ~B

�0 ¼ �6

2
ð!1"��6Þ; (4)

R11

~B
¼ � 1

4 ~A0

� ~A02

~A ~B

�0 � 1

2 ~C0

� ~C02

~B ~C

�0 � 1

2 ~E0

� ~E02
~B ~E

�0

¼ �6

2
ð!1"��6Þ; (5)

R22

~C
¼ 1

~C
� 1

4 ~C0 ~A ~C ~E2

� ~C02 ~A ~E2

~B

�0 ¼�6

2
ð!1"��6Þ; (6)

R44

~E
¼ 1

~E
� 1

4 ~E0 ~A ~E ~C2

� ~E02 ~A ~C2

~B

�0

¼ ��6

2
½ð2þ!1Þ"þ�6�; (7)

where a prime denotes the derivative with respect to the
coordinate ~r3.
In the case of black strings/branes with toroidal com-

pactification, the internal space is flat. Now, we require that
the internal space is exactly the two-sphere, that is ~E �
�a2 ¼ const. Therefore, Eq. (7) reads

� 1

a2
¼ ��6

2
½ð2þ!1Þ"þ�6�; (8)

which is valid for " � �" ¼ const. On the other hand,
Eqs. (4)–(6) exactly coincide with the vacuum

3Obviously, there is no need for such additional matter in the
case of KK models with toroidal compactification.
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four-dimensional Schwarzschild equations if the following
condition holds:

�" ¼ �6=!1: (9)

From this condition and Eq. (8) we obtain the relation

�" ¼ 1

ð1þ!1Þ�6a
2
: (10)

These relations exactly coincide with the relations in
Ref. [1]. From these relationswe can conclude that �" > 0 )
!1 >�1 and sign�6 ¼ sign!1. The parameter !1 is not
fixed and takes part in fine-tuning Eq. (9) between �" and�6.
Choosing different values of !1 (with the vacuumlike
equation of state in the external space), we can simulate
different forms of matter. For example,!1 ¼ 1 and!1 ¼ 2
correspond to the monopole form-fields (the Freund-Rubin
scheme of compactification) and the Casimir effect, respec-
tively [1,13–15]. It is worth noting that in the case of the
zero cosmological constant �6 ¼ 0, the parameter !1

should also be equal to zero: !1 ¼ 0 (Ref. [2]).
As we saw above, the homogeneous matter with the

energy-momentum tensor [Eq. (3), where " � �" ¼ const
and the conditions in Eqs. (9) and (10) hold] provides
spherical compactification of the internal space.
However, to get the external spacetime in the form of the
Schwarzschild metrics, we have to introduce a compact
gravitating object which is spherically symmetric in the
external space and uniformly smeared over the internal
space [4,6]. Let the energy-momentum tensor of this object
read

T̂00 ¼ "̂g00; T̂�� ¼ 0; � ¼ 1; 2; 3;

T̂44 ¼ �p̂1g44; T̂55 ¼ �p̂1g55:
(11)

Therefore, the total energy-momentum tensor is the sum of
Eq. (3) (with " � �") and Eq. (11). In the weak-field limit
"̂ � �̂c2 and for smeared extra dimensions �̂ ¼ �̂3=V2

where �̂3 is the three-dimensional rest mass density and
the internal space volume V2 ¼ 4�a2. In the case of a
pointlike gravitating mass �̂3 ¼ m	ð~r3Þ.

Now, taking into account the gravitating matter source
and keeping in mind that we want to get the Schwarzschild
solution in the external space, it can be easily realized that
the only nonzero components of the Ricci tensor are

R00 ¼ 1

2
�6"̂g00 � 1

2
�N�̂3c

2g00;

R�� ¼ � 1

2
�6"̂g�� � � 1

2
�N�̂3c

2g��; � ¼ 1; 2; 3;

R44 ¼ 1; R55 ¼ sin2�;
(12)

where

�6

V2
¼ �N � 8�GN

c4
(13)

and GN is Newton’s gravitational constant. Substitution of
these components of the Ricci tensor as well as the com-
ponents of the total energy-momentum tensor [where we
should take into account the relations in Eqs. (9) and (10)]
in the Einstein equation [Eq. (2)] shows that these equa-
tions are compatible only if the following equation of state
holds:

p̂ 1 ¼ � 1

2
"̂: (14)

For example, the 00-component of the Einstein equation is

R00 ¼ 1

2
�6"̂g00 ¼ �6

�
"̂� 1

4
ð"̂� 2p̂1Þ

�
g00;

where we take into account Eq. (9). This equation results in
Eq. (14). Similarly, all other nontrivial components also
give Eq. (14). That is, the gravitating matter source should
have tension in the internal space as it takes place for
the black strings/branes with toroidal compactification.
Therefore, the exact solution—the black brane with spheri-
cal compactification—reads

ds2 ¼
�
1� rg

~r3

�
c2dt2 �

�
1� rg

~r3

��1
d~r23 � ~r23d�

2
2

� a2ðd�2 þ sin2�d�2Þ; (15)

where rg ¼ 2GNm=c2. The matter source of this black

brane consists of two parts. First, it is the homogeneous
component of the form of Eq. (3) with fine-tuning
conditions Eqs. (9) and (10). This component provides
spherical compactification of the internal space. Second,
it is the gravitating object of the form of Eq. (11) which is
spherically symmetric and compact in the external space
and uniformly smeared over the internal space. It has
negative pressure [Eq. (14)] in the extra dimensions. This
component provides the Schwarzschild-like metrics in the
external spacetime.
To calculate formulas for the famous gravitational

experiments (the perihelion shift, the light deflection and
the time delay of radar echoes) or expressions for parame-
terized post-Newtonian (PPN) parameters, it is convenient
to rewrite the metrics in Eq. (15) in isotropic (with respect
to our three-dimensional space) coordinates. The
Schwarzschild-like radial coordinate ~r3 and the isotropic
radial coordinate r3 are connected by the relation (see,
e.g., [7]):

~r 3 ¼ r3

�
1þ rg

4r3

�
2
: (16)

For example, in isotropic coordinates

ds2 �
�
1þ 2’N

c2

�
c2dt2 �

�
1� 2’N

c2

�
ðdx2 þ dy2 þ dz2Þ

� a2ðd�2 þ sin2�d�2Þ; (17)

where r3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
, ’N ¼�GNm=r3¼�rgc

2=ð2r3Þ
and we expand the metric coefficients up to the terms 1=c2
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(the weak-field limit). The metrics [Eq. (17)] shows that the
PPN parameter 
 ¼ 1. It is not difficult to demonstrate also
that the PPN parameter � ¼ 1 similar to general relativity.
Therefore, our black brane satisfies the gravitational
experiments at the same level of accuracy as general
relativity.

III. ASYMPTOTIC BLACK BRANE

The matter of the form described by Eq. (3) [with
conditions of Eqs. (9) and (10)] provides spherical com-
pactification of the internal space. The corresponding
manifold has the topology R4 � S2. To get the
Schwarzschild metrics in the external spacetime, we intro-
duced on this background a gravitating mass with negative
pressure/tension [Eq. (14)] in the extra dimensions.

In general relativity, the weak-field limit is a good
approximation to calculate the mentioned above gravita-
tional experiments. In this limit, a gravitating massive body
(e.g., a pointlike mass) has dustlike equations of state [7]. It
is natural to generalize such approach to our multidimen-
sional model assuming the dustlike equations of state in all
spatial dimensions and to perturb the background R4 � S2
by such massive source. This problem was considered in
papers [1,2]. It was shown that the Einstein equations are
compatible only if the background matter also undergoes
perturbations, i.e. the energy-momentum tensor of the
perturbed background is

~Tik �
� ð �"þ "1Þgik; i; k ¼ 0; . . . ; 3;

�!1ð �"þ "1Þgik; i; k ¼ 4; 5;
(18)

where �" still satisfies the conditions of Eqs. (9) and (10)
and the correction "1 is of the same order of magnitude as
the energy density of perturbation �̂c2. We found that in
the case !1 > 0 this model can satisfy the gravitational
experiments [1].

Let us investigate now the more general case, where,
instead of the dustlike equations of state in all spatial
dimensions, we suppose the following energy-momentum
tensor of the perturbation:

T̂00 � �̂c2; T̂�� ¼ 0; � ¼ 1; 2; 3;

T̂44 � ��̂c2a2; T̂55 � ��̂c2a2sin2�:
(19)

Therefore, the total energy-momentum tensor is the sum of
energy-momentum tensors of the perturbed background

[Eq. (18)] and the perturbation [Eq. (19)]: Tik ¼ ~Tik þ T̂ik.
As we pointed out in [1], in the case of uniformly

smeared (over the internal space) perturbation, the per-
turbed metrics preserves its diagonal form and in isotropic
coordinates reads

ds2 ¼ Ac2dt2 þ Bdx2 þ Cdy2 þDdz2 þ Ed�2 þ Fd�2

(20)

with

A � 1þ A1ðr3Þ; B � �1þ B1ðr3Þ;
C � �1þ C1ðr3Þ; D � �1þD1ðr3Þ;
E � �a2 þ E1ðr3Þ; F � �a2sin2�þ F1ðr3Þ;

(21)

where we take into account the spherical symmetry of the
perturbation with respect to the external space. All per-
turbed metric coefficients A1, B1, C1,D1, E1, and F1 are of
the order of "1. To find these coefficients, we should solve
Eq. (2) which is reduced now to the system of equations
(see also [1])

43 A
1 ¼ �6!1"

1 þ
�
3

2
þ�

�
�6�̂c

2; (22)

43 B
1 ¼ 43C

1 ¼ 43D
1 ¼ ��6!1"

1 þ
�
1

2
��

�
�6�̂c

2;

(23)

43 E
1 ¼ ð2þ!1Þ�6a

2"1 � 2

a2
E1 þ

�
1

2
þ�

�
�6�̂c

2a2;

(24)

where 43 is the three-dimensional Laplace operator.
Equation (23) shows that B1 ¼ C1 ¼ D1. With the help
of Eqs. (B8) and (B9) in [1], we also obtain that F1 ¼
E1sin2� and

43E
1 ¼ a2

2
ð43A

1 �43B
1Þ

¼ a2

2
½2�6!1"

1 þ ð1þ 2�Þ�6�̂c
2�; (25)

where in the latter equality we use Eqs. (22) and (23). The
comparison of Eqs. (24) and (25) yields

�6"
1 ¼ E1

a4
: (26)

The substitution of this relation back into Eq. (25) gives

43E
1 �!1

a2
E1 ¼

�
1

2
þ�

�
�6�̂c

2a2

¼
�
1

2
þ�

�
8�GN

c2
a2m	ðr3Þ; (27)

where for the smeared extra dimensions �̂ ¼
m	ðr3Þ=ð4�a2Þ and we also use the relation in Eq. (13).
In the case!1 > 0, the solution of this Helmholtz equation
reads4

E1 ¼ a2
’N

c2
ð1þ 2�Þe�r3=�; � � a=

ffiffiffiffiffiffi
!1

p
; (28)

4If � � �1=2, then the negative value of !1 results in the
nonphysical oscillating solution. Moreover, in the most interest-
ing examples (e.g., Freund-Rubin form-field compactification,
Casimir effect) !1 > 0. Stabilization of the internal spaces also
requires the positiveness of !1 [4,15]. The case � ¼ �1=2 is
discussed below.
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where ’N is defined in Eq. (17). Taking into account
Eqs. (26) and (27), we can rewrite Eqs. (22) and (23) in
the form

43

�
A1 � E1

a2

�
¼ �6�̂c

2; (29)

43

�
B1 þ E1

a2

�
¼ �6�̂c

2; (30)

and we obtain

A1 ¼ 2’N

c2
þ E1

a2
¼ 2’N

c2

�
1þ

�
1

2
þ�

�
e�r3=�

�
; (31)

B1 ¼ 2’N

c2
� E1

a2
¼ 2’N

c2

�
1�

�
1

2
þ�

�
e�r3=�

�
: (32)

To get agreement with gravitational experiments, coef-
ficients A1 and B1 should be very close to each other. In
general relativity, A1 is exactly equal to B1. In our model,
we can satisfy this condition in two cases.

First, A1 ¼ B1 ¼ 2’N=c
2 and E1 ¼ �6a

4"1 ¼ 0 for
� ¼ �1=2. Obviously, this is the case of the previous
section, and we reproduce this exact solution in the
weak-field limit. Here, the parameter !1 is not fixed
and satisfies the condition !1 >�1, including the case
!1 ¼ 0, when a bare cosmological constant is also zero:
�6 ¼ 0.

Second, for r3 � � (roughly speaking, for r3=� ! þ1)
bothA1 andB1 asymptotically tend to 2’N=c

2 andE1, "1 go
to zero. Here, the metrics asymptotically approaches to
Eq. (17) for any value of � � �1=2, including the physi-
cally reasonable case of the dustlike equation of state
� ¼ 0. Therefore, the second case is called the asymptotic
black brane. The parameter� can be set arbitrarily and does
not necessarily equal�1=2. The positiveness of!1 (as well
as�6) is the necessary condition of the considered case. The
metric correction term A1�Oð1=c2Þ describes the nonrela-
tivistic gravitational potential:A1 ¼ 2’=c2. Therefore, this
potential acquires theYukawa correction term. TheYukawa
interaction is characterized by two parameters: the parame-
ter �, which defines the characteristic range of this interac-
tion, and the parameter � in front of the exponential
function. In our case � ¼ 1=2þ�. There is a strong
restriction on these parameters from the inverse square
law experiments. If, for example, j�j �Oð1Þ (and is not
equal to �1=2), the upper limit for � is �max � 10�3 cm
(Ref. [16]). In view of the relation � ¼ a=

ffiffiffiffiffiffi
!1

p
, we have

also a possibility to estimate the upper limit of the size of the
internal space for a fixed value of!1 (usually,!1 �Oð1Þ).

Let us estimate now the Yukawa correction term for the
gravitational experiments (the deflection of light and the
time delay of radar echoes) in the Solar system. We can
take r3 * r	 � 7� 1010 cm. Then, for � & 10�3 cm, we
get r3=� * 1013. Therefore, with very high accuracy we
can drop the Yukawa correction term, and we arrive at the
case of the asymptotic black brane.

IV. CONCLUSION

In this paper we found a metrics for a black brane with
spherical compactification of the internal space. This is the
exact solution of the Einstein equations. To get such solu-
tion, we should first prepare the corresponding background
with the flat external spacetime and the curved internal
space (the two-sphere). For this purpose, we should include
a matter source in the form of a homogeneous perfect fluid
with vacuum equation of state in the external (our) space
and an arbitrary equation of state in the internal space. The
model can also contain a bare multidimensional cosmo-
logical constant �6. To get spherical compactification,
parameters of the perfect fluid should be fine-tuned. The
presence of such perfect fluid is the main difference from
the well-known black branes with toroidal compactifica-
tion. In the latter case we do not need to introduce an
additional perfect fluid, because the background here is
flat for both external and internal spaces.
The next step is to construct a Schwarzschild-like met-

rics in the external spacetime. To perform it, we included a
gravitating object which is spherically symmetric and
compact in the external space and uniformly smeared
over the internal space. We have shown that the Einstein
equations are compatible only if this object has negative
pressure (i.e. tension) in the internal space with the follow-
ing equation of state: p̂1 ¼ �ð1=2Þ"̂. It should be noted
that the gravitating matter source for black branes with
toroidal compactification has precisely the same equation
of state in the internal space.
Then, we generalized our investigations to the case

where the background with spherical compactification is
perturbed by a matter source which has the dustlike
equation of state in the external space and an arbitrary
equation of state p̂1 ¼ �"̂ in the internal space. In the
weak-field limit, we found solutions of the linearized
Einstein equations. The case � ¼ �1=2 reproduces the
weak-field limit of the exact solution. In the case � �
�1=2 and �6 > 0, the metric coefficients acquire the
Yukawa correction terms which are negligibly small at
three-dimensional distances much greater than the char-
acteristic range of the Yukawa interaction. At these dis-
tances, the metrics asymptotically tends to the weak-field
limit of the exact black brane solution. We named the
second case the asymptotic black brane. Obviously, in the
case of spherical compactification, the exact black branes
and asymptotic black branes satisfy the gravitational ex-
periments at the same level of accuracy as general
relativity.
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