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It is often emphasized that spin-foam models could realize a projection on the physical Hilbert space of

canonical loop quantum gravity. As a first test, we analyze the one-vertex expansion of a simple Euclidean

spin foam. We find that for fixed Barbero-Immirzi parameter � ¼ 1, the one-vertex amplitude in the

Kaminski, Kisielowski, and Lewandowski prescription annihilates the Euclidean Hamiltonian constraint

of loop quantum gravity [T. Thiemann, Classical Quantum Gravity 15, 839 (1998).]. Since, for � ¼ 1, the

Lorentzian part of the Hamiltonian constraint does not contribute, this gives rise to new solutions of the

Euclidean theory. Furthermore, we find that the new states only depend on the diagonal matrix elements of

the volume. This seems to be a generic property when applying the spin-foam projector.
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I. INTRODUCTION

A. Motivation

One major problem when quantizing gravity is the con-
strained algebra, which completely determines the theory,
and background independence. Canonical loop quantum
gravity (LQG) [1–3] follows the ideas of Dirac [4] for
quantizing constrained systems and preserves background
independence. The kinematical Hilbert space H kin of
LQG is spanned by spin-network functions living on semi-
analytic closed graphs embedded in a 3-dimensional spa-
tial hypersurface � of a 4-dimensional manifold M.
Diffeomorphism and gauge constraints can be embedded
via a group averaging procedure. The remaining constraint
(Hamiltonian) is more complicated. Even though a quan-
tization of the latter has been found [5,6], the structure of
the physical Hilbert space H phys is not fully understood

until now.
To circumvent the problems of the canonical theory,

Reisenberger and Rovelli [7] introduced a covariant for-
mulation of quantum gravity, the so-called spin-foam
model [8,9]. This model is mainly based on the observation
that the Holst action for general relativity (GR) [10] defines
a constrained BF theory. The strategy is first to quantize
discrete BF theory and then to implement the so-called
simplicity constraints. The main building block of the
model is a linear two-complex � embedded into
4-dimensional space-time M whose boundary is given
by an initial and final (gauge-invariant) spin network, c i

and c f, living on the initial and final spatial hypersurface

of a foliation ofM. The physical information is encoded in
the spin-foam amplitude

Z½�� ¼ Y
f

Af

Y
e

Ae

Y
v

Av �B; (1.1)

where Af, Ae, and Av are the amplitudes associated to

the internal faces, edges, and vertices1 of �, andB contains
the boundary amplitudes. Each spin foam can be thought of
as a generalized Feynman diagram contributing to the
transition amplitude from an ingoing spin network to an
outgoing spin network. By summing over all possible two-
complexes, one obtains the complete ‘‘transition ampli-
tude’’ between c i and c f.

Unfortunately, the simplicity constraint is second-class,
and the procedure how to implement it is still under debate
[11]. Nevertheless, substantial progress has been achieved
during the last few years [12]. Especially, the introduction
of a new vertex amplitude by Engle, Pereira, Rovelli, and
Livine; independently, by Freidel and Krasnov [13]; and
the introduction of an abstract model [14] led to a major
breakthrough.
Instead of considering spin foams as a ‘‘sum over histor-

ies,’’ one could equally well think of spin foams as some
group averaging procedure to implement the Hamiltonian
constraint in the canonical formalism (see Refs. [7,15]).

Suppose we have a family of first-class constraints ðĈIÞI2I
which form a Lie algebra. Generically, the point zero does
not lie in the point spectrum of the constraint operators, and
therefore the eigenvectors cannot form the entire solution
space. To obviate this problem, one has to consider gener-
alized eigenvectors l 2 D�

kin in the algebraic dual of a

dense domain of H kin such that

½ðĈIÞ0l�ðc Þ :¼ lðĈy
I c Þ ¼ 0 8 I 2 I and c 2 Dkin;

(1.2)
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1In the following, we will call edges and vertices in the
boundary links and, respectively, nodes to distinguish between
the two-complex and the graph.
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where ðĈIÞ0 is the dual operator on D�
kin. The space of

generalized solutions D�
phys is a proper subspace of D�

kin.

In order to construct a physical Hilbert space, one consid-
ers D�

phys as the algebraic dual of a dense subspace

Dphys � H phys so that all observables are densely defined

in H phys. The inner product on H phys is chosen such that

adjoints in the physical scalar product represent adjoints in
the kinematical one. It can be systematically constructed
by an antilinear map, called a rigging map,

�: Dkin ! D�
kin; (1.3)

such that

h�½��j�½c �iphys :¼ �½��ðc Þ �; c 2 Dkin (1.4)

and

Ô 0�½�� ¼ �½Ô�� 8 � 2 Dkin: (1.5)

The physical Hilbert space is subsequently defined by the
completion ofDphys :¼ �ðDkinÞ n kerð�Þ.2 Strictly speak-
ing, such a construction only works for closed, first-class
constraints. But the constraint algebra in GR is open
with structure functions instead of structure constants.
Nevertheless, it is often emphasized that spin foams could
provide such a rigging map even though one starts with a
different action and constraint algebra than in the canonical
approach. If this is indeed the case, then the physical inner
product would be given by

h�jc iphys ¼
X

�: c!�

Z½��; (1.6)

and the rigging map would correspond (schematically) to

�½c � ¼ X
�2H kin

X
�: c!�

Z½��h�j: (1.7)

Since all constraints are satisfied in H phys, the so-defined

physical scalar product must obey

hc outjĈyjc iniphys¼
X

�2H kin

X
�: c out!�

Z½��h�jĈyjc inikin¼0

(1.8)

for all c out, c in 2 H kin. This is clearly the case for the
Gauss constraint because the boundary of a spin foam
constitutes a gauge-invariant spin network. The diffeomor-
phism constraint is harder to deal with since spin foams are
defined on a discretization of space-time and break diffeo-
morphism invariance. But in the abstract formulation, the
amplitudes do not depend on the embedding, and one can
implement the constraint by restricting on equivalence
classes of spin networks. Whether the Hamiltonian
constraint also obeys Eq. (1.8) depends crucially on the
definition of the vertex amplitudes. On the other hand,many

results, for example the definition of a propagator and in
spin foam cosmology [16–18], obtained so far in covariant
LQG are based on the assumption that the Engle, Pereira,
Rovelli and Levine (EPRL) and Freidel and Krasnov (FK)
amplitude defines a physical scalar product. Thus, testing
Eq. (1.8) provides a consistency check for the canonical as
well as covariant approach towards quantum gravity.

B. Outline

As a first test for Eq. (1.8), we consider an easy
spin-foam amplitude and show thatX

�

Z½��h�jĤnjc ini ¼ 0; (1.9)

where � is a two-complex with only one internal vertex
such that� is a spin network induced on the boundary of �,

and Ĥn is the Hamiltonian constraint acting on the node n.
In Sec. II, we briefly review the quantization of the

Hamiltonian constraint [5] and compute the action on three-
and four-valent nodes by employing graphical calculus.
Recall that the full constraint C ¼ �½H þ ðs� �2ÞHL�
can be decomposed into its Lorentzian and Euclidean part,
HL and H, respectively, where � is the Barbero-Immirzi
parameter and s is the signature of the metric. We restrict the
analysis to the Euclidean sector with s ¼ 1, � ¼ 1 so that C
reduces to the Euclidean part only and choose a tetrahedral
regularization of the latter as proposed in Ref. [5]. In this

regularization, the constraint Ĥ acts locally on nodes and
creates a new link connecting two pairwise distinct links
adjacent to the same node.
We will summarize the construction of the spin-foam

amplitude in Sec. III.
In the subsequent section, we evaluate the spin-foam

amplitude for a two-complex � with only one internal
vertex and boundary @� ¼ c out [�, such that � is a
tube c out � ½0; 1� with an additional face between the

internal vertex and the new link created by Ĥ (see Fig. 1).
In Sec. IV, we show that the one-vertex amplitude anni-

hilates the Hamiltonian constraint by employing basic
summation identities of 6j symbols, when acting on three
and four-valent nodes. For an n-valent node, the sum (1.9)

FIG. 1 (color online). Two-complex � with on internal vertex.

2For more details on the construction of a rigging map see,
e.g., [2].
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is a sum over spin networks based on ðn2Þ different graphs.
Remarkably, each partial sum over spin networks based on
the same graph vanishes. This shows that the solutions
constructed via the spin-foam method build a proper
subset of H phys. As an important side result, we find thatP

�Z½��h�j selects only those matrix elements of Ĥ which

depend on the diagonal matrix elements of the volume.
Section V contains a summary of our results and gives

an outlook to open questions.

II. HAMILTONIAN CONSTRAINT

Aprimary quantum version of the Hamiltonian constraint
operator was introduced by Rovelli and Smolin [19]. The
operator proved to act only on the nodes of a spin-network
function. But it was divergent on general states. Later [20],
it was shown that the following two properties are crucial in
order to obtain a well-defined finite Hamiltonian operator in
the background-independent context:

(i) the operator needs to be a density (more precisely, a
three-form)

(ii) diffeomorphism invariance trivializes the limit
when the regulator is removed from the operator.

The first requirement forces us to use a nonpolynomial
version of the constraint whose quantization is much more
involved. After many efforts [21–23], it was suggested
[5,6] to express the inverse triad e as the Poisson bracket
between the volume V and the holonomy h of the Ashtekar
connection A: e� h�1½h; V�. This trick made it possible to
construct a Hamiltonian with the above properties which
can be regularized on a given triangulation T of the space
manifold. (For criticism, see Ref. [24]). In the following
two sections, we will review the basic construction of C as
proposed in Ref. [5] in order to clarify the model and our
notation. The reader familiar to the framework can easily
skip the next two sections.

A. Hamiltonian constraint

The classical Hamiltonian constraint is

C ¼ � 2

�
Tr½ðð�ÞF� ð�2 � sÞK ^ KÞ ^ e�; (2.1)

where e ¼ eia�idx
a is the inverse triad, K the extrinsic

curvature, ð�ÞF the curvature of the Ashtekar connection
with real Immirzi parameter �, and s the signature. In the
following, we choose units such that �=2 :¼ 8�G

c3
¼ 1.

The constraint can be split into its ‘‘Euclidean’’ part
H ¼ Tr½F ^ e� and Lorentzian part HL ¼ C�H.
Following Ref. [5], we can rewrite (2.1) by using

eia¼2fAi
aðxÞ;Vg Ki

a¼2fAi
aðxÞ;Kg K¼2fH;Vg; (2.2)

where V is the volume of an arbitrary region � containing
the point x. Smearing the constraints with lapse function
NðxÞ gives

H½N�¼
Z
�
d3xNðxÞHðxÞ¼�2

Z
�
NTrðF^fA;VgÞ (2.3)

HL½N�¼
Z
�
d3xNðxÞHLðxÞ

¼�ð�2�sÞ
Z
�
NTrðfA;fH;Vgg^fA;fH;Vgg^fA;VgÞ:

(2.4)

This expression requires a regularization in order to obtain a
well-defined operator on H kin. Up to now, there exists
many different proposals (see, e.g., Refs. [1,25]). We will
follow the original proposal [5] and use a triangulation T of
the manifold � into elementary tetrahedra with analytic
links adapted to the graph � of an arbitrary spin network.
For each pair of links ei and ej incident at a node n of �, we

choose semianalytic arcs aij such that the end points sei , sej
are interior points of ei and ej, respectively, and aij \ � ¼
fsei ; sejg. The arc si is the segment of ei from n to si, and si,

sj and aij generate a triangle �ij :¼ si � aij � s�1
j . Three

(nonplanar) links define a tetrahedron (see Fig. 2). Now, we
can decompose Eq. (2.3) into a sum of one term per each
tetrahedron of the triangulation

H½N� ¼ X
�2T

� 2
Z
�
d3xN�abc TrðFabfAc; VgÞ: (2.5)

Define the classical regularized Hamiltonian constraint

HT½N� :¼ X
�2T

H�½N�: (2.6)

The connectionA and the curvature are regularized as usual
by the holonomy hs :¼ h½s� 2 SUð2Þ (in the fundamental
representation m ¼ 1=2) along the segments si and along
the loop �ij, respectively. This yields

H�½N� :¼ �2
3NðnÞ�ijk Tr½h�ij

hskfh�1
sk ; Vg� (2.7)

and converges to the Hamiltonian constraint (2.5) if the
triangulation is sufficiently fine. The expression (2.6) can
finally be promoted to a quantum operator, since volume
and holonomy have corresponding well-defined operators
in LQG. The lattice spacing of the triangulation T which

FIG. 2. An elementary tetrahedron � 2 T constructed by
adapting it to a graph � which underlies a cylindrical function.
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acts as a regularization parameter can be removed in a
suitable operator topology, see Ref. [5] for details.

Remarks:
(i) In Ref. [26], it was pointed out that the operator

can be immediately generalized by replacing the
trace in Eq. (2.5) with a trace in an arbitrary irreduc-

ible representation m: Trm½U� ¼ Tr½RðmÞðUÞ� where
RðmÞ is a matrix representation of U 2 SUð2Þ.
Equation (2.7) can thus be replaced by

Hm
� ½N� :¼ NðnÞ

N2
m

�ijk Tr½hðmÞ
�ij

hðmÞ
sk fhðmÞ�1

sk ; Vg�; (2.8)

N2
m ¼ Trm½�i�i� ¼ �ð2mþ 1Þmðmþ 1Þ and hðmÞ ¼

RðmÞðhÞ. As shown in Ref. [26], this converges to
H½N� as well.

(ii) The Lorentzian part of the constraint can be regu-
larized by a similar method.

B. Properties

In this section, we will summarize the important prop-
erties of the Euclidean Hamiltonian constraint.

It is immediate to see that when acting on a spin-network
state, the operator reduces to a sum over terms each acting
on individual nodes. Acting on nodes of valence n, the
operator gives

Ĥ m
� ½N�c � ¼ i

ℏ

X
n2N ð�Þ

X
nð�Þ¼n

p�

EðnÞ Ĥ
m
�½N�c �; (2.9)

where Hm
� is the quantum version of (2.8),N ð�Þ is the set

of nodes of �, and

EðnÞ ¼ n
3

� �
is the number of unordered triples of links adjacent to n.
The second sum is a sum over tetrahedra with a node at n
and not intersecting with other nodes of �. Moreover,
p� ¼ 1, whenever � is a tetrahedron having three edges
coinciding with three links of the spin-network state, which
meets at the node n, otherwise, p� ¼ 0.

On diffeomorphism-invariant states � 2 H phys �
H �

kin, the regulator dependence drops out trivially because

two operators Ĥ and Ĥ0, which are related by a refinement
of the triangulation, differ only in the size of the loops �ij.

Therefore, the resulting states are in the same equivalence
class, and

½Ĥy��ðc Þ :¼ h�; Ĥc i ¼ h�; Ĥ0c i; (2.10)

in H diff . This proves that the Hamiltonian constraint on
diffeomorphism-invariant states is independent from the
refinement of the triangulation.

The action ĤðNÞ on a spin-network state T�; ~j; ~c defined

on a graph � results in a finite linear combination of spin-
network states defined on graphs �I, where � � �I and

aI :¼ �I � � is produced by one of the arcs aijð�Þ, which
carries spin jI ¼ m. The new nodes are called extraordi-
nary. In some cases, it can happen that links connecting the
original nodewith the new extraordinary nodes carry trivial
representation if this is allowed by the recoupling condi-
tions. Extraordinary nodes are, at most, trivalent and inter-
sections of precisely two analytic curves c, c0 � �; that is,
n ¼ c \ c0, such that n is an endpoint of c but not of c0.
A link e of a graph � is called extraordinary provided
that its endpoints n1, n2 are both extraordinary nodes.
Furthermore, those links are adverse to a node n of �
which is incident to at least three links s1, s2, s3 with
linearly independent tangents at n, such that s1=s2 connect
n and n1=n2. We will call n the typical node associated

with e. All links produced by Ĥ are extraordinary. Since
the volume operator annihilates coplanar nodes and gauge
invariant nodes of valence three (only true for the
Ashtekar-Lewandowski version, see Ref. [1]), H does not
act on extraordinary nodes.

C. Action on a trivalent node

Let us now compute the action of the operatorH m
� on a

trivalent node where all links are outgoing, following
Refs. [25,26]. Denote a trivalent node by jnðji; jj; jkÞi �
jn3i, whereas ji, jj, jk are the spins of the adjacent links

ei, ej, ek:

Note, the links are also labeled by group elements with
orientations indicated by the arrows. In order to simplify
the graphics, we only displayed the node and its adjacen-
cies. Furthermore, everything contained in the dashed cir-
cle belongs to the node, and everything between the dashed
lines belong to the same link.
When quantizing expression (2.8), the holonomies and

the volume are replaced by their corresponding operators,
and the Poisson bracket is replaced by a commutator. Since
the volume operator vanishes on a gauge-invariant trivalent
node, we only need to compute

Ĥm
�jn3i¼Nn�

ijkTr

�
�
ĥðmÞ½�ij�� ĥðmÞ½�ji�

2
ĥðmÞ½sk�V̂ĥðmÞ½s�1

k �
�
jn3i;

(2.12)
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where all (global) constants have been absorbed in the

lapse function Nn. The operator ĥðmÞ½s�1
k �, corresponding

to the holonomy along a segment sk with reversed orienta-

tion, acts by multiplication with RðmÞðhs�1
k
Þ along sk. The

matrix RðmÞ can be recoupled using Eqs. (A12) and (A10).

Thus, hðmÞ½s�1
k � creates a free index in them representation

located at the node (inside the dashed circle), making it
non-gauge-invariant, and a new node on the link ek:

where dc ¼ 2cþ 1 is the dimension of c. The range of
the sum over the spin c is determined by the Clebsch-
Gordan conditions, and the little flag represents the group
element h�1

sk .
The volume operator now acts on a trivalent non-gauge-

invariant node with a virtual link in jk representation. The
matrix elements of the volume operator [27–29] have been
computed in Refs. [30,31], and the results have been
applied to the Hamiltonian constraint operator in
Refs. [26,32].

The operators hðmÞ½�ij�hðmÞ½sk� and hðmÞ½�ji�hðmÞ½sk�
add open loops with opposite orientations �ij and �ji,

where we fix �ij to be oriented counterclockwise. Like

above, the representations living on the same link can be
recoupled. The m trace connects the free ends of

the open loops to the two open links in hðmÞ½s�1
k �jni,

taking into account the orientations. Finally, one has
to use (A17):

where the range of the sums over a, b is determined by the Clebsch-Gordan conditions3 and

3The link m cannot be removed with Eq. (A17) since this is a pure recoupling identity, but m also carries a group element.
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AðmÞðji;ajjj;bjjkÞ :¼
X
c

	mji
a 	

mjj
b 	mjk

c ð�Þjiþjj�jkdadbdc
X


ðji;jj;m;cÞ
Vjk


ðji; jj;m;cÞ
�
	m

c ð�Þaþjjþc

�
a jj c


 m ji

�� a b jk

m c jj

�

�	mjk
c ð�Þbþjiþc

� ji b c

m 
 jj

��
a b jk

c m ji

��
: (2.15)

The sign factors are due to the chosen orientation which
has to be respected when applying the recoupling identities
(see Appendix A) and can be manipulated by realizing that
ð�Þ2aþ2bþ2c ¼ 1 if a, b, c fulfill the Clebsch-Gordan con-
ditions. The summation index 
 ¼ 
ðji; jj; m; cÞ, which
appears due to the nondiagonal action of the volume op-
erator, ranges on the values which are determined by the
simultaneous admissibility of the trivalent nodes fji; jj; 
g
and fm; c; 
g. If m ¼ 1

2 , then the volume operator acts

diagonally, and 
 ¼ jk.
4

The complete action of the operator on a trivalent state
jnðji; jj; jkÞi can be obtained by contracting the trace part

(2.14) with �ijk. Thus, Ĥ projects on a linear combination
of three spin networks which differ by exactly one new
link labeled by m between each couple of the ‘‘old’’ links
at the node.

D. Action on a 4-valent node

The computation for a 4-valent node jn4i is similar to
the previous:

Ĥm
�jn4i ¼ Nn�

ijk Tr

�
ĥðmÞ½�ij� � ĥðmÞ½�ji�

2
ĥðmÞ½sk�½V̂; ĥðmÞ½s�1

k ��
�
jn4i: (2.16)

In the subsequent calculation, we fix all links to be outgoing from the node

where i labels the intertwiner (inner link). Furthermore, we fix the orientation of the loop �ij in Eq. (2.16) to be
counterclockwise. The part TrðĥðmÞ½�ij� � ĥðmÞ½�ji�V̂Þjn4i vanishes since the volume does not modify the representations
but the trace is taken in the representation space and TrðĥðmÞ½�ij� � ĥðmÞ½�ji�Þ ¼ 0.

For the other part, the holonomy ĥðmÞ½s�1
k � changes the valency of the node, and the volume subsequently acts on the

5-valent non-gauge-invariant node. Graphically, this corresponds to

Finally one arrives at

4We get a correction of sign factors compared to Ref. [25]. This correction is necessary in order that the action of TrðFijÞ vanishes.
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This can be simplified using Eqs. (B1) and (A17):

The sign factors are due to the chosen orientation and can be manipulated as above.
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III. SPIN FOAM

A. The model

In this section, we briefly recall the definition of
Euclidean spin-foam models as suggested by Kaminski,
Kisielowski, and Lewandowski [14] and clarify our nota-
tion. Since we are only interested in the evaluation of a
spin-foam amplitude, we choose a combinatorial definition
of the model.

Consider an oriented two-complex� defined as the union
of the set of faces (2-cells)F , edges (1-cells) E, and vertices
(0-cells)V such that every edge e is a 1-face5 of at least one
face f (notation: e 2 @f) and every vertexv is a 0-face of at
least one edge e (notation: v 2 @e). We call edges which
are contained in more than one face f internal and denote
the set of all internal edges by Eint. Vice versa, all vertices
adjacent to more than one internal edge are also called

internal, and we denote the set of these vertices by V int.
The boundary @� is the union of all external vertices (called
‘‘nodes’’) n =2 V int and external edges (called ‘‘links’’) l =2
Eint. If @� forms a closed but possibly disconnected
graph and the orientation of e 2 @� agrees with the orien-
tation induced by the unique face f, e 2 @f (we say f is
ingoing to e), then � is called a proper foam. In the follow-

ing, we will only consider proper foams.
A spin foam is a triple ð�; �f; IeÞ consisting of a proper

foam whose faces are labeled by irreducible representa-
tions of a Lie-group G [here, SO(4)] and whose internal
edges are labeled by intertwiners I. This induces a spin-
network structure @ð�; �lf ; Ine

Þ on the boundary of �. In the
following, we will denote the pair ðv; fÞ such that v 2 @f
by vf and analogously for all other pairings ev, ef, etc.

Furthermore, @v is the set of all faces fv and edges ev.
Suppose � is a foam without boundary. Following

Ref. [34], we label each edge e 2 � by a group element
e ! Ue 2 SOð4Þ, such that

Ue ¼ gesðeÞg
�1
etðeÞ (3.1)

where sðeÞ=tðeÞ is the source/target of e. For each pair
ðv; fÞ with v \ f ¼ v and edges e \ e0 ¼ v, e, e0 2 @f,
we define

gfv :¼ ðg�1
ev ge0vÞ�ef (3.2)

where �ef ¼ 	 according to the orientations. With this

definition, the BF partition function can be rewritten as

ZBF½�� ¼
Z
SOð4Þ

dgfv
Y
f2�

�

� Y
v2@f

gfv

�

�Y
fv

Z
dgev�ðg�1

fv
gevg

�1
e0v
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Avðgfv Þ

: (3.3)

Note, AvðgfvÞ defines an SO(4) invariant function

on the graph �v induced on the boundary of the vertex v
[34]. As it is well-known, the boundary Hilbert space H v

is spanned by (normalized) spin-network functions
TBF
�v;�;I

ðgfÞ6

A vðgfÞ ¼
X
�f;Ie

Y
f2@v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim�f

q
Trvð

O
e2@v

Iye ÞTBF
�v;�;I

ðgfÞ:

(3.4)

Locally, SOð4Þ � SUð2Þ � SUð2Þ which implies
�SOð4Þ ¼ �þ

SUð2Þ 
 ��
SUð2Þ and TBF

�v;�;I
ðgfÞ ¼ T�v;j

þ;þðgþf Þ 

T�v;j

�;�ðg�f Þ.
In the EPRL model [13], the simplicity constraint is

imposed weakly. Consequentially, we have to restrict
AvðgfÞ to the EPRL subspace H EPRL

v spanned by the

functions

TE
�v;jf;e

¼ Y
fv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djþ

fv
dj�

fv

q Y
ev

�
Ae1���AeF
e

Y
f2@v

C
mþ

ef
m�

ef

Aef

�

� Y
ðe;fÞ2@v

½�
nþef n

þ
e0
f �

n�ef n
�
e0
f R

jþ
f

mþ
ef
nþef

ðgþef ÞR
jþ
f

m�
ef
n�ef

ðg�ef Þ�

(3.5)

with j	 � j�	1j
2 j. Furthermore, RjðgÞ denotes a Wigner

matrix, C
mþ

e m
�
E

Ae
a Clebsch-Gordan coefficient, and �n

þ
e n

�
e

represent the unique two-valent intertwiners of SU(2) (see
Ref. [34]).
It follows immediately that

A E
vðgfÞ ¼

X
jf;e

hTE
�v;jf;e

jAviTE
�v;jf;e

ðgfÞ

:¼ X
jf;e

� Y
f2@v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djþ

f
dj�

f

q �
AE

vðjf; eÞTE
�v;jf;e

ðgfÞ

(3.6)

defines the EPRL vertex amplitude with

AE
vðjf; eÞ ¼

X
þe ;�e

Trvð
O
ev

ðþev 
 �evÞyÞ
Y
ev

f
ev
þev ;

�
ev

(3.7)

where fe
þe ;�e

are the well known fusion coefficients [13]. At

last, one has to replace Eq. (3.6) in Eq. (3.3) to obtain the
full transition amplitude of the EPRL model. Expanding
the delta function in Eq. (3.3) in terms of spin-network
function and integrating over the group elements gives

Z½�� ¼ X
jf;e

Y
f

djþ
f
dj�

f

Y
v

AE
vðjf; eÞ: (3.8)

5For a definition of complex, see, e.g., Ref. [33].

6The links lf bounding the face f are labeled by irreducible
representations �f, and nodes ne bounding the edge e are labeled
by intertwiners Ie as usual.
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Remark—In order to evaluate the fusion coefficients fe
þe ;�e

by graphical calculus, it is convenient to work with 3j
symbols instead of Clebsch-Gordan coefficients. When
replacing the Clebsch-Gordan coefficients, we have to

multiply by an overall factor
Q

e

Q
fe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jfe þ 1

p
.

B. Spin-foam projector

Instead of using spin foams as a tool to compute ‘‘tran-
sition’’ amplitudes between spin networks, one is tempted
to interpret spin foams as a projector onto the physical
Hilbert space. Given any couple of ingoing and outgoing
kinematical states c out, c in, the Physical scalar product
can be formally defined by

hc outjc iniphys :¼ ½�ðc outÞ�ðc inÞ (3.9)

where � is a projector (Rigging map) onto the Kernel of
the Hamiltonian constraint. Suppose that the transition
amplitude Z

hc outjZjc ini :¼ ½�ðc outÞ�ðc inÞ (3.10)

can be expressed in terms of a sum of spin foams ð�; �; Þ
with boundary @ð�; �; Þ ¼ c out

S
c in. To realize that,

we first have to reconsider Eq. (3.3) for a foam � with
nonempty boundary @� � ;. Then,7

Z½�� ¼
Z
SOð4ÞV int

dgfv
Y
f2�

�

� Y
v2@f

gfvgl

� Y
v2V int

AvðgfvÞ

(3.11)

where

gl ¼
�
hl if f \ @� ¼ l
1 otherwise

: (3.12)

Equation (3.11) can be interpreted as a function on the
boundary graph @�. That is to say

Z½�� ¼ X
jf;e

Y
f

djþ
f
dj�

f

Y
v2V int

AE
vðjf; eÞ

� X
jl;n

� Y
l2@�ð1Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djþ

l
dj�

l

q �
TE
@�;jl;n

ðhlÞ (3.13)

in the EPRL sector. Here, @�ð1Þ is the set of boundary links.
Unfortunately, Eq. (3.13) defines an SO(4) spin-network
function while the kinematical Hilbert space of the canoni-
cal theory is spanned by SU(2) functions. It is, however,
easy to resolve that problem: when restricting the boundary
elements hl 2 SUð2Þ � SOð4Þ, then TE

@�;jl;n
ðhlÞ is a true

SU(2) spin-network function. Indeed,

TE
@�;jl;n

ðhlÞ ¼
�Y
l2@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djþ

l
dj�

l

djl

vuut �
jSð@�; j; iÞN (3.14)

where jSiN is a normalized spin-network function on
SU(2) (see Appendix C). This finally implies

hc outjZjc ini ¼
X
jf;e

Y
f

djþ
f
dj�

f

Y
l2@�ð1Þ

1ffiffiffiffiffiffi
djl

p Y
v2V int

AE
vðjf; eÞ:

(3.15)

In the next section, we will compute an easy example of
such an amplitude.

IV. NEW SOLUTIONS TO THE EUCLIDEAN
HAMILTONIAN CONSTRAINT

In the following, we compute new solutions to the
Euclidean Hamiltonian constraint by employing spin-
foam methods. We show thatX

�

hc outjZ½��j�ih�jĤðmÞjc ini ¼ 0 (4.1)

in the Euclidean sector with � ¼ 1 and s ¼ 1, where � is
an easy 2-complex with only one internal vertex.

A. Trivalent nodes

Consider the simplest possible case given by an initial
and final state j�i, characterized by two trivalent nodes
joined by three links:

As shown in Sec. II, the only states produced by the

Hamiltonian ĤðmÞ acting on a node are given by a linear
combination of spin networks which differ from the origi-
nal one by the presence of an extraordinary link. In par-

ticular, the term hsjĤðmÞj�ðji; jj; jkÞi, will be nonvanishing
only if hsj is of the kind

The simplest two-complex �ð�; sÞ with only one inter-
nal vertex defining a cobordism between j�i and jsi is a
tube �� ½0; 1� with an additional face between the inter-
nal vertex and the new link m (see Fig. 1).
The computation of Eq. (3.13) for �ð�; sÞ is straightfor-

ward when using graphical calculus. Since the space of
trivalent intertwiners is one-dimensional and all labelings

7If we would also integrate over group elements in the bound-
ary, then ZBF ¼ R

�ðFÞ would become singular.
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jf are fixed by the states jsi, j�i, the first sum in Eq. (3.13)

is trivial. Thus,

h�jZ½��jsi :¼ WEð�;�; sÞ ¼ AfBAE
vðjf; eÞ (4.4)

where Af ¼
Q

fdjþf dj
�
f
are the face amplitudes and B ¼Q

l2@�ð1Þ 1ffiffiffiffiffi
djl

p are the boundary amplitudes. The evaluation

of the trace in AE
v is equivalent to evaluating the boundary

spin network �v of the vertex v [34] at 1. The reader can
easily be convinced that �v ¼ s, and therefore with
Eq. (A17), it gives

Tr vð
O
e

þe �e Þ ¼ ð�Þjþi þjþj �jþ
k ð�Þj�i þj�j �j�

k

�
�
jþi jþj jþk
bþ aþ mþ

��
j�i j�j j�k
b� a� m�

�
(4.5)

where the sign factor is due to the orientation of s [see
Eq. (2.14)]. The fusion coefficients contribute four 9j
symbols since

where the dimension factors come from the replacement of
Clebsch-Gordan coefficients by 3j symbols (see
Sec. III A). The full amplitude is

WEð�;�; sÞ ¼ AfAeBð�Þjþi þjþj �jþ
k ð�Þj�i þj�j �j�

k

�
8<
: jþi jþj jþk
bþ aþ mþ

9=
;
8<
: j�i j�j j�k
b� a� m�

9=
;

�

8>>><
>>>:

ji jj jk

jþi jþj jþk
j�i j�j j�k

9>>>=
>>>;

8>>><
>>>:

ji a m

jþi aþ mþ

j�i a� m�

9>>>=
>>>;

�

8>>><
>>>:

jj b m

jþj bþ mþ

j�j b� m�

9>>>=
>>>;

8>>><
>>>:

a b jk

aþ bþ jþk
a� b� j�k

9>>>=
>>>;
(4.7)

withAe ¼ djidjjdjkdadbdm. Let us fix � ¼ 1; then, jþ ¼
j and j� ¼ 0, and Eq. (4.7) reduces to

WEð�;�; sÞj�¼1 ¼ ðdadbdmÞ1=2ð�Þjiþjj�jk

�
ji jj jk
b a m

�
(4.8)

where we have used8><
>:
a b c

a b c

0 0 0

9>=
>; ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dadbdc
p : (4.9)

With the previous results and Eq. (2.15), we are now able to
compute Eq. (4.1). Note that in Eq. (2.14), the new created
links labeled by a, b, m are not normalized, but the spin-
foam amplitude has been constructed such that jsi is
normalized. Taking the scalar product hsjHj�i gives,
therefore, an additional factor 1ffiffiffiffiffiffiffiffiffiffiffi

dadbdc
p . This yields8

X
s

WEð�; s;�Þj�¼1hsjĤðmÞj�i ¼X
a;b

�
ji jj jk

b a m

�X
c

	mji
a 	

mjj
b 	mjk

c dadbdc
X


ðji;jj;m;cÞ
Vjk


ðji; jj;m; cÞ

�
�
	m

c ð�Þaþjjþc

�
a jj c


 m ji

�� a b jk

m c jj

�
� 	mjk

c ð�Þbþjiþc

� ji b c

m 
 jj

��
a b jk

c m ji

��
þ ½jk $ ji� þ ½jk $ jj�: (4.10)

The last two terms are equivalent to the first term when exchanging jk $ jj and ji, respectively, and correspond to the other
extraordinary links. In fact, the EPRL spin foam reduces just to the SU(2) BF amplitude which is just the single 6j left in
the first line. Now, using the definition of a 9j in terms of three 6j’s (A18), Eq. (4.10) becomes

8with Lapse function Nn ¼ 1
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X
s

WEð�; s;�Þj�¼1hsjĤðmÞj�i ¼ X
c

dc
X


ðji;jj;m;cÞ
Vjk


ðji; jj; m; cÞ �

2
6664X

b

db	
mjj
b ð�Þmþjiþjjþc	mjk

c 	m

c

8>>><
>>>:
ji jj 


jk m c

jj b m

9>>>=
>>>;

�X
a

da	
mji
a ð�1Þmþjjþjiþc

8>>><
>>>:
m c 


a m ji

ji jk jj

9>>>=
>>>;

3
7775þ ½jk $ ji� þ ½jk $ jj�: (4.11)

The 9j’s involved in this expression can be reordered using the permutation symmetries (A20) and (A19) giving

X
c

dc
X


ðji;jj;m;cÞ
Vjk


ðji; jj; m; cÞ �
�X

b

dbð�Þ2

8><
>:
ji 
 jj

jk c m

jj m b

9>=
>;�X

a

dað�Þjkþ


� jj jk ji


 c m

ji m a

��

¼ X
c

dcð�1Þ2jk X

ðji;jj;m;cÞ

Vjk

ðji; jj; m; cÞ

�
�
jk

djk
� �
jk

djk

�
¼ 0: (4.12)

In the last expression, we have used the summation
identity (A21). Equation (4.12) shows that the states
jsiphys ¼

P
sWEð�;�; sÞj�¼1hsj are solutions of the

(Euclidean) Hamiltonian constraint if s is of the form
(4.3). However, each term depending on one of the three
graphs which differ by its extraordinary link vanishes
separately. This suggest that the solution we have con-
structed is very likely not the most arbitrary solution for
trivalent nodes.

Remarks
(i) The role of the volume—It is noteworthy that the

spin-foam amplitude selects only those terms which
depend on the diagonal elements on the volume. The
consequences of this behavior are manifold. First, it
simplifies the calculation since we do not have to
evaluate the volume explicitly. If m ¼ 1=2, this
would not be a problem since then the volume is
already diagonal and can be computed easily [31].
But if m � 1=2, or in higher-valent cases, the struc-
ture of the volume operator is very complicated and
is the major obstacle for computing solutions of the
Hamiltonian. Indeed, we show in the next section
that the above property carries over to higher-valent
nodes and therefore enables us to compute more
solutions.
On the other side, this behavior supports the con-
jecture that the states constructed are not the most
arbitrary solutions but only a special class. Looking
more closely at the spin-foam amplitude, this is
hardly surprising. When setting the Barbero-
Immirzi parameter � ¼ 1, we restrict to BF theory
(in the spin-foam framework). The Hamiltonian of
BF theory is essentially given by the curvature F,

and the only part of ĤðmÞ influencing the spin-
network structure of jsiphys is again the curvature;

the volume just yields an overall factor. This shows
to some extent the consistency between the models.

(ii) Arbitrary cobordism—The result (4.12) is obviously
not sensitive to the orientations of � and s, respec-
tively, since a change in the orientation would give

the same sign factor in AðmÞðji; ajjj; bjjkÞ as in

WEð�;�; sÞ. The crucial ingredient of WEð�;�; sÞ
is the appearance of the 6j symbol [see Eqs. (4.10)
and (4.11)]. Thus, Eq. (4.1) also vanishes if we
consider a more general complex �0 as long as
WEð�0; c ; sÞ still depends on the same 6j symbol
and the rest does not depend on the spins a, b. For
example, we could work with a cobordism between
an arbitrary state c and s such that all faces of �
wind up in the same internal vertex (see Fig. 3).

B. Four-valent nodes

Let us now turn to the case with c in ¼ c out ¼ jn4i
where

FIG. 3. Two-complex �0 with a single internal vertex and
arbitrary c .
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The matrix element hsjĤðmÞjn4i is nonvanishing iff jsi is of the form

We choose again an easy complex � of the form of Fig. 1 with one additional face jl. The vertex trace in Eq. (3.7) can be
evaluated by graphical calculus:

The fusion coefficients fe
þe �e

give two 9j symbols for the two trivalent edges and two 15j symbols for the two four-valent
edges. As in the above section, the fusion coefficients reduce to 1 when setting � ¼ 1. When taking the scalar product
(3.15), the internal links labeling the intertwiner can be in principle treated like the real links, and we obtain

WEð�;n4; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dadbdm

p ð�Þb�aþ�þmþjl�jj

�
� i m

ji a jl

��� i m

jj b jk

�
: (4.16)

Taking the scalar product with the Hamiltonian as in Eq. (4.10) yields

X
s

WEð�;n4; sÞhsjĤðmÞjn4i ¼
X
a;b;c

dadbdc
X
�

d�ð�Þb��

�
� i m

ji a jl

��� i m

jj b jk

�

�X

;�

Vi;jk
�;


�
ð�1Þ�þ
�c�jj

�
� � m

a ji jl

��� � m

c 
 jj

��
� jj c

m jk b

�

� ð�1Þcþ��jk�b

�
� jj 


m c b

��
� � m

a ji jl

��
� � m

jk c b

��
(4.17)

where we have used ð�1Þ2aþ2jlþ2b ¼ 1. Summing over a and using the orthogonality relation (A15) and ð�1Þ2jiþ2aþ2m ¼
1 gives

X
s

WEð�;n4; sÞhsjĤðmÞjn4i ¼
X
b;c

dbdc
X
�

d�
X

;�

Vi;jk
�;
�i;� �

�
ð�1Þ
�b�c�jj�2m

�� i m

jj b jk

��� � m

c 
 jj

��
� jj c

m jk b

�

� ð�1Þcþiþ��jkþ2m

�� i m

jj b jk

��
� jj 


m c b

��
� � m

jk c b

��
: (4.18)

Note, the three 6j’s in the two terms of Eq. (4.17) define a 9j summing over the indices � and b, respectively:
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X
c

dc
X



Vi;jk
i;


2
64X

b

dbð�1Þbþ
�c�jjþ2bþ2m

8><
>:
m c 


b m jj

jj jk i

9>=
>;�X

�

d�ð�1Þcþi�jkþ�þ2m

8><
>:

i � m

jj i jk


 m c

9>=
>;
3
75

¼ X
c

dc
X



Vi;jk
i;


2
6664X

b

dbð�1Þ2
þjkþ�þjj

8>>><
>>>:
� jk jj


 c m

jj m b

9>>>=
>>>;�X

�

d�ð�1Þ2jkþ
þ�þjj

8>>><
>>>:
jj jk �


 c m

� m �

9>>>=
>>>;

3
7775: (4.19)

In the second line, we used the permutation symmetry
(see the Appendix). With Eq. (A21), we obtain the final
result:

X
c

dc
X



Vi;jk
i;
ð�1Þ3jkþ�þjj

�
�
jk

djk
� �
jk

djk

�
¼ 0: (4.20)

As for the trivalent vertex, the spin-foam amplitude just
takes those elements into account which depend on the
diagonal volume elements. Therefore, the above calcula-
tion can be easily extended to n-valent nodes since the
curvature always acts locally on three links while the
influence of the volume on the rest of the internal links is
unimportant.

V. CONCLUSIONS

LQG is grounded on two parallel constructions: the
canonical and the covariant ones. One of the bigger
missing theoretical ingredients of this road to quantum
gravity is the relation between these two. In this paper,
we were mainly concerned with the following quest-
ions: The EPRL-FK with the Kaminski, Kisielowski, and
Lewandowski extension shares the same kinematics of
LQG; do they share also the same dynamics? Can we really
use the EPRL-FK as defining the Physical Hilbert Space?
A first step to find an answer to that important question is to
construct a simple spin-foam amplitude which annihilates
the Hamiltonian constraint as argued in Eq. (4.1). Indeed,
we found that in the euclidean sector with signature s ¼ 1
and Barbero-Immirzi parameter � ¼ 1, the Euclidean
Hamiltonian constraint is annihilated by a spin-foam am-
plitude Z½�� where � is a simple two-complex with only
one internal vertex. Even though we considered only a very
special case, this has some important consequences: First,
even neglecting their spin-foam origin, the one-vertex
amplitudes of BF theory are new explicit analytic solutions
of the Hamiltonian theory and represent a proper subspace
of the physical Hilbert space.

Second, the equation (4.10) vanishes for each triple of
edges; this means that the 6j symbol associated to every
face is annihilated by the Euclidean scalar constraint. This
is a generalization of the work by Bonzom-Freidel in the
context of 3D gravity. In Ref. [35], they found that the 6j (a
physical state in 3D) is annihilated by a suitable quantiza-
tion of the 3D scalar constraint F ¼ 0 rewritten, following

Ref. [36], as EEF. Their result holds exactly only for the
choice m ¼ 1 (even if a generalization to higher spin,
involving a proper redefinition of the quantum constraint,
is discussed; see Ref. [35]). Here, we showed that the 6j
symbols one obtains in the one-vertex expansion annihi-
lates for arbitrary spin m the complete nonpolynomial
density constraint EEFffiffiffiffiffiffiffi

detE
p .

It was already pointed out at the end of Sec. IVA that the
spin-foam amplitude picks only the diagonal elements of
the volume. On the one hand, this behavior proves to be
very useful when computing (4.1) for higher-valent nodes;
on the other hand, this indicates that the solutions are not
the most arbitrary solutions but are closely related to BF
solutions, which is not surprising since setting � ¼ 1 in the
spin-foam model yields BF theory. The only solutions of
3þ 1 BF theory are the ones that satisfy 3dF ¼ 0 where
3dF is the curvature on the 3D hypersurface � of the 3þ 1
splitting. A natural question is then if the gravitational
solutions presented in this article correspond to the BF’s
ones. This question can be reformulated asking if our
solutions are proportional to a formal distribution
‘‘�ð3dFÞ’’ forcing the states to have everywhere a flat
connection, namely,

physhsj�“�ð3dFÞ” such that physhsj3dFs0i¼0 8 s0 2H kin:

The answer is no, because one can choose loops to regu-
larize the curvature operator for which our solution is not
annihilated by 3dF. Instead, flatness is only imposed on the
two-dimensional faces bounded by a loop � at the vertex v
which yields the extraordinary link. Even if the new solu-
tions would be flat everywhere, they are. strictly speaking.
no topological solutions because 3dF ¼ 0 is not a sufficient
criterion for topological solutions in GR due to the equa-
tions of motions. Therefore, the role of the spatial topology
is rather obscure also because the foams we considered are
not dual to proper triangulations of the four-dimensional
bulk.
Of course many open questions remain, e.g.:
(i) The general case � � 1 and the Lorentzian signature

model—in this case, there are indications (work in
progress) that seem to suggest the use of projected
spin networks [37].

(ii) The relation between the geometric structure of the
n-j’s involved in the amplitude, the Hamiltonian,
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and the simplicial geometry [38] deserves also to be
investigated, for example, along the lines of
Ref. [39].

(iii) The relation with other regularization [25] and
quantization programs, e.g. [40] for the canonical
theory and the EPRL-FK can be analyzed along the
same lines described here.
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APPENDIX A: GRAPHICAL CALCULUS

In order to compute the matrix elements of the
Hamiltonian constraint operator as well as the vertex am-
plitudes in the spin-foam model, one has to make extensive
use of recoupling identities for SU(2). In this context,
graphical calculus can be very useful to keep track of
indices and sign. In this appendix, we summarize the
graphical methods used in the main text.

1. Basic elements

Our convention is applicable in pure recoupling theory
as well as in computations involving group elements. The
convention is mainly based on Ref. [41], including some
minor improvements.

(i) Irreducible Representation: Multiplication with an
orthonormal vector in the j representation of SU(2)
is represented by

where the italic letters j 2 1
2N label the irreducible

representation of SU(2), and Greek letters �j �
�  j represent magnetic quantum numbers. To
avoid an unnecessary cumulation of labelings, we
will suppress the label j, � if there is no danger of
confusion.

(ii) Wigner-R matrix:

Note: � transforms in the dual representation while

 transforms in the standard representation. Thus, �
must be contracted with an intertwiner ......�... while

 gets contracted by the dual ...
.......

(iii) Wigner 3j Symbol:

The þ sign marks counterclockwise orientation
while the � sign marks clockwise orientation.

(iv) Dualization:

This implies:
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Thus,

and 2. Recoupling and simplifications of graphs

This subsection will give an overview of the basic
recoupling identities needed for the evaluation of the
Hamiltonian constraint and the spin-foam amplitudes. In
the following, we will replace by on closed

lines to simplify the graphs. Furthermore, the labels will
be suppressed whenever possible. In the following, denote
the dimension of j by dj ¼ 2jþ 1.

(i) Basic recoupling

Similarly, one finds
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(ii) First orthogonality relation

(iii) 6j symbol

(iv) Second orthogonality relation X
f

dmdf

�
a b f

d c e

��
a c m

d b f

�
¼ �em: (A15)

(v) Summation—The following identity is a crucial ingredient for the computation of the matrix elements of the
Hamiltonian operator:X

�;�;�

ð�1Þdþeþf������
d e c

�� � �

 !
e f a

�� � �

 !
f d b

�� � 


 !
¼
�
a b c

d e f

�
a b c

� 
 �

 !
: (A16)

Graphically, this identity can be encoded in

(vi) 9j symbol
Definition of a 9j symbol in terms of 6j’s:
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X
x

dxð�1Þ2x
�
a b x

c d p

��
c d x

e f q

��
e f x

a b r

�
¼
8><
>:
a f r

d q e

p c b

9>=
>;: (A18)

Permutation symmetry:
(1) 8>>><

>>>:
j11 j12 j13

j21 j22 j23

j31 j32 j33

9>>>=
>>>; ¼ �

8>>><
>>>:
j1i j1j j1k

j2i j2j j2k

j3i j3j j3k

9>>>=
>>>;: (A19)

(2) 8>>><
>>>:
j11 j12 j13

j21 j22 j23

j31 j32 j33

9>>>=
>>>; ¼ �

8>>><
>>>:
ji1 ji2 ji3

jj1 jj2 jj3

jk1 jk2 jk3

9>>>=
>>>; (A20)

with � ¼ 1 for even permutations and � ¼ ð�1ÞR
with R ¼ P

ijjij for odd permutations.

Summation Identity:

X
x

dx

8><
>:
a b e

c d f

e f x

9>=
>; ¼ �bc

db
�ða; b; eÞ�ðb; d; fÞ:

(A21)

(vii) Integration—The matrix elements of the irreduc-
ible representations of SU(2) provide an orthonor-
mal basis in the space of square integrable
functions of SU(2) with respect to the Haar mea-
sure �ðgÞ. This can be visualized by the following
diagram:

The visualization of the integral over higher tensor products works analogously.
(viii) Simplify Graphs—From Eq. (A22), follow some useful rules for simplifying graphs. In the following, completely

contracted graphs are symbolized by dashed boxes.

The simplification of graphs with more than three edges can be obtained by applying Eqs. (A12) and (A23) and Eq. (A24),
respectively.

(ix) Sign-Manipulation—Suppose the three irreducible representations a, b, c obey the Clebsch-Gordan conditions;
then, ðaþ bþ cÞ 2 N, and thus ð�1Þ2aþ2bþ2c ¼ 1. This identity is crucial in many calculations in order to
simplify the signs or add missing signs of the form ð�1Þ2a. Since a 2 1

2N, we also have ð�1Þ3a ¼ ð�1Þ�a.
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APPENDIX B: GRASPING

A relevant formula used for the computation of the matrix elements of the Hamiltonian in the 4-valent case can be
deduced by the double grasping operators on 4-valent nodes, computed in Ref. [16]:

APPENDIX C: NORMALIZATION
OF THE SPIN-NETWORK STATES

Following Ref. [2], we define a spin network S ¼
ð�; jl; inÞ as given by a graph � with a given orientation
(or ordering of the links) with L links and N nodes,
and by a representation jl associated to each link and an

intertwiner in to each node. As a functional of the connec-
tion, a spin-network state is given by

�S½A� ¼ hAjSi � ð
lR
jlðh½A; �l�ÞÞ⌞ð
ninÞ (C1)

where ⌞ indicates the contraction with the intertwiners and
Rjlðh½A; �l�Þ is the jl representation of the holonomy group
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element h½A; �l� along the curve �l of the gravitation field
connection A. The scalar product on H kin is defined via
the Ashtekar-Lewandowski measure:

hSjS0i ¼
Z

d�AL�S½A��S½A�

¼ �S;S0
Y
e2E

1

dje

Y
v2V

Trð�vvÞ (C2)

where E is the set of links andV is the set of vertices of �.
Throughout this paper, we used normalized intertwiners
such that Trð�vvÞ ¼ 1. For a trivalent node, this require-
ment is trivially fulfilled if we use Wigner 3j symbols. A
higher-valent node can be decomposed into trivalent nodes
by introducing virtual links. For example, for a 4-valent
node, we obtain

If, additionally, we multiply Eq. (C2) by Y
e2E

ffiffiffiffiffiffi
dje

q
;

we obtain a normalized state jSiN with respect to Eq. (C2). Consequentially, the recoupling theorem applied to normalized
spin-network state yields
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