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Pitfalls of path integrals: Amplitudes for spacetime regions and the quantum Zeno effect
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Path integrals appear to offer natural and intuitively appealing methods for defining quantum-
mechanical amplitudes for questions involving spacetime regions. For example, the amplitude for entering
a spatial region during a given time interval is typically defined by summing over all paths between given
initial and final points but restricting them to pass through the region at any time. We argue that there is,
however, under very general conditions, a significant complication in such constructions. This is the fact
that the concrete implementation of the restrictions on paths over an interval of time corresponds, in an
operator language, to sharp monitoring at every moment of time in the given time interval. Such processes
suffer from the quantum Zeno effect—the continual monitoring of a quantum system in a Hilbert subspace
prevents its state from leaving that subspace. As a consequence, path integral amplitudes defined in this
seemingly obvious way have physically and intuitively unreasonable properties and, in particular, no
sensible classical limit. In this paper we describe this frequently occurring but little-appreciated
phenomenon in some detail, showing clearly the connection with the quantum Zeno effect. We then
show that it may be avoided by implementing the restriction on paths in the path integral in a “‘softer”
way. The resulting amplitudes then involve a new coarse-graining parameter, which may be taken to be a
time scale €, describing the softening of the restrictions on the paths. We argue that the complications
arising from the Zeno effect are then negligible as long as € > 1/E, where E is the energy scale of the
incoming state.
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I. INTRODUCTI 1
NTRODUCTION 01y, 110, 10) = f Dx(t)exp(l, /,, d;l:zmj@_U(x)]).

Consider the following question in nonrelativistic quan- fo

tum mechanics for a point particle in d dimensions: What (1.2)
is the amplitude g4 (X, #¢|X, o) for the particle to start at a
spacetime point (X, #y), pass through a spatial region A,
and end at a spacetime point (X, #;)? The seemingly

obvious answer to this question is surely the path integral

This object, the restricted propagator, is given by a sum
over paths restricted to lie always outside A. We then
clearly have

expression, g(xy, t7lxo, t0) = gal(Xy, trlxq, to) + &,(xy, t7|xq, 1)
s 1 1.3
ga(xp, t4lxg, 19) = f ZDX(t)exp(iffdtl:im)’(2 — U(X)]). (13)
A fo where g is the usual propagator obtained by summing over

(1.1) " all paths from the initial to the final point.

Objects such as Eq. (1.2) have to be given a proper
mathematical definition. For the moment, we have in
mind a definition involving the usual time-slicing proce-
dure, in which the time interval is divided up into n equal
intervals of size € so that 7, — 7y = ne and we consider
propagation between slices labeled by times 7, = t, + ke,
where k = 0, 1 - - - n. Equation (1.2) is then defined by a
limit of the form

(We choose units in which 72 = 1.) In this expression,
the paths x(r) summed over satisfy the initial condition
x(ty) = X, and the final condition x(#;) = X4, and pass, at
any intermediate time, through the region A [1-3], as de-
picted in Fig. 1. The point of this paper is to argue that there
are potential problems with this seemingly obvious answer.
We first develop these ideas further. We might similarly
assert that the amplitude g,(X, t7|X, 1y) for the particle
never entering the region A is given by a path integral ) y y
expression of the form 8:(xs, 17lxg, 1) = lim dixy - _[rd Xn—1

e—0n—c0 J

—_— n
*j halliwell @imperial.ac.uk X | e(xp telxp—1, te-1) (1.4)
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FIG. 1. The amplitude Eq. (1.1) is obtained by summing over

paths which enter the spatial region A at any time between ¢,
and t.

where x,, = X and the integrals are over the region outside
A. The propagator is approximated by

m \d/2 .
8(Xp, telXp—y, ) = <—) exp(iS(Xy, tx|Xp—1, tx-1))

2mie
(1.5)

for small times, where the exponent is the action between
the indicated initial and final points and the limit is taken in
such a way that ne is fixed.

Writing the above amplitudes in operator form, g4, &,,
where, for example,

gr(Xfy tle(), t()) = <Xf|§r(tf) ZO)|XO>: (16)

it seems reasonable to suppose that the probabilities for a
particle in the initial state |¢) entering or not entering the
region A during the time interval [, t,] are given by

pa = 18alty, 10)T8a (17 1)), (L.7)

Pr= <¢/|§r(tf’ tO)Tgr(tf’ to)|¢/> (18)

To be sensible probabilities these expressions should obey
the simple sum rule

patp. =1 (1.9)

but using ¢ = g + &,, it is easy to see that this is gen-
erally not the case unless the interference between the two
types of paths vanishes, which means that

Re(p18,(ts, 10)12a(ts, 1)l 4p) = 0.

This condition can hold, perhaps approximately, for certain
types of initial states, although this may be nontrivial to
prove and there is no guarantee that those states are physi-
cally interesting ones.

(1.10)
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Path integral expressions of the above general type have
been postulated and used extensively in a wide variety of
circumstances in which time is involved in a nontrivial
way. Indeed, Feynman’s original paper on path integrals
was entitled, “Space-time approach to non-relativistic
quantum mechanics,” clearly suggesting that the space-
time features of the path integral construction should be
made use of [1]. Path integral constructions have for many
years played an important role in quantum cosmology and
quantum gravity [4-22]. They have also been particularly
useful in addressing issues concerning time in nonrelativ-
istic quantum mechanics, for example, in studies of the
arrival time [23-34], dwell time, and tunneling time
[35-39]. Path integrals are also useful ways of formulating
continuous quantum measurement theory [40,41].

Many of these applications of path integrals are in the
specific framework of the decoherent histories approach to
quantum theory [42-52] [in which the relations Egs. (1.9)
and (1.10) arise] and quantum measure theory [53,54].
Also related are the various attempts to derive the Hilbert
space formulation of quantum theory from path integral
constructions [55]. Here we wish to study path integral
expressions as entities in their own right without being tied
to a specific approach to quantum theory.

However, as indicated, there is a problem with the
innocent-looking and informally appealing path integral
expressions Eqgs. (1.1) and (1.2), with the consequence that
their properties can be very different to intuitive expecta-
tions. This difficulty goes beyond the problem of satisfying
the no-interference condition, Eq. (1.10), although is re-
lated to it. To see it, let us focus on the amplitude for not
entering the region A, Eq. (1.2). The key issue is that the
innocent-looking restriction on paths effectively means
that an initial state propagated by Eq. (1.2) is required to
have zero support in the region A at every moment of time
between ¢, and f,. Evolution with this propagator therefore
suffers from the quantum Zeno effect—the fact that con-
tinual monitoring of a quantum system in a Hilbert sub-
space prevents it from leaving that subspace [56-64]. The
consequence is that the amplitude Eq. (1.2), or equivalently
8.(t5, 1), actually describes unitary propagation on the
Hilbert space of states with support only in the region
outside A and therefore gives probability p, = 1 for any
incoming state. This then means that either the sum rule
Eq. (1.9) is not satisfied, in which case the probabilities are
not meaningful, or that it is satisfied but p, = 0, which
means that any incoming state aimed at A has probability
zero for entering that region, a physically nonsensical
result.

Differently put, the innocent-looking restriction on paths
in the restricted propagator Eq. (1.2) with the usual im-
plementation Eq. (1.4) effectively sets reflecting boundary
conditions on the boundary of A, which means that any
incoming state is totally reflected under propagation by g,..
To obtain the intuitively sensible result, we would need a
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FIG. 2. The path decomposition expansion Eq. (1.11). Each
path from (X, to) to (X, #;) passing through A may be labeled
by its time ¢ and location y of first crossing of the boundary ..

propagator analogous to Eq. (1.2) in which the incoming
state is absorbed.

One could perhaps look for another way out, which is to
suppose that g, is related to some sort of measurement
scheme, in which case there is no obligation to satisfy the
probability sum rule, and that Eq. (1.7) may then give a
reasonable formula for the probability of entering. To this
end it is useful to give a more detailed formula for g, using
the path decomposition expansion (PDX) [65-67]. The
paths summed over in Eq. (1.1) may be partitioned accord-
ing to the time ¢ and location y at which they cross the
boundary 3 of A for the first time. (See Fig. 2.) As a
consequence, it is possible to derive the formula

ity _
Xp telXo to) ==— | dt | d* Vyg(xs tely, t
gal f jl o o) m j;o [z yg( f fly )

X1 Vyg, (X, 11X, 70)lxey (1.11)

where n is the outward pointing normal to 2.. The restricted
propagator g,(X, /Xy, fy) vanishes when either end is on 2,
but its normal derivative does not. In fact, the normal
derivative of the restricted propagator in Eq. (1.11) repre-
sents the sum over paths which are restricted to remain
outside A but end on its boundary [65-67].

Although on the face of it, Eq. (1.11) is a plausible
formula for the crossing amplitude, the problem with this
expression, which is fully equivalent to Eq. (1.3), concerns
the treatment of paths that are outside A before their first
crossing at t. The fact that these paths are represented using
the restricted propagator means that any such paths arriv-
ing at 3, before ¢ are reflected, rather than simply dropped
from the sum. This means an incoming wave packet
propagated using Eq. (1.11) will be partly reflected, and
we anticipate that this formula could fail to give intuitively
sensible results.

One way or another, we find that the simple and seem-
ingly obvious notion of “restricting paths” leads to the
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quantum Zeno effect and hence to unphysical results. This
is the sense in which we would say that path integral
constructions may suffer from pitfalls.

The purpose of this paper is to give a concise statement
of the general problem outlined above with naive path
integral expressions of the form Egs. (1.1) and (1.2), and
to point out how to construct practically useful modified
path integrals which give a meaningful answer to the
question of assigning amplitudes to spacetime regions
with a sensible classical limit.

Many papers using path integral constructions of the
above type appear to be oblivious to this effect and its
consequences. Although the results of such papers are not
necessarily wrong, they often do not have sensible classical
limits, and in measurement-based models, they may, un-
knowingly, only be valid in the regime of strong measure-
ment. These problems with the Zeno effect in path integral
constructions can be seen in a number of early attempts to
define probabilities for spacetime regions in the context of
the decoherent histories approach [23-28,32] and, in some
papers, on the decoherent histories approach to quantum
cosmology [10-14]. A possible resolution was given in
Refs. [15,29]. There are undoubtedly many other places in
which this difficulty has been encountered.

Here, our aim is to give a general account of the problem
and solution, independent of specific approaches to quan-
tum theory and of specific applications. We give a detailed
formulation of the problem in Sec. II, the proposed solution
in Sec. Il and an example involving the arrival time in
Sec. IV. In Sec. V, we give a detailed discussion of the
connections with other work. We summarize and conclude
in Sec. VL

II. DETAILED FORMULATION OF THE PROBLEM

We first discuss the generality of the problem with the
path integrals outlined above. The example in Egs. (1.1)
and (1.2) is in nonrelativistic quantum mechanics in any
number of dimensions. The region A can consist of a
number of disconnected pieces and then there could be
many different ways of partitioning the paths according to
how many different regions they enter or not. We will also
assume that A is reasonably large and that its boundary
is reasonably smooth, in comparison to any quantum-
mechanical length scales set by the incoming state.
Furthermore, in the situation depicted in Fig. 1, the spatial
region is constant in time, but there is no obstruction to
allowing it to vary with time. For example, in relativistic
quantum mechanics, it may be natural to look at regions
whose boundaries are null surfaces [15]. One could also
contemplate path integrals in curved spacetimes which
may have unusual properties, such as closed timelike
curves [10], but the basic ideas of path integration are still
applicable. An important area of application of these ideas
is to quantum cosmology, where there is no explicit physi-
cal time coordinate, but the basic object Eq. (1.1) is still the
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appropriate starting point for the construction of class
operators in the decoherent histories analysis of quantum
cosmology [10,14,15]. This is clearly not an exhaustive
list of possibilities, but the arguments presented in what
follows will apply to all of these cases, even though
they are presented in the context of the example,
Egs. (1.1) and (1.2).

We now set out in more mathematical detail the argu-
ment outlined in the Introduction. We focus on the path
integral representation of the restricted propagator
Eq. (1.2) and its time-slicing representation Eq. (1.4). We
will give an equivalent operator form for Eq. (1.4). We
introduce the projector onto A,

P= [A dx|xXx| 2.1
and its negation, P = 1 — P, the projector onto the region
A, the region of R? outside of A. Again we divide the
time interval up into n equal intervals of size € so that
ty — ty = ne. It is then easy to see that, in terms of the
operator g, defined in Eq. (1.6), the time-slicing expression
Eq. (1.4) is equivalent to
lim e iHep. ..o itiep

5—»0, n—oo

8.ty 19) = (2.2)
where there are n + 1 projectors and » unitary evolution
factors e 7€, and the limit is taken in such a way that
ne =ty — 1y is fixed. That is, inserted in Eq. (1.6),
Eq. (2.2) gives the time-slicing definition of the path in-
tegral expression, Eq. (1.4). [Note that there are n + 1
projectors P in Eq. (2.2) but only n — 1 corresponding
integrals in Eq. (1.4). The two extra projectors are redun-
dant, and hence the two expressions completely equivalent,
if we take x( and X to be outside A.]

One can clearly see from the operator form Eq. (2.2) that
it involves “‘monitoring” of the particle to check if it is in
A at each instant of time. The limit in Eq. (2.2) may be
computed explicitly [62] and leads to the explicit form

g r(tf’ tO) = Pexp(—lPHP(tf - to)). (23)
This propagator is, as claimed, unitary on the Hilbert space
of states with support in A [62]. It therefore describes the
situation in which an incoming state never actually leaves
A due to monitoring becoming infinitely frequent, which is
clearly the quantum Zeno effect. In simple examples of the
restricted propagator, one can easily see that an incoming
state is totally reflected off the boundary of the region A.
Equation (2.3) and its properties explain why the naive path
integral expressions Eqs. (1.1) and (1.2) have counterintui-
tive properties which lead to unphysical results if not used
sufficiently carefully.

It is also reasonable to consider other possible methods
for defining the path integral Eq. (1.2). Another natu
ral method is to consider the imaginary time version of
Eq. (1.2) and then define the path integral in terms of the
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limit of a stochastic process involving random walks on a
spacetime lattice (in the case U =0, for simplicity)
[26,68]. Restricting the paths to lie outside A means find-
ing a suitable boundary condition on the random walks at
the boundary of A. Most studies of this problem have
imposed reflecting boundary conditions, which appear to
be the easiest ones to impose in practice. As a conse-
quence, this method of defining the path integral once
again leads to the restricted propagator of the form
Eq. (2.3). However, it is not clear that one is compelled
to use reflecting boundary conditions in such implementa-
tions of the path integral. We will discuss this further below.

III. PROPOSED SOLUTION

Since the Zeno effect is the root of the problem, the
solution is clearly to limit or soften the monitoring of the
system in some way in Eq. (2.2) so that reflection is
minimized. The first obvious way to do this is to decline
to take the limit in Eq. (2.2) and keep the time-spacing e
finite. The second way is to replace the exact projectors
with positive operator-values measures. These solutions
have been explored in the specific context of the arrival
time problem in one dimension [29,30], but the purpose
here is to present these solutions in a more generally
applicable way.

In the first approach, we therefore define a modified
propagator for not entering A by

g ﬁ(tf’ to) = peiiHEP ct €7iHEp (31)
where as before there are n + 1 projectors and n unitary
time operators and ne = 7, — fy. This object can also be
represented by a path integral expression of the form
Eq. (1.2), except that the paths are required to be outside
A only at the n + 1 times f, + ke, where k =0 - - n, but
between these times the paths are unrestricted. This situ-
ation is depicted in Fig. 3 for a one-dimensional example in
which the region A is the interval [q, b].

This modified propagator involves a new coarse-
graining parameter €, describing the precision to within
which the paths are monitored. The original propagator
Eq. (1.2) is obtained in the limit of infinite precision € — 0.
The physically interesting case, however, is that in which e
is small enough to monitor the paths well, but sufficiently
large that an incoming state is not significantly affected by
reflection.

There is a very useful approximate alternative to
Eq. (3.1), which is also helpful in terms of calculating the
time scale required to define what “small” and “large”
mean for €. For the special case of projectors onto the
positive x axis in one dimension, P = #(%), it has been
shown [69,70] that the string of projectors Eq. (3.1) is to a
good approximation equivalent to evolution in the presence
of a complex potential consisting of a window function on
the region A, that is,

PemHep...emHep = exp(—(iH + VoP)(t; — 1p)). (3.2)
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FIG. 3. The paths summed over in the path integral represen-
tation of the modified propagator Eq. (3.1). The paths may enter
the region [a, b] but not at the times at which the projectors act.
Very wiggly paths, which enter the region frequently, will
generally have small contributions to the path integral in a
semiclassical approximation, which means that there is an ef-
fective suppression of paths entering the region.

Here, the real parameter V,, depends on €, and it was shown
numerically [70] that the best match is obtained with the
choice

€V, =~ 4/3. (3.3)

The approximate equivalence Eq. (3.2) is expected to hold
when acting on states with energy width AH for which
€ < 1/AH (a time scale often called the Zeno time).
Moreover, the general arguments given in Refs. [69,70]
for the equivalence Eq. (3.2) are not obviously tied to the
one-dimensional case with P = 0(%), so we expect it to
hold very generally.

This approximate equivalence means that a second natu-
ral candidate for the modified propagator is

g7ty 1g) = exp(—(iH + Vo P)(t; — o).

As stated, this is approximately equal to Eq. (3.1), at least
in simple one-dimensional models. However, it may be
taken as an independently postulated alternative propaga-
tor which is essentially equivalent to using the form
Eq. (2.2) but replacing the exact projector P with positive
operator-values measures of the form exp(— €V, P), which
is our second obvious way of softening the monitoring so
as to avoid the Zeno effect. Moreover, this expression also
has a path integral form,

3.4

g/ (X, t71Xo, 1)
= f@x(t) exp(i f:’f dtli%m)k2 - U®x) + iVofA(X)])
3.5)

where fA(x) is a window function on A. Here, the paths are
unrestricted, except at their end points, but paths entering
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FIG. 4. The paths summed over in the modified propagator
Eq. (3.5). The paths may enter the region [a, b] but their con-
tributions to the sum over paths is exponentially suppressed.

A are suppressed by a complex potential. This situation is
depicted in Fig. 4 for the above one-dimensional example,
in which the region A is the interval [a, b].

Complex potentials of this general type arise in a variety
of contexts and have been extensively studied [71-74].
They will, in general, still involve reflection, but they
behave in the classically expected way; i.e. they are ab-
sorbing, for sufficiently small V), which is what is required
for the propagator to have the intuitively correct properties.
Generalizations of the above scheme are possible in which
a real potential of step function form is included. This can
help with minimizing reflection, and indeed it is possible,
for given classes of initial states, to find potentials which
are almost perfect absorbers [74].

Given the relationship Eq. (3.2), we can now compute
the scales associated with reflection, since at least in simple
examples, scattering off a complex potential is easy to
compute. In the simplest case of a free particle in one
dimension scattering off a simple complex step potential
—iVy0(x), reflection is negligible for V, << E, where E is
the energy scale of the incoming state [70,73]. Because V|
is connected to € by Eq. (3.3), this means that the Zeno
effect in the string of projectors Eq. (3.1) is negligible as
long as

> ! 3.6

€ T (3.6)

Again on general grounds, we expect this to be true in a

wide class of models. For more elaborate models in which

there are length scales describing the size of the region, the

requirement of negligible reflection may impose further

conditions on E, in addition to Eq. (3.6). However, we

assert that for sufficiently large regions A, Eq. (3.6) is the
most important condition.

We thus see that there are two natural and simple ways of
defining a restricted propagator outside A (in such a way
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that reflection is minimized), which remain as true as
possible to the notion of paths not entering A. These
definitions involve a new coarse-graining parameter €
which must, in general, be chosen to be sufficiently large
to avoid unphysical results. The earlier, problematic defi-
nitions of the propagators Eqgs. (1.1) and (1.2) are obtained
in the limit € — 0.

Given the modified propagator Eq. (3.4) describing re-
stricted propagation outside A, one can also derive a
corresponding propagator for entering A, analogous to
Egs. (1.3) and (1.11). We define the modified propagator
for entering by

gx(ty, to) = exp(—iH(t; — 15))

- exp(—(lH + Vop)(ff - to)). (37)

Some elementary calculation [15,29] leads to the equiva-
lent form

&Yt 1) = f " drexp(—iH(t; — H)VoP
To

X exp(—(iH + VoP)t — 15).  (3.8)

This may be rewritten

gX(Xf, ff|X0, 1)
t
=V f "dt fA dlyg(xy, trly, 0g) (v tlxo. 1) (3.9)
ty

This is the generalization of Eq. (1.11) and tends to it as
Vo — oo. It is different in that, first, the restricted propa-
gation suppresses paths that enter A but does not com-
pletely exclude them, so the restriction is ““softer.”” Second,
the intermediate integral is over all of the region A, not
just the boundary. With some straightforward calculation,
which is in essence the same as a similar case in quantum
cosmology considered in Ref. [15], Eq. (3.8) may be
simplified for small V), has the form of an ingoing current
operator on the boundary 3, the anticipated semiclassical
form, and gives intuitively sensible results.

IV. SOME SIMPLE EXAMPLES

To illustrate the above ideas, we now give some simple
one-dimensional examples. We consider a free particle in
one dimension consisting of mainly positive momenta and
initially perfectly localized in x < 0, so that P|y) = | i),
where P = 6(&). We take the spatial region A to be x >0
and consider the following question: What is the probabil-
ity that the particle either enters or never enters A during
the time interval [0, 7] and ends in x; < 0 at time 7? The
situation is depicted in Fig. 5. This question is closely
related to the arrival time problem, addressed in many
places [75,76], but here we use it as a simple example of
spacetime coarse graining.

The amplitude for not entering x > 0 is given by the
restricted propagator, which in this case is given by the
usual method of images expression
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FIG. 5. The amplitude for not entering or entering the region
x> 0 during [0, 7] and ending at any x, < 0 at 7 is obtained by
summing over paths which, respectively, do not enter (dotted
line) or enter (bold line) x > 0.

g-(x, 7lx0, 0) = O(=x)0(—x0)[g(x, lxp, 0)
— 8, 7| = X, 0)] 4.1)

and g is the usual free particle propagator

g(x, 7lxp, 0) = (L)l/z exp(M)_ (4.2)

27T 2T

Note the restricted propagator Eq. (4.1) consists of direct
and reflected pieces and hence describes reflection off the
origin, as discussed earlier. The restricted propagator is
also conveniently written in the operator form

8,(r,0) = P(1 — R)e 7P (4.3)
where P = §(—2%) and R is the reflection operator,
R= f dxlx)(—x]. 4.4)

Since, as stated in Sec. II, g, is unitary on states with
support only in x < 0 and since the initial state is perfectly
localized in x <0, the probability for not entering is
pr=1

However, we may still explore the properties of the
crossing amplitude to see what sort of result it gives,
ignoring the fact that the sum rules will not be satisfied,
as we discussed in the more general case Eq. (1.11). We
therefore consider the propagator g, for entering x >0
during the given time interval, defined by summing over
paths which start at x, < 0 at t = 0, cross the origin at least
once and end at x < 0 at 7. It is most simply expressed in
the operator form

g A(T’ 0) = P(g(T» O) - gr(T’ 0))P

where & = exp(—iH7) is the free particle propagator.
Using Eq. (4.3), this is equivalently given by

(4.5)

& A(7,0) = PRe 7P, (4.6)
[This is in fact equivalent to the PDX form of the crossing
propagator, Eq. (1.11)]. The probability for entering A is
then given by
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pa(0,7) = (¢1ga(7, 0)12a(7, 0)|4h) = (Y| PP(1)Pl )
“.7

because RPR = P = (). Now note that we may write

P(r) =P+ f " dri(o) (4.8)
0
where J = ﬁ (pS(%) + 8(%)p) is the current operator, so
we finally have
ps(.0) = [ a1, (49)
This is, on the face of it, a familiar semiclassical answer for
the probability for entering x > 0 during [0, 7]—the flux
across the origin [75,76]. It gives a probability close to 1
for incoming states which substantially cross during the
time interval [0, 7] and a probability close to zero for states
which substantially miss the interval.

This result is problematic for two reasons—first, be-
cause, as stated earlier, the sum rules are generally not
obeyed, so that p, + p. # 1, in general. For example, for a
state which substantially crosses during the time interval
we get p, + pa = 2, arather striking violation of the sum
rules. The sum rules are respected only for states which
substantially miss the interval, for which p, = 0.

Second, even aside from the failure of the sum rules, the
result is misleading. Recall that the histories are required
to end in x <O at the final time after entering x > 0.
Semiclassically, such histories would have probability ap-
proximately zero for a free particle. Hence Eq. (4.9) is
semiclassically incorrect for this model.

The point is emphasized by considering a slightly more
complicated version of the above problem. We take the
same initial state in x <0 and ask a modified question:
What is the probability that the particle either enters or
does not enter x > 0 during the time interval [0, 7] and ends
at any point x; at time ¢, > 77 The situation is depicted in
Fig. 6. The propagator for not entering is very similar,

8.(t,0) = e M=IPp(1 — R)e 7P, (4.10)

so we still have p, = 1, and again the sum rules are not
obeyed. The propagator for entering, however, acquires a
new type of term,

ga(t;, 0) = (8(1, 0) — &,(17,0))P
— e*iH(tf*T)(pRefiHTI_) + Pe*iHTI_))’

(4.11)

because there is now the new possibility that the particle
can be in x > 0 at time 7. It is easily seen that these two
terms make identical contributions to the probability and
we therefore have

palt;,0) =2 [0 TaplIol). @12

This is twice the expected semiclassical answer.
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FIG. 6. The amplitude for not entering or entering the region
x > 0 during [0, 7] and ending at any final x at ¢, is obtained by
summing over paths which, respectively, do not enter (dotted
line) or enter (bold lines) x > 0 during [0, 7].

The underlying problem is, in essence, the reflection
produced by the restricted propagator which persists into
the crossing propagator as one can see in Eq. (4.11). As
described in Sec. III, a solution to this difficulty is obtained
by softening the coarse graining by using a complex
potential to characterize the restrictions on paths or by
using projections not acting at every time. This is described
in Refs. [29,30] and we briefly summarize the key ideas
here for the complex potential case applied to the second
model considered above. The amplitude for not entering
the region x > 0 during the time interval [0, 7] is then given
by an expression of the form Eq. (3.4), where P = 6(%).
For V) <« E, where E is the energy scale of the incoming
state, there is negligible reflection, so the part of the state
crossing the origin during [0, 7] will be absorbed and the
remainder of the state is unchanged. This effectively means
that under propagator with Eq. (3.4),

870, 1ly) = P(0)l¢). (4.13)

This is the key property that makes the amplitudes defined
with a complex potential give sensible physical results.
For states consisting of single wave packets reasonably
well peaked in position and momentum, the sum rules
are satisfied approximately and the crossing probability is
approximately Eq. (4.9) (with small modifications depend-
ing on V;). The term involving reflection in Eq. (4.11) is
essentially suppressed which is why the 2 becomes a 1 in
Eq. (4.12).

A final related example is that of Yamada and Takagi
[23], who took a general initial state and asked for the
probability of either crossing or not crossing the origin in
either direction during the time interval [0, 7]. The non-
crossing propagator is similar to that above, Eq. (4.3), and
is given by
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8 .(1,0) = P(1 — R)e ™"P + P(1 — R)e P, (4.14)

They found that the sum rules are satisfied only for states
antisymmetric about the origin and that the crossing proba-
bility is exactly zero, once more a physical counterintuitive
result.

The analysis of this situation with one of the above
modified propagators essentially follows from the work
described in Ref. [31]. For superpositions of incoming
wave packets (in either direction), the sum rules are ap-
proximately satisfied if the energy scale of the wave packet
E satisfies E >> V,, and the probabilities are the expected
semiclassical ones, so intuitive properties are restored.

Note that this model actually has rwo different regimes
in which the sum rules are satisfied: approximately for
small V,, and exactly, in the Zeno limit of V; — oo for
antisymmetric initial states, but the resulting probabilities
are very different in each case.

Note also that this simple model suggests that the con-
siderations of this paper may have implications for quan-
tum measure theory, in which it is asserted that histories
with probability zero do not occur [53,54]. Intuitively, one
would expect a nonzero crossing probability in this model,
but the crossing probability is zero in the Zeno limit case.
Hence the predictions of quantum measure theory may
conflict with the intuitively expected result in this limit.

V. CONNECTIONS TO OTHER WORK

The potential difficulties with path integral expressions
highlighted in this paper first arose in applications of the
decoherent histories approach to spacetime coarse grain-
ings in nonrelativistic quantum mechanics [10,23-28]. The
problems with the Zeno effect did not seem to be appre-
ciated, except that Hartle noted that some coarse grainings
are “‘too strong for decoherence” [26]. The problems also
persisted in applications of the decoherent histories
approach to quantum cosmology and reparametrization
invariant theories [10—14]. These issues also have conse-
quences for the continuous tensor product structure in the
decoherent histories approach, discussed by Isham and
collaborators [51,52].

The specific problem with the Zeno effect was noticed in
Ref. [14]. It was also observed that it can in fact be avoided
if the spacetime regions involved in the coarse graining are
carefully chosen so that the initial state has zero current
across the boundary. This resolution has been pursued [19].

In this paper we have presented a generally applicable
resolution to the Zeno problem involving a softening of the
coarse graining. This was first proposed in the specific
context of the arrival time problem in Refs. [29,30,77]
and in a quantum cosmological model in Ref. [15].

Numerous studies of the dwell and tunneling time prob-
lem involve path integral expressions of the type consid-
ered here (for example, Refs. [35,37-39]). However, some
of these applications are typically connected to specific
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models of measurements for which the problems described
in this paper may not apply. Indeed, specific models for the
measurement of time frequently lead to path integral con-
structions in which the softening of the coarse graining of
the type described in Sec. III is already implemented. A
detailed analysis of the dwell time problem will be given in
another publication [78].

We also stress that partitioning of the paths of the type
involved in Eqgs. (1.1) and (1.2) is often used as part of a
given calculation (for example, when there is a potential of
window function form concentrated in a given region), and
the issues raised here are not problematic in such cases.
The issues raised in the present paper concern the possible
interpretation of amplitudes obtained by restricted sums
over paths.

In terms of the proposed solutions to the problems with
path integrals in Sec. III, our considerations relating to
modified coarse grainings have some connection to con-
tinuous quantum measurement theory [40,41,79,80]. We
note also that there could be other possible ways of soft-
ening the coarse graining to improve the properties of
amplitudes constructed by path integrals. For example,
Marchewka and Schuss have considered path integrals
with absorbing boundary conditions [81]. We also note
the interesting and perhaps relevant observations concern-
ing the rigorous definition of path integrals by Sorkin [82],
Geroch [83], and Klauder [84].

VI. SUMMARY AND CONCLUSIONS

We have argued that amplitudes constructed by path in-
tegrals for questions involving time in a nontrivial way can, if
implemented in the simplest and most obvious way, lead to
problems due to the Zeno effect. This has the consequence
that they do not have a sensible classical limit and have
properties very different from those expected from the under-
lying intuitive picture. When path integrals are used in the
decoherent histories approach, the Zeno effect can have the
consequence that the sum rules are not satisfied except for
very trivial initial states. These problems have been observed
in numerous examples and applications, but here we have
argued that the issue is a very general one to do with the use of
path integrals in a wide variety of applications.

We outlined a successful solution to the Zeno problem,
through a softening of the coarse graining. Again, this
solution has been put forward in specific examples and
applications, but here we stress that such a solution will
offer a very general solution to the problem. We also note
that the softening of the coarse graining introduces, per-
haps unexpectedly, one or more new coarse graining pa-
rameters, in the simplest case a time scale €, describing the
precision to within which the paths are monitored in time.
The Zeno problem is then avoided as long as € > 1/E,
where F is the energy scale of the incoming state.

These observations about path integral amplitudes apply
most strongly to any approach to quantum theory which
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involves constructing amplitudes for spacetime coarse
grainings which do not refer to a particular measurement
scheme, such as the decoherent histories approach and
quantum measure theory. Many approaches to quantum
gravity are of this type. However, these observations may
be less relevant to measurement-based models of space-
time coarse grainings.

We certainly do not claim that any of the papers in this
area are wrong. Indeed many authors have noted the un-
physical nature of their results. The present paper is, if
anything, a cautionary note on the use of path integrals in
space time coarse grainings: some types of ‘“‘obvious”
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coarse grainings are quite simply unphysical. However,
amplitudes with sensible intuitive properties may be
successfully constructed with proper attention to the im-
plementation of the coarse graining and to the associated
time scale.
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