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The dimensional reduction of the bosonic sector of five-dimensional minimal supergravity to a
Lorentzian four-dimensional spacetime leads to a theory with a massless axion and a dilaton coupled
to gravity and two U(l) gauge fields and the dimensionally reduced equations of motion have
SL(2, R)/SO(2)-duality invariance. In our previous work, utilizing the duality invariance, we formulated
solution-generation techniques within five-dimensional minimal supergravity. In this work, by choosing a
timelike Killing vector, we consider dimensional reduction to a four-dimensional Euclidean space, in
which the field equations have SL(2, R)/SO(1, 1) invariance. In the timelike case, we develop a new
duality transformation technique, while in the spacelike case we have done that in the previous work. As
an example, by applying it to the Rasheed solutions, we obtain rotating Kaluza-Klein black hole solutions
in five-dimensional minimal supergravity. In general, in contrast to the spacelike case, the resulting
dimensionally reduced solution includes the so-called NUT (Newman, Unti, and Tamburino) parameter,
and therefore from a four-dimensional point of view, such a spacetime is not asymptotically flat. However,

it is shown that in some special cases, it can describe ordinary Kaluza-Klein black holes.
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L. INTRODUCTION

In modern string/supergravity theories and gauge theo-
ries, higher dimensional black holes and other extended
black objects have played important roles. In particular,
physics of black holes in the five-dimensional Einstein-
Maxwell-Chern-Simons (EMCS) theory has recently been
one of the subjects of increasing interest since the discov-
ery of the black ring [1-9] and other black object solutions
with multiple horizons [10-14]. The five-dimensional
EMCS theory describes the bosonic sector of five-
dimensional minimal supergravity, which is one of the
simplest supergravity sharing many common features
with the 11-dimensional supergravity, and can be obtained
as a certain low-energy limit of compactified string theory.
In particular, hidden symmetries such dimensionally re-
duced theories possess are of technical importance since
they enables us to construct nonlinear sigma models
[15,16], which can be useful tools for the proofs of
black hole uniqueness theorems [17—-19] or for solution-
generation of black holes. In fact, various types of black
hole solutions in the EMCS theory have so far been found,
with the help of the solution-generating techniques re-
cently developed by using such nonlinear sigma models
[16,20-25].

The dimensional reduction of the bosonic sector of
five-dimensional minimal supergravity to four dimensions
leads to a theory with a massless axion and a dilaton
coupled to gravity and two U(1) gauge fields with Chern-
Simons coupling [15,26-28]. As was shown in Ref. [15],
the field equations derived by the dimensional reduction
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are invariant under the action of a global SL(2, R) group,
by which Maxwell’s fields are related to Kaluza-Klein’s
electromagnetic fields. This so-called SL(2, R)-duality in-
variance enables us to generate a new solution in (the
bosonic sector of)) five-dimensional minimal supergravity
by stating from a certain known solution in the same
theory, as the G,(1,)-duality invariance [15] does. In our
previous work [29], we utilized a spacelike Killing vector
for the dimensional reduction (hence the dimensionally
reduced four-dimensional space is Lorentzian) and devel-
oped a formulation in which by using a certain known
solution in five-dimensional pure gravity as a seed solution
one can obtain new solutions in five-dimensional minimal
supergravity.

One reason for our interest in developing new solution-
generating techniques is the possibility that they might be
used to generate the most general KK black hole solutions
in five-dimensional minimal supergravity. In [30] it has
been shown that such a solution is characterized by six
parameters—the mass, angular momentum and electric/
magnetic charges of the Kaluza-Klein gauge field and
Maxwell field, respectively. So far, ones with some charges
of them have been discovered by several authors [31-40].
In [29] we applied the spacelike Killing SL(2, R) trans-
formation to the Rasheed solutions, which are known to
describe dyonic rotating black holes (from the four-
dimensional point of view) of five-dimensional pure
gravity and have four independent parameters; and we
successfully obtained a new class of KK black hole solu-
tions with five independent parameters, though we were not
be able to find, within that framework, the ones with the
maximal number (= 6) of parameters.

Therefore, in this paper, we focus on another SL(2, R)
symmetry that appears in a spacetime with a timelike
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Killing vector. The dimensional reduction of the
Lagrangian can be done mostly in parallel in both timelike
and spacelike cases, except the sign flips of some terms that
result in different coset spaces, SL(2, R)/SO(2) if spacelike
and SL(2, R)/SO(1, 1) if timelike, just like the SL(2, R)
symmetries of dimensionally reduced pure Einstein theory
[41-44]. This SL(2, R) is, of course, a subgroup of the
Gy (1) symmetry if the spacetime allows another spacelike
Killing vector, and the two SL(2, R) group actions do not
commute but generate the whole G,().

The purpose of this paper is to examine whether or not
this timelike Killing SL(2, R) can be used for generating
six-parameter solutions. We will see that it cannot, unfortu-
nately. We first present the SL(2, R) transformation formu-
las in a unified way so that they can be used in both spacelike
and timelike cases if the signs are appropriately chosen, and
generalize our previous work [29] to the timelike case.
Then, as an example, we apply it to the Rasheed solutions
again to obtain rotating Kaluza-Klein black hole solutions in
five-dimensional minimal supergravity. As will be shown
later, in general the resulting (dimensionally reduced) space-
time geometry (which can be derived by the flip) has the
so-called NUT (Newman, Unti, and Tamburino) parameter,
and hence the four-dimensional reduced spacetime is not an
asymptotic Minkowski spacetime. However, in some special
cases, it can be shown that the NUT parameter vanishes and
hence in that case, it can describe usual Kaluza-Klein black
holes, i.e., asymptotically flat black holes from a four-
dimensional point of view.

The remainder of this paper is organized as follows:
In the next section, we will discuss our strategy for the
solution-generation technique in both the spacelike and
timelike cases. In particular, we will show that in the
timelike case, the dimensionally reduced field equations
have SL(2, R)/SO(1, 1) invariance. In Sec. III, by acting
the SL(2, R) transformation on a certain seed solution, we
write down some necessary formulas. In Sec. IV, we pro-
vide some brief review concerning the Rasheed solution,
which we use as a seed in this paper. Also, applying
actually this formalism to the Rasheed solutions, we
present black hole solutions and study some basic proper-
ties, in particular, its asymptotics. Section V is devoted to
summarizing our results and discussing our new method. In
Appendix A, we apply the duality transformation to the
asymptotically flat five-dimensional Myers-Perry black
holes [47] and show that the solution obtained thereby
coincides with the Cvetic-Youm solution [48]. In
Appendix B, we clarify the precise relationship between
the SL(2, R)-duality transformation and the nonlinear
sigma model approach provided in [16].

IL. D = 4 SL(2, R) DUALITY
WITH A TIMELIKE KILLING

In this section, we summarize the SL(2, R) duality
symmetry of five-dimensional minimal supergravity in
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the presence of a timelike Killing vector field. The reduc-
tion procedure is basically the same as the spacelike case,
except the sign flips of some terms in the Lagrangian and
the duality relations. They result in different coset spaces,
SL(2, R)/SO(2) if spacelike and SL(2,R)/SO(1,1) if
timelike, just like Ehlers’ or Matzner-Misner’s SL(2, R)
symemtry of dimensionally reduced pure Einstein theory.

The conventions and notations are basically the same as
those used in [29]. The Lagrangian is

1
L = E<5><R<5> — ZFMNFMN )

1 MNPQR
€ F FppAp. 1
12\/§ MNT POQAR ( )

The vielbein E;S,)A is related to the five-dimensional metric
GO, as
MN

Giw = E"EQ  nas, 2
where
nap = diag(+1, +1, +1, +1, —1) 3)

in the present case. €”NPOR ig the densitized antisymmetric

tensor that takes values *1.
As usual, we decompose the vielbein and gauge field as

—(1/2) p@a
9 — (p EJ)* Bup ) @
0 p
Ay = (A, A, 5)

where p («) is the four-dimensional curved (flat) index.
Correspondingly, the five-dimensional coordinates x¥ are
grouped into (x*,1), and 1,5 = 8,p. All the fields are
assumed to be independent of .

To make the D = 4 SL(2, R) symmetry manifest, we
need to dualize the Maxwell field A, [15,49] into

2 1
p(*F(4)),uV - _AIF,EfI)/ + _A%B,u.w (6)

A==
. V3 V3
where

Fi) = F,, + B,,A, (7)
F;.LV = a,lLA/V - aVAfu,! (8)
A;L =A, - B,A, 9)
B,,=0d,B,—9,B,. (10)

We also define

A
Gy = ( ’”) (11)
124 BMV

and
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5_[/§
H,, = "”) =m(xG),, + aG,,  (12)
" (Hﬁy " “

where

Vimy~!l = K — {®P*K + KO D) + 10D KD,

ViavTl = —®*K + & + J(PD?K + KD D)
— 10D D — IPDHKD, (13)
(0 ) (s )
0 pB2) V3¢ 0 )
2¢ 0 (14)
P = ¢ ,
00
K=({1+ ®?)"! ¢ Eip*lAt' (15)
’ V3
Explicitly,
HA, =AB,, —Fi =-F,, (16)
AlB,, A,
}[Zv= e LA _pAl*Fszj_‘_p:;*B,U«V

33 V3
(17)

Note the sign of the second term of (12). Also, two of the

terms of a has changed their signs compared to the space-

like case [29], while the matrix m has remained unchanged.
It is convenient to introduce

Guv
Fu = (5{# ) (18)
ny

so that the equations of motion and the Bianchi identities
are expressed in a unified way:

dF =0, F= %fwdx“ A dx?. (19)

This means that F must be written as d A for some four-
component column gauge potential vector A = A, dx*,
where

A, = o (20)

m
—Al,
B
H ©
where A x and H ﬁ are some gauge potentials that satisfy
A,=0,A,—93,A, and HE =0, HE—-09,HE,
respectively.
It can be shown that F,,, satisfies

Fuw =V 'QVEEF) 2n

uv
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where

V-V V., v+=(v )
Vl

(22)
V_= exp( — ¥ ) = :
-d 1
1
The scalar Lagrangian L can be written, using
R =QV1QY, (23)
or
R'=V1QV=R", (24)
as
L= %E(“) Tro,R'9*R’. (25)

The equations of motion and the Bianchi identity are
invariant under

Fu A Fu (26)
V — VA, (27)
R’ ATIRIA, (28)

where A is an SL(2, R) matrix in the spin —% (that is, 4)
representation generated by

E = 0
; :
\ V3
( ﬁ\
,_ V3
F=l , (29)
\ 0 )
/1
w=| 7
-1

Since the SL(2, R) transformation (26) is a rigid one, it
can also be written at the gauge potential level:

A, A4, (30)

The point is that, once the gauge potential vector A,
can be computed for the seed solution, the new B " and
—A), fields can be found by simply a trivial matrix
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multiplication. The nontrivial task is the computation of
A » and H ﬁ, but the effort is reduced compared with the
integrations of the potentials in the G, sigma model
approach.

The scalar matrix R is defined as a 4 X 4 matrix in (23);
it is more convenient to consider scalars in the defining
representation of SL(2, R) by using the Lie algebra
isomorphism 77:

0 1 0 0
7T(E’)=<O 0)’ 7T(F’)=<1 0),
(10
win=(y °)

(“ )

be a generic SL(2, R) group element in the defining repre-
sentation, where a, b, ¢, and d are all real numbers with
ad — bc = 1.If d # 0, it can be written as

Y (0% CRYRIC

38262 +48e+1 /382
J3e? 1

(31

Let

—8(36e +2)
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for some real J, €, and y. If d = 0, on the other hand, this
parametrization is singular. However, a generic such
element

can also be achieved by taking a limit «, 8, y — o0 in (32)
with % =pand y + “—y’g = ¢ fixed. Therefore, we consider

SL(2, R) transformations associated with group elements
of the form

A= e*éE’e(logy)H’efeF’. (33)

Moreover, since the Cartan algebra degree of freedom does
not add a new parameter to the solutions, we set y = 1 for
simplicity and ignore the e factor [29]. (In fact, it also
turns out that this SL(2, R) transformation can add only
one independent parameter, and 6 may also be set to zero
[29].) Hence

—3e(de + 1)2
_\/§€ —&3

= (34
—e(38e+2) —+38 36e+ 1 V3e(Se + 1) )
—38(8e + 1)  —8% 38%(Se+ 1) (5e + 1)
36e + 1 V38%(8e + 1) 5(38€e +2) Ve
Al = V3eX(8e + 1) (e +1)3 VBe(Se + 1)? e 35)
€B6e+2) 35(Se+1)? 3822 +48e+1 3|

V36 &3

de+1 —6
m(A) = . (36)
—€ 1
Also we find
-1 -1
p — P A
7(R) = L -1 1731 2 ’ (37
tap A —3p ATt

which transforms as
7m(R) = 7(QAT'Q)7(R)m(A),
de+1 e) (38)

7(QA1Q) = ( s

V3682 1

III. TRANSFORMATION FORMULAS

The SL(2, R)-duality transformation requires that
solutions should admit the existence of at least a single
Killing isometry. In this paper, we assume that a spacetime
admits two commuting Killing vector fields, timelike one
d/at (at least at infinity), and spacelike one d/dx° and that
each component of the spacetime metric and gauge poten-
tial oneform are independent of # and x°. While in our
previous work [29] we used the spacelike Killing vector
d/ax> for SL(2, R)-duality transformation, where the five-
dimensional metric is written as

ds*> = p*(dx> + B,dx*)* + p~lds,, (39)
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we now rather use a timelike Killing vector d/9¢ and hence
one should complete the square by dr for a certain seed
solution:

ds? = —p*(dt + Bydx™)* + p~'dsl, . (40)

Here w, v, - - - runs indexes except x> and @, ?, - - - runs
" 2

ones except 1. ds(yy = ¢\ dxtdx” and dSu) = gif:)ﬁdxﬁ“dxﬁ
are the four-dimensional metrics on the dimensionally
reduced spacetime and space, respectively. In this paper,
we call the operation flip. In general, this operation changes

a set of the fields (gEfL, B, A, p, As) to a set of different

fields (g}f)ﬁ, éﬂ, Aﬂ, [),A,), while the flip itself does not

generate any new solutions, i.e., the solution described

by the fields (gifj),}, éﬂ, Aﬂ, D, A,) is the same as the one
by (gﬁf)y, B, AL p, As). After the flip, one performs the
SL(2, R)-duality transformation for the flipped seed solu-
tion and then can obtain, in general, a different solution
in the bosonic sector of D =5 minimal supergravity
(we denote these field by new). Finally, one again flips
the solution, i.e., one completes the square by dx’ rather
than dr for the obtained solution. Through this paper, we
denote the flipped fields by attaching hat. To summarize,
the procedure of obtaining new solutions by the series of
transformations is as follows:

(8§h, By Ay, p, As) = Flip = (855, Bz, Ay, p, A))
— SL(2, R) duality transformation
= @™ B AR, P A1)
— Flip
= (g™, B, ALY, s AF™).

Further, though the below formula, we assume that the
spacetime also admits another spacelike Killing vector
d/d¢ that commutes with the other two Killing vectors.
In general, this symmetry assumption is not necessarily
required for our SL(2, R)-duality transformation. This is
simply for later convenience and, actually, in the following
section, we will apply our transformation to the Rasheed
solutions that have this symmetry. In this case, it can be
shown that a two-surface orthogonal to the three Killing
vector fields are integrable [17,50]. For the integral two-
surface, we use two coordinates (r, ).

A. Flip

By completing the square by dt, we can easily obtain the
flipped scalar fields (p, A,), U(1) gauge fields (B, A ;) and
four-dimensional metric gi;”ﬁ. After the flip operation, the

dilaton and axion fields can be written in the form:

p2=—(p’B + p~'g)), 1)
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A, = A, (42)

The gauge potential oneforms for the Kaluza-Klein U(1)
field and Maxwell U(1) field are, respectively,

2 -1,@)
. A pP° BBy tp g ’B
Bpdxh = -0 T S0 gy PO, 43)
p p
The four-dimensional metric is
)
. P 8 2
ds, = - 7[ g§;‘>{dx5 + <B¢ - %B,)dqﬁ}
p 8it
@ @4 @2 ,
8pp8ut” T 814 p? 2
@ e
81 p
+ L (gWar + g ae?). (45)
o

B. SL(2, R)-duality transformation

In general, performing the SL(2, R)-duality transforma-
tion on the flipped fields (41)—(45) yields a different solu-
tion from the one obtained by starting from the unflipped
(hence, original) fields. According to (38), the dilaton
and axion fields for the new solution take the forms,
respectively,

N

p

P new = g , (46)
{1+ €6+ %)}2 — e2p?
) (1+65+E%)(5+%)—6ﬁ2
Arv =3 : : . @

{1+ €6+ %)}2 — e2p?

Also, by (26), the two U(1) gauge fields are transformed to
Biv = \3eX(1 + 8e)A, + (1 + 8€)°B,

— el + 66)214;2 + 635:[2, (48)

Anev = —(35€> + 2e)A, — V38(1 + 5e)B,,

+ (382 + 45e + 1A, — V32 H . (49)

Under the transformation, the four-dimensional metric is
invariant:

gl =g (50)

C. Flip again
Finally, in order to write the fields (gwﬁfﬁgew, E‘}fw, A‘;{’W,

Prews ATV) in the standard Kaluza-Klein form (though this
is not always required), we again must flip the new solution
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by completing the square by dx’. After performing the
second flip, the dilaton and axion field (pyey, A2*") for the
new solution are in the following forms, respectively:

Plow = —(Prew) P (BE) + (Prew) 122Y,  (51)

PHYSICAL REVIEW D 86, 024022 (2012)

flat black hole solutions such as the five-dimensional
Myers-Perry solutions [47]. See Appendix A for this.) The
metric of the Rasheed solution is given by

B A
ds* = Z(dx5 + B, dx*)* + ‘/;ds(a), (56)

ARV = ALV, (52)
where the four-dimensional (dimensionally reduced) metric
The two U(1) gauge fields are is given by
(Boew) 2 (B2) P JAB
BYVWdxt = ——5—="dt 2 — _ 0 2 2
uo ax przlew dS(4) = ﬁ(dt + w¢d¢) + le"
(oew PBENBE™) + ()™ 85" JABA
_P 3 00 T Pren] B30 g, + VAR + 55 sint 0o (57)
pnew
(53) " Here the functions (A B, C, w%, wfﬁ, £2, A) and the oneform
ew Anew B, [51] are
AR = Ay (54)
L L . 3\ 2P s
The dimensionally reduced four-dimensional metric A= (r - —) — ———— + a‘cos“d
d 2 ___(4)new yr TR . \/§ E - \/gM
SUnew — &uv dx*dx" is given by
2JPQ cosf (58)
2 ﬁnew A (4)new A gé‘gnew Anew 2 (M + 2/\/5)2 - Qz,
ds(4)new == p [gSS {dt + (B¢ o A (4)new B5 >d¢}
new g55 E 2 ZQZE
5(d)new ~(d)new _ A(d)new2 o B = (}" + —) -+ CZZCOSZG
84 8ss 856 Phew d¢2] V3 2 +3M
8 (Sé;)new Drcw _ 2JPQ cosf (59)
_ 2 _ p2’
+ fjnew (g(rét)newdrz + §(049)newd02)‘ (55) (M 2/\/5) P
new
2PJ cosO(M + 3. //3)
=92 — —
IV. APPLICATIONS € =20(r=%/V3) M —S/B3)2 — P (60)
A. Rasheed solution
. . . 2Jsin’6
In the following subsection, using the SL(2, R)- w% = 5 [r —-M
transformation mentioned in the previous section, we will f
generate a rotating black hole solution, starting from the (M2 + 32— P2 — 0)(M + 3/3)
Rasheed solution [32]. Hence, in this section, we briefly + M+ 3/3) — 0? ] (61)
review the Rasheed solutions in five-dimensional pure
gravity. (We also apply our technique to asymptotically
|
) _ 2_p2_ 2
s 2PAcos® 2QJsin’0[r(M — 3/+/3) + M3/\3 + 32 — P2 — Q7] ©2)

@y f2

A=r>=2Mr+ P>+ Q* - 3%+ 4% (63)

fFP=1r"—2Mr+ P>+ Q> — 3% + a’cos’0,  (64)
C C

Bydxt = dr + (‘”fb + Ew%>d¢, (65)

where B, describes the electromagnetic vector potential
derived by dimensional reduction to four dimensions. Here

FAM + 3/V3)7 - 07]

the constants, (M, P, O, J, X)), mean the mass, Kaluza-
Klein magnetic charge, Kaluza-Klein electric charge,
angular momentum along four dimensions and dilaton
charge, respectively, which are parameterized by the two
parameters (&, f3)

M— (1 + cosh?&cosh?B) cosha M, 66)

2y/1 + sinh?cosh? 3
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s V3 cosh@(1l — cosh? B + sinh?acosh?B) M., (67)

24/1 + sinh?acosh? 3

Q = sinha& \/1 + sinh?@cosh? 8 M, (68)

inh3 cosh3
p— sinh 8 cosh3

\/ 1 + sinh?a&cosh?

My, (69)

J = coshf3 \/1 + sinh?&cosh? B aM,. (70)

Note that all the above parameters are not independent
since they are related through the equation

Q? N Pz 2%
S+3M  S-BM 3’
and the constant M, is written in terms of these parameters

M;=M*+3*— P> — Q% (72)

(71)

The constant J is also related to a by

_ L+ S/BP - QUM — 3/NFR - P

J2
M2+22—P2—Q2

(73)

The dilaton and axion fields for the Rasheed solution

are, respectively,
B
=4/ As; =0. 74
\’ n 5 (714)

The Kaluza-Klein gauge field and Maxwell field are,
respectively,

C C
Bﬂdxl‘ = Edt + (wfb + Ew%)dd), Aﬂdxl‘ = 0.

(75)

B. Flipped Rasheed solution

By completing the square for the time coordinate ¢, the
metric of the flipped Rasheed solution is obtained:

Af? — C? L AB
B (dt + Bpdxt)* + YR Czds(24),

(76)
where the gauge potential oneform for Kaluza-Klein U(1)
gauge field is

ds? = —

—BC

Budih = o

—BC
dxs + (m a)?ﬁ + w%)d(b,
(77

and the four-dimensional metric is

PHYSICAL REVIEW D 86, 024022 (2012)

Bf2
A + 03y do)

N2 oA
dS(4) _p[Af2 —

AA dr?
+ —-sin?0d¢? + Al —— + d6? | |
7 sin“fd ¢ A( A do )] (78)

From this, the dilaton and axion read

Afz _ C2
p =4 ——— 79
p 1B (79)

A, =0. (80)
The gauge potential oneform for the Maxwell field is

C. Transformed Rasheed solutions

Applying the SL(2, R)-duality transformation to the
flipped Rasheed solution, we can obtain new Kaluza-
Klein black hole solutions in D = 5 minimal supergravity.
By putting A, = 0 in Eqs. (46) and (47), the two scalar
fields for new solutions are written as

N

p
(1 + €6)* — €2p*’

(82)

A p—
P new =

~ 1+ — €p?
Anewz\/g( €8)8 — €p

(1 + €6)* — e2p*’ (83)

Putting ’:iu = A;L = 0 in Egs. (48) and (49), we imme-
diately obtain the two vector fields as

B = (1 + 8¢)°B,, + e, (84)
AV = [(1 + 8€)Ar™ — V35(1 + 5¢)21B,
+ (SAY — ) H Y, 85)

where /l”i can be obtained by actually integrating
Eq. (17) as

N —2PQ — 2J cosf
jg = 2R (86)
~ B
g-[¢
—<b r+(c2r2+clr+co)cos¢9+d3r3+d2r2+d1r+d0>
—(», ,
A

(87)

where the constants by, c¢q, ¢|, ¢y, do, dy, dy, dy are
defined by

b= — s = 2JP(M + 3//3)
O AM -3/ - P

(88)
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1 422 8/3M P?
Co = EQ[ 4 2 - _\/\/__
+ 6\/§M3E(—12P2 -

+ (24J2P2(54M5 + 63\/3M3S — OM*(6P? +

1502 + 1122) - (302 -

PHYSICAL REVIEW D 86, 024022 (2012)

120% — 1332)
32)(90%(P? + Q2) — 3(2P% + 50%)32 + 534)

+ 3M2(27Q*(P? + Q%) — 18(2P2 + 30?32 + 2834) + /3M3.(450* — 660%32 + 1934
+ 6P2(90% — 43))[81a2[(M — 3//3)* — P2[(M + 3//3)? — 0°F1” ] (89)

403

4°P20(M + 3/3)

cp =

B M- 3/B)? - P(M + 3/B) - Q7

(90)

¢y = —20, 91)

dy=[2JP(813a>M2Q*(—2M? + P2 + Q) + 81M(a>(3M* + M? Q2 —202(P* + Q%)) + 2P*(2M*

—2M*(P* + Q%) + QX(P? + 0%)))S +27V/3(3a>M* + 2M6 —
2TM(6a*M? + M* —

+a*(M — P)(M + P))Q* + (a> + M* —
—(Ta* + M? -
—(5a* + M? = 11P?) Q% + Q") 3* + 9M (3a* +2M* —

2P2)Q4)22 _

dy = [2JPQ7B2M*(M — Q)(M + Q) + 54M(a*M? + 2M* + Q*

4M?P* — 2M* + M*P? +2P*

4M?P? —4P*

6P%) Q% +20%) 33 + 9/3(—6a>M* + M* + 12M2 P2 + 4P*
8P +7Q%)35
—3M37 +5V338)|[8133a>(M — 3 /32 [(M — 3 /v/3)> — P2I[(M + 2 //3)? —

—33/3(—3a% + 8M* + 12P* + 50%)36
%] (92)

- M*(P* +20%)%

+9V3(3M* + M2(2P* — 30%) + Q%(a® — 2(2P% + 0%)))32 — 18M(a® — 3M? — 5P? + 20?33
+3v3(—a® + 8M2 + 6P* + 110%)34 — 30MS5 — 11V/339)[—27v3a2(M — 3/+/3)

X [(M — 3/v3)? — P2I[(M + 3//3)* —

dy = —[2JP(—18M* — 9Q*(P2 + Q%) — 15v3M3S + 3(2P% + 71Q)32 —
+3V3MI(4P? +5(Q — 3)(Q + ))[9a2[(M — 3/3)?

D. Flipped transformed Rasheed solution

By flipping the metric and Maxwell’s U(1) field again
according to Sec. III C, one can read off the (Lorentzian)
metric and Kaluza-Klein’s U(1) field and Maxwell’s U(1)
field for the four-dimensional dimensionally reduced
spacetime.

E. Asymptotics

Now we investigate asymptotics of the obtained
solution. It turns out that the solutions do not have
Kaluza-Klein asymptotics in a usual sense since after the
flip the t¢ component of the dimensionally reduced
four-dimensional metric (55) at infinity » — oo behaves as

(4)new ~

816 N3/2 (c +20€*cosh) + O(r™ 1), (95)

where the constants N and ¢, are

N=(1+ 8¢e)? — €, (96)

o,

(93)

734 + 3M2(6(P? + Q2) — 1132)
— P2I[(M + 3/3)F — 02T 94)

[
c=—[2JP3(18M* + 9Q2(P? + 0?) + 9\3M>S,
—3(2P* +50%)3% +53* —3M*(6(P? + Q) — 53?)
+3BMS(—4P? — 302 +332))]
X [a*(3M? —3P* — 2/3MS + 32)

X (3M? —30%+2/3M3 + 32)] . 97)

The constant term vanishes under the coordinate trans-
formation t+ — ¢ — t but the term proportional to cosf
does not vanish (hence this is not a simply gauge). The
existence of this term means that the dimensionally re-
duced spacetime has the so-called NUT parameter. Though
as a result, for our solutions the dimensionally reduced
four-dimensional spacetimes are generally not asymptoti-
cally Minkowskian, if and only if Qe = 0; this NUT
parameter vanishes and our solutions describe usual
Kaluza-Klein black holes.
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V. SUMMARY AND DISCUSSION

In this paper, in the choice of a timelike Killing
vector, we have performed dimensional reduction to a four-
dimensional Euclidean space and have also shown in that
case the field equations are invariant under SL(2,R)/
SO(1,1) transformation. In the timelike case, we have also
developed a new solution-generation technique using the
duality transformation, as we have done in [29] for the space-
like case. As an example, by applying this transformation to
the Rasheed solutions, we have obtained rotating Kaluza-
Klein black hole solutions in five-dimensional minimal
supergravity. In general, in contrast to the spacelike cases,
the resulting dimensionally reduced solution includes the
so-called NUT parameter and for this reason, in general,
the dimensionally reduced spacetime is not asymptotically
flat. However, in some special cases (for instance, when the
electric charge Q for the Kaluza-Klein U(1) field vanishes), it
can describe ordinary Kaluza-Klein black holes. Finally, it
would be interesting to examine if the signature change
of spacetime [46,52-55], observed in various timelike T
dualities, also occurs in this single timelike Killing case.
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APPENDIX A: MYERS-PERRY BLACK HOLES

The flipped metric of the five-dimensional Myers-Perry
solutions is given by

2 2 2
ds2=—<1—’—g)(dt— FOsin’6d e~ b
Y ’—rp Q*—r3

coszﬁdtp)

Ra?
+ (x +a’+ 52— s1n29)s1n249dqf>2
Q ’”0

2h
+ (x + b2+ LZCOSZH)COSQG

Q—rg

2ab
+2Qr2°“ Ssin®6cos20dpd
1

0’

+ 2 2
4Adx 0°db”,

(AD)

r2a2

2D
+[$* — &1 - rg/gz)][(x +a?+ QZO— 5 sin20)sin20d¢2 + (x + b2+ 07

"o
2
rgab
+2 o —
5

5 sin?fcos?0d pd s + & dx + deﬁz]

el DA
[¥* — &0 - rg/e)P\ ¢ Q* — 15

PHYSICAL REVIEW D 86, 024022 (2012)

where

0% = x + a’cos’6 + b*sin’6

(A2)
= (x + a®)(x + b?) — r3x.
The dilaton and axion are, respectively,
2z
p=4/1— o A, =0, (A3)

and the Kaluza-Klein’s and Maxwell’s U(1) fields are

P ria rsb
Bydxt = — ———sin*0d¢ — 5cos?0dy,
Y o 0’ 0 (A4)
Aydxt =0
Integrating Eq. (17), we obtain
N . bri(x + a?) ari(x + b?)
HBdxh =9 2 07d . (A5
adx (@®> — b?)p? (a® — b))o? P (AS)
Consider the rescale of the coordinates:
dr — dt, Ndx — dx, (A6)
N
the redefinition of the parameters:
NY2ry—r, NY2a—a, N'2b—b, (A7)

where we have defined N =192 —¢€> (y =1+ Se).
Further, transform the coordinates

2 2

. rsb . rsa
dt+e3ﬁd¢—e3ﬁd¢—>dt, (A8)

where € = €/N'/2 and ¥ = y/N'/2. After the redefinition
and coordinate transformations, the metric [derived by the
SL(2, R)-duality transformation] takes the following form:

=3

-3 3
ee—f)sinzﬁdqﬁ - r%(y—b eea) 0520d¢]

2 2
Yy Ty

5 coszﬁ)cosze
@ —ry

(A9)
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This coincides with the metric form of the Cveti¢-Youm
solution [48] that was (re)derived by the G, transfor-
mation in Ref. [16]. (Note that ¥ = ¢ and € = —s.) See
Appendix B for the relationship between the two, SL(2, R)
and G,(4y), transformations.

APPENDIX B: RELATION TO THE HARRISON
TRANSFORMATION IN THE G, DUALITY

In this appendix we clarify how the timelike SL(2, R)
transformation, investigated in this paper, is embedded into
Gy (1) if the given seed solution allows another spacelike
Killing vector a% A similar analysis for the case when the
two Killing vectors are both spacelike was already done
in [27].

We decompose the four-dimensional metric (vielbein)

and gauge field as
¢ p3a -4
EPe = (e e Cne ) (B1)
0 e ?

1,
L= E<3>(R<3> + 7 0ng "8y —

1 1
_ —€2F£3,),F(3)mn _

where g;; = e;?na,;elT and Fi), =
multiplier terms

PHYSICAL REVIEW D 86, 024022 (2012)

A, = (A, A,), (B2)
and write
—1(3)a i ,a
EOA [ e E; Bm_ei ’ B3
M 0 e (B3)
AM = (Am> Ai)’ (B4)
6 O )
= a , = diag(+1, —1), (B5
NAB ( 0 7 ab g( ), (B5)
) ~(1/2)p=¢ ,HB .
el = (p ¢ P Z), e = dete?,
0 r (B6)
B, = (Cy, B,).

Here m (a) is the three-dimensional curved (flat) index,
i=1t zand a = 1, 2. All the fields are assumed to be
independent of ¢ and z. Then the reduced Lagrangian reads

1 1 .
e 20,,edme —~g"0,,A,0mA; — —e’g,;Bl, B/™

2 4
—— EO-! m"f’eme,,a,,AA> (B7)

F,,— ZBEnﬁm]A,-. The vector fields B!, and A,, are dualized by adding the Lagrange

Li;é3mult == emnp(an p® + an pl// ;) (B8)
and completing the squares. Up to duality relations we have
1 - 1 .. 1 .
L+ ﬁi;;m = E(3)<R(3) + Zémg”amgi/- —e7%9,ed"e — Eg’JamA,»é)’"Aj + Ee”(&,ngo - TEJAiaMAj)
X (8’"90 - ieklAka'"Al) + 1efzgllf(a W — A0,0 + Le KAALD,,A )
\/3 ) mYi m 3\/5
1
m _ Kl
The duality relations are
FS,), = —¢ 2EV" lem,,<apgo - L6’A-’AAié)ij),
V3 (B10)
. 1
— _ 25031 _ ki
Bi, = —e 2E®) eﬁm<ap¢i A0, + W?F‘ A,-AkapAl).
From (BY) the target space metric can be read off, in terms of a matrix (g);; = g;; and vectors (K)i = A; and (J;)i = i;,as
A5ty = - Tr(g~'dg)* + e 2de* + ldeg_ch - l(e_z(dgo - L45"J'A<dA~)2
target 4 2 2 \/g 1 J (B] 1)

YR L, r

33

e (40 - a{ae

3f €AdA, ))

Comparing (B11) with the target space metric of Ref. [16], Eq. (77), the translation rules are g — A, e — 12 o —

and A — /3y and  — V.
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To reveal its group theoretical structure, we introduce a set of G,y generators hy, hy, E; A=i#j=3),
E' (1 =i=3),and E; (1 =i = 3), satisfying [27]

[hih;]=0, [h,E/]=8E — & E*' —SLEl+ 8" E/,,,, [h, E/]=8lE' - 8], E™",

[hy EX]=—(81E; — 8171EL, ), [E', EX]=6%El,— 8%, [E', E¥]=8¢E], (B12)

3 3
[E',El=—8LE;, [E,E]= —2% e*E;, [E}Ej]= +2% e EY, [ELE}]1=3E ifi# ],
[EI,ET]=2I’11 +h2, [EZ,E;]= _I’ll +h2, [E3,E§]=_h1 _2h2,

where €% and €, are totally antisymmetric tensors with €'** = €53 = +1 (The sign convention for €,; was — 1 in [27]).
This is the realization due to Fruedenthal, which shows the close relationship between the two exceptional Lie groups Eg

and G, [27,56]. Then the Gy, ) group element

i} - - - ) 1 . 1
V& = exp(—(logel)h, — (logeje3)h,) exp(—etesE')) exp(i,E's) exp(— ﬁAlEl>exp(ﬁ ¢E§) (B13)

gives rise to a right invariant vector field

1 1 . _
0y VOVO! = 20,( -+ logp)hy + 3 0, (6 — logp)hy = e#/2p0/a,, BE') — —= ki AL

V3
1

1 . 1 ]
+ e*(— I — ge’/AiamAj)E§ - e*lea.l<am¢,» — A + —eklA,»AkamA,)E“3. (B14)

7 33

To obtain the reduced Lagrangian (B9), we define the symmetric space involution 7, which is an automorphism and
decomposes the Gy, ) Lie algebra into its eigenspaces:

N =

Gy =HOK  H={X € Gyslr(X) = +X},

K = {X € Guyrplm(X) = =X}, (B15)
In the present case, H is defined to be a subspace spanned by
E',+E, E.+E, E,-E, E —-E, E+E adE +E, (B16)
and K is by
E', — E?, E', - E*, E* + E3), E' + E}, E’ - E; E? - E}, hy and h,.  (B17)

The reduced Lagrangian (B9) can be obtained (with a suitable overall constant normalization factor) by projecting
(B14) onto K and taking trace of the square. H is the Lie algebra of the SO(2,2) ~ SL(2, R) X SL(2, R) subgroup,
and hence K the Lie algebra of the coset space Gy(1,)/SO(2,2). According to the general prescription, the coset
representative is

RO = (VO YO, (B18)

then E® Trd,, R~ 19" R is automatically proportional to (B9). Note that the coset representative can be chosen, as in
[16], to be a symmetric matrix, which can be obtained by multiplying a suitable constant matrix to R ® from, say, the right,
but it is not necessary.

The timelike Killing SL(2, R) we considered in this paper acts as a group multiplication to the SL(2, R) generated by E?,
E5, and —hy + hy. On the other hand, using the dictionary given below (B11), one can identify that these generators are
represented in [16] as
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(0 0 0 0 00 2
O 0 0 O 00 O
0O 0 0 O 00 O
E2=]10 0 0 0 0 0 0|
0O 0 1 0 00 O
0O -1 0 0 0 O0 O
\0 0 0200 0/
(2 0 0
0 -1 0
0o 0 -1
hy—hi=]10 0 0
0 0 0
0 0 0
KO 0 0
and the matrix C in [16] for the Harrison rotation
( ¢ 0 0 s 0 0
0 c 0 0 0 =
0 0 0 -s 0
C=| s* 0 c? 0 0
0 0 —s 0 c 0
0 s 0 0 0 ¢
K\/isc 0 0 2s¢ 0 0

S O = O O O O

c2+s2)

PHYSICAL REVIEW D 86, 024022 (2012)
0 0 \
-1 0

S O O O O o O
S O O O O o O
S O o O = O

c o o o o
ooo&lo

(B19)

— O O O O O O O

S O O o O o O©

N—

s ¢ = coshe, s = sinha (B20)

can be written as exp(—a(E? + E%)), and hence belong to the timelike Killing SL(2, R). This explains why we have
obtained the Cveti¢-Youm solution in Appendix A. Note that exp(—a(E? + E})) is not the same as the SL(2, R) group
element used in Appendix A; this redundancy of the SL(2, R) group element was already reported in the spacelike Killing
case [29].
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