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It is a known fact that the Kerr-Schild type solutions in general relativity satisfy both exact and

linearized Einstein field equations. We show that this property remains valid also for a special class of the

Kerr-Schild metrics in arbitrary dimensions in generic quadratic curvature theory. In addition to the anti-

de Sitter (AdS) wave (or Siklos) metric which represents plane waves in an AdS background, we present

here a new exact solution, in this class, to the quadratic gravity in D dimensions which represents a

spherical wave in an AdS background. The solution is a special case of the Kundt metrics belonging to

spacetimes with constant curvature invariants.
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I. INTRODUCTION

Whatever the full UV-finite quantum gravity is, its suc-
cessful low energy limit, general relativity (GR), is based
on the Riemannian geometry. In this context finding exact
Riemannian spacetimes as solutions to Einstein’s equa-
tions (with or without a cosmological constant and/or
sources) has evolved to be a fine art on its own. There
are at least two books [1,2] that compile and classify these
spacetimes, discuss their physical interpretations and
present techniques of finding solutions. Like any other
low energy theory, GR is expected to receive corrections
at high energies built on more powers of curvature starting
with the quadratic gravity which is the subject of this work.
Even though much has been studied in quadratic gravity
theories, compared to Einstein’s theory very little is known
about the exact solutions in generic D dimensions (D ¼ 3
and D ¼ 4 are somewhat special as we shall discuss be-
low). There has been a revival of interest in quadratic
gravity theories because of three recent enticing develop-
ments: a specific quadratic gravity model in (2þ 1)
dimensions dubbed as the new massive gravity (NMG)
[3] provided the first example of a parity invariant non-
linear unitary theory with massive gravitons in its pertur-
bative spectrum. The second development was the
introduction of ‘‘critical gravity’’ [4,5] built from the
Ricci scalar, the square of the Weyl tensor and a tuned
cosmological constant that has the same perturbative
spectrum as the Einstein’s theory with an improved UV
behavior. The third one is the observation that with
Neumann boundary conditions on the metric non-
Einstein solutions of the conformal gravity are eliminated
and the theory reduces to the cosmological Einstein’s
gravity in D ¼ 4 dimensions [6]. All these developments
in quadratic curvature gravity theories prompted us

to study systematically some exact solutions of these
theories.
In this work, we will present special Kundt type radiat-

ing solutions [7,8] to quadratic gravity theories in generic
D dimensions. This will be aD-dimensional generalization
of the works in three dimensions [9,10].1 Subclasses of
Kundt metrics in various forms have also been studied as
solutions of topologically massive gravity [12,13] in
[9,10,14–20]. In D dimensions, the anti-de Sitter (AdS)-
wave metric (also called the Siklos metric [21,22]) which is
a Kundt metric of Type N with a cosmological constant
was shown to be a solution of the quadratic curvature
theories [23] generalizing the result in D ¼ 3 [24]. All
Einstein spacetimes of Type N solve this theory exactly in
D dimensions [25,26]. It is a known fact that in D ¼ 4 all
Einstein spaces solve quadratic theory exactly. Critical
quadratic gravity has genuinely new solutions with asymp-
totically non-AdS geometry that has logarithmic behavior
in Poincaré and global coordinates [23,27]. It is important
here to note that the works of Coley et al. [7,8,28–32] on
the classification of pseudo-Riemannian spacetimes, on
spacetimes with constant invariants and on Kundt space-
times in general relativity have attracted many researchers
[9,19,20,33] to use them in higher order curvature theories
in arbitrary dimensions. Another important point is that all
those metrics solving higher order curvature theories be-
long to both Kundt and Kerr-Schild classes, [1,34,35].
The layout of the paper is as follows: In the next section,

we discuss the Kerr-Schild class of metrics in AdS back-
grounds possessing some special properties. These proper-
ties are so effective that some tensorial quantities, like
Ricci and Riemann tensors become linear in the metric
‘‘perturbation’’ around the AdS background. In the third
section, we show that the full quadratic gravity field equa-
tions reduce to a fourth order linear partial differential
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1In [11], for D ¼ 3, Kundt type solutions of NMG [9,10] are
used to generate solutions of fðR��Þ theories which naturally
includes the generic quadratic curvature theory.
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equation. We give a new exact solution which we call a
spherical-AdS wave that has asymptotically AdS and
asymptotically non-AdS; i.e. Log mode behavior just like
the previously found AdS wave. In Sec. IV, we show that
the same class solve the linearized quadratic gravity field
equations. We delegate the details of the computations to
the Appendices.

II. A SPECIAL CLASS OF
KERR-SCHILD METRICS

Let us take a D-dimensional metric in the Kerr-Schild
form [34,35]

g�� ¼ �g�� þ 2V����; (1)

where �g�� is the metric of the AdS space and V is a

function of spacetime (see [36] for some properties of the
Kerr-Schild metrics with generic backgrounds and see also
[26,37] with an AdS background). The vector �� ¼ g����

is assumed to be null; i.e. ���
� ¼ g���

��� ¼ 0 and

geodesic ��r��� ¼ 0. These two assumptions imply

�g ���
��� ¼ 0; �� ¼ �g���

�; �� �r��� ¼ 0;

where the barred covariant derivative is with respect to
�g��. The inverse metric can be found as

g�� ¼ �g�� � 2V����: (2)

Writing the metric in the form (1) will help us in explicitly
observing the fact that the solutions of the field equations
of the quadratic gravity are also solutions of the linearized
field equations of the theory with h�� � 2V����. AdS

wave or Siklos spacetimes are in this class with the line
element

ds2 ¼ 1

k2z2

�
�dt2 þ dx2 þ XD�3

m¼1

ðdxmÞ2 þ dz2
�

þ 2Vðt; x; xm; zÞ����dx
� � dx�

¼ 1

k2z2

�
2dudvþ XD�3

m¼1

ðdxmÞ2 þ dz2
�

þ 2Vðu; xm; zÞdu2; (3)

where in the second line we have used the null coordinates

defined as u ¼ ðxþ tÞ= ffiffiffi
2

p
, v ¼ ðx� tÞ= ffiffiffi

2
p

and chosen
��dx

� ¼ du and ��@�V ¼ 0 that is V does not depend

on v. The constant k2 is related to the cosmological con-

stant as �k2 ¼ 2�
ðD�1ÞðD�2Þ . With these assumptions, ��

becomes divergence free (nonexpanding) with respect

to the full and background metrics namely r��
� ¼

�r��
� ¼ 0, and the Ricci scalar turns out to be a constant

given as R ¼ �DðD� 1Þk2. Besides being nonexpand-
ing, it is possible to show that �� is a shear-free,
r���rð���Þ ¼ 0, and nontwisting, r���r½���� ¼ 0,

vector. As �� is a null vector which is nonexpanding,

shear-free and nontwisting, AdS wave is a Kundt space-
time by definition. Furthermore, the Weyl tensor satisfies
the following property

C�����
� ¼ 0; (4)

therefore, �� is a null direction of the Weyl tensor. In

D ¼ 4, (4) is equivalent to the metric being of Type N.
Note that �� is not a Killing vector, but 	� � 1

z2
�� is a null

Killing vector. Recently, it was shown that the AdS-wave
metric (3) solves the quadratic gravity field equations in D
dimensions provided that the function V satisfies a fourth
order linear partial differential equation which was solved
in the most general setting [23].
In this work, we present a new Kundt solution of the

quadratic gravity field equations in D dimensions which is
also in the Kerr-Schild form (1) as the AdS wave. The new
solution is similar to the AdS-wave metric in form, but
with a different �� which dramatically changes the space-

time. To reach the new metric, let us rewrite the back-
ground AdS in the spherical coordinates which turns the
full metric to

ds2 ¼ 1

k2z2

�
�dt2 þ XD�2

m¼1

ðdxmÞ2 þ dz2
�

þ 2V����dx
� � dx�

¼ 1

k2r2cos2


�
�dt2 þ dr2 þ r2d�2

D�2

�

þ 2V����dx
� � dx�; (5)

where d�2
D�2 is the metric on the unit sphere in ðD� 2Þ

dimensions. Here, note that since z > 0, one needs to
constrain 
 in the interval 0 � 
 < �=2. In the spherical
coordinates, boundary of AdS (z ! 0) can be reached with
the limits r ! 0 or/and 
 ! �=2. One can define the null
coordinates as u � 1ffiffi

2
p ðrþ tÞ and v � 1ffiffi

2
p ðr� tÞ, then (5)

becomes

ds2 ¼ 2

k2ðuþ vÞ2cos2

�
2dudvþ ðuþ vÞ2

2
d�2

D�2

�

þ 2Vðu;�D�2Þdu2;
¼ 1

k2cos2


�
4dudv

ðuþ vÞ2 þ d�2
D�2

�

þ 2Vðu;�D�2Þdu2; (6)

where we have again chosen ��dx
� ¼ du and ��@�V ¼ 0.

With these assumptions, once again r��
� ¼ �r��

� ¼ 0.

This metric can be recast in other coordinates as
(1) Cartesian:

ds2 ¼ 1

k2z2

�
�dt2 þ XD�2

m¼1

ðdxmÞ2 þ dz2
�

þ 2Vð��dx
�Þ2; (7)
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where

�� ¼
�
1;
xm

r
;
z

r

�
;

m ¼ 1; 2; . . . ; D� 2; r2 ¼ z2 þ XD�2

m¼1

ðxmÞ2: (8)

Here, we note that an infinite boost in the
(t� x1) plane reduces this metric to the AdS-wave
metric (3).

(2) Another form of the above metric can be given as

ds2 ¼ dr2 þ 4cosh2kr

k2ðuþ vÞ2 dudvþ sinh2kr

k2
d�2

D�3

þ 2Vðu; r;�D�3Þdu2: (9)

This form was given in [28,33] as an example of
Kundt spacetimes with constant curvature invari-
ants. There exists no null Killing vector field of
this spacetime. D ¼ 3 case of this form of the
metric was given [10,17] as the most general
Type-N solution of the three-dimensional NMG.

The AdS-wave metric (3) and the spherical-wave metric
(6) have the following (not necessarily independent) prop-
erties which define the Kerr-Schild-Kundt (KSK) class:

(1) �g�� is the metric of the AdS space, g�� ¼ �g�� þ
2V���� is the full metric.

(2) The vector �� ¼ g���� assumed to have the prop-
erties of being null ���

� ¼ g���
��� ¼ 0 and geo-

desic ��r��� ¼ 0.

(3) V is a function of spacetime assumed to satisfy
��@�V ¼ 0. This assumption has wonderful impli-

cations together with the assumption r��
� ¼

�r��
� ¼ 0. With these assumptions, Riemann and

Ricci tensors become linear in V and the scalar
curvature becomes constant.

(4) r��� ¼ �ð���Þ, where ���� ¼ 0.2

(5) �� is nonexpanding, r��
� ¼ 0, shear-free,

r���rð���Þ ¼ 0, and nontwisting,r���r½���� ¼
0which are implied by the fourth property. Note that
one can replace the full covariant derivative and the
metric with the background covariant derivative and
the background metric in these relations, namely
�r��� �r½���� ¼ 0, etc.

These properties are useful in calculating various ten-
sorial quantities. Here, we note the results of the relevant
computations and delegate some to Appendix B. The
Riemann tensor of (1) after using some of the properties
listed above reduces to

R�
��� ¼ �R�

��� þ �r��
�
�� � �r��

�
��; (10)

where

�r��
�
��� �r��

�
��¼2���½� �r��@�V�2���½� �r��@�V

þ�½����ð��@
�V���@�V

þ���
�VÞþð���

������Þ
��½�@��Vþ2V��

�ð��
�r½������½� �r����Þ; (11)

where the background part reads �R���� ¼ �k2ð �g�� �g�� �
�g�� �g��Þ and the remaining part is linear in V. The property

(4) leads to

R�
����� ¼ R

DðD� 1Þ ð��g�� � ��g��Þ: (12)

For the class of Kerr-Schild-Kundt metrics, the Ricci ten-
sor follows from (10) as

R�� ¼ �ðD� 1Þk2g�� � �����; (13)

where

� � �hV þ 2��@
�V þ 1

2V���
� � 2Vk2ðD� 2Þ; (14)

where �h � �r� �r� and ��@�� ¼ 0 and the Ricci scalar is

R ¼ �DðD� 1Þk2. It is amusing to see that the metric
solves the cosmological Einstein equations in the presence
of a null fluid in all dimensions as long as T�� ¼ �����,

but our task is to show that the same metric solves the
vacuum field equations of the quadratic gravity.
Using the properties listed above of the new metric we

find the following tensors that we shall need in the field
equations of the most general quadratic gravity;

hR�� ¼ � �hð�����Þ; (15)

or in another form

hR�� ¼ �����ð �h�þ 2��@
��þ 1

2����
�

� 2�k2ðD� 1ÞÞ; (16)

and

R�
�R�� ¼ ðD� 1Þ2k4g�� þ 2ðD� 1Þk2�����; (17)

R����R
�� ¼ ðD� 1Þ2k4g�� þ ðD� 2Þk2�����; (18)

R����R�
��� ¼ 2ðD� 1Þk4g�� þ 4k2�����: (19)

III. A NEW SOLUTION OF THE
QUADRATIC GRAVITY

The action of the quadratic gravity is

I ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
1



ðR� 2�0Þ þ �R2 þ �R2

��

þ �ðR2
���� � 4R2

�� þ R2Þ
�
: (20)

2Symmetrization is done as usual; i.e. 2Að�B�Þ � A�B� þ
A�B�.
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The (source-free) field equations were given in [38,39] as

1




�
R���1

2
g��Rþ�0g��

�
þ2�R

�
R���1

4
g��R

�

þð2�þ�Þðg��h�r�r�ÞRþ2�

�
RR���2R����R

��

þR����R�
����2R��R�

��1

4
g��ðR2

�����4R2
��þR2Þ

�

þ�h

�
R���1

2
g��R

�
þ2�

�
R�����1

4
g��R��

�
R��¼0:

(21)

Using (13)–(19) in (21), one obtains

���0

2

þf�2¼0; ���ðD�1ÞðD�2Þ

2
k2;

f�ðD�þ�Þ ðD�4Þ
ðD�2Þ2þ�

ðD�3ÞðD�4Þ
ðD�1ÞðD�2Þ;

(22)

as a trace equation, and the remaining traceless equation is
a fourth order equation,

ð� �hþ cÞð�����Þ ¼ 0; (23)

where

c � 1



þ 4�D

D� 2
�þ 4�

D� 1
�þ 4�ðD� 3ÞðD� 4Þ

ðD� 1ÞðD� 2Þ �:

(24)

As noted before, AdS wave [23] solves (23). Now, let us
find the second solution that is the spherical-AdS-wave
metric (6). This can be achieved by obtaining a fourth order
scalar equation on V

ðO�M2ÞOVðu;�D�2Þ ¼ 0; (25)

where

M2 � � c

�
þ 2k2;

O � �h� 2k2 sin2
@
 � 2k2ðD� 2� sin2
Þ:
(26)

To reach (25), we have calculated � for the spherical-AdS
wave which is � ¼ OV. It is important to notice that there
are two different types of solutions to (25). The first type
solution is V ¼ V1 þ V2 where V1 is a solution to the
quadratic partial differential equation (PDE)

OV1ðu;�D�2Þ ¼ 0; (27)

which is also a solution of the cosmological Einstein’s
theory, (� ¼ 0), and V2 is a solution to again a quadratic
PDE

ðO�M2ÞV2ðu;�D�2Þ ¼ 0: (28)

As long as M2 � 0, V ¼ V1 þ V2 is the most general
solution to the fourth order PDE (25). But, when
M2 ¼ 0, then the equation becomes

O 2Vðu;�D�2Þ ¼ 0; (29)

and new solutions arise which represent the non-Einstein
solutions of the critical gravity. To get the solutions,
let us employ the separation of variables technique as
Vðu;�D�2Þ ¼ Fðu; 
ÞGðu;�D�3Þ where Gðu;�D�3Þ is
the function defined on the (D� 3)-dimensional unit
sphere. For a scalar function �ðu; 
;�D�3Þ, let us calcu-
late �r� �r��ðu; 
;�D�3Þ for the background AdS metric

d�s2 ¼ 4dudv

k2cos2
ðuþ vÞ2 þ
1

k2cos2

d�2

D�2; (30)

which corresponds to V ¼ 0 in (6):

�r � �r��ðu; 
;�D�3Þ ¼ 2 �gvu �rv@u�ðu; 
;�D�3Þ
þ �g�i�i �r�i

@�i
�ðu; 
;�D�3Þ;

(31)

where �i represents the angular coordinates on SD�2

which includes the 
 direction. Using the results in
Appendix C, the first term yields

2 �gvu �rv@u�ðu; 
;�D�3Þ ¼ 2k2 sin
 cos
@
�ðu; 
;�D�3Þ:
(32)

On the other hand, the second term can be written as

�g�i�i �r�i
@�i

�ðu;
;�D�3Þ
¼ �g�i�i@�i

@�i
�ðu;
;�D�3Þ

� �g�i�i ��
�j

�i�i
@�j

�ðu;
;�D�3Þ
� �g�i�i ��u

�i�i
@u�ðu;
;�D�3Þ; (33)

In Appendix C, it is shown that ��u
�i�i

¼ 0; therefore, the

last term vanishes. Then, let us calculate the remaining
terms in (33) which corresponds to the box operator acting
on a scalar function with the following metric conformal to
the metric ��i�j

(not to be confused with the flat metric)

on the round SD�2 sphere:

ds2 ¼ 1

k2cos2

d�2

D�2 ) �g�i�j
¼ !�2��i�j

;

! � k cos
: (34)

The Christoffel connection of �g�i�j
is related to the

Christoffel connection of ��i�j
via the usual conformal

transformations

��
�
�� ¼ ð��

��ÞSD�2 � �
�
�@� ln!� �

�
�@� ln!

þ ����
��@� ln!; (35)

Using this result in �g�i�i �r�i
@�i

�, one obtains
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�g�i�i �r�i
@�i

�ðu; 
;�D�3Þ
¼ !2½��i�i@�i

@�i
�ðu; 
;�D�3Þ

� ��i�ið��j

�i�i
ÞSD�2@�j

�ðu; 
;�D�3Þ�
þ!2½2�

�

�j


 @
 ln!� ��i�i��i�i
��j
@
 ln!�

� @�j
�ðu; 
;�D�3Þ; (36)

where the operator in the first square bracket is the
Laplace-Beltrami operator on SD�2 which can be recur-
sively written as

�SD�2�ðu;
;�D�3Þ¼ 1

sinD�3


@

@


�
sinD�3


@�ðu;
;�D�3Þ
@


�

þ 1

sin2

�SD�3�ðu;
;�D�3Þ

¼
�
@2

@
2
þðD�3Þcot
 @

@

þ 1

sin2

�SD�3

�

��ðu;
;�D�3Þ: (37)

Collecting (36) and (37), one arrives at

�g�i�i �r�i
@�i

�ðu; 
;�D�3Þ

¼ k2cos2


�
@2

@
2
þ ðD� 3Þ cot
 @

@

þ 1

sin2

�SD�3

�

��ðu; 
;�D�3Þ þ k2ðD� 4Þ
� sin
 cos
@
�ðu; 
;�D�3Þ: (38)

Finally, one has

�h�ðu; 
;�D�3Þ ¼ k2cos2

@2�ðu; 
;�D�3Þ

@
2
þ k2½ðD� 3Þ

� cot
þ sin
 cos
� @�ðu; 
;�D�3Þ
@


þ k2cot2
�SD�3�ðu; 
;�D�3Þ: (39)

This result is sufficient for us to carry out the separa-
tion of variables. Let us first focus on the Einstein
modes satisfying (27). Using (39) for Vðu;�D�2Þ ¼
Fðu; 
ÞGðu;�D�3Þ, one has two decoupled equations

cos2

@2Fðu; 
Þ

@
2
þ ½ðD� 3Þ cot
� 3 sin
 cos
� @Fðu; 
Þ

@


� ½2ðD� 2� sin2
Þ þ a2ðuÞcot2
�Fðu; 
Þ ¼ 0; (40)

ð�SD�3 þ a2ðuÞÞGðu;�D�3Þ ¼ 0; (41)

where a2 is an arbitrary function of u. Both of these
equations can be solved exactly for a2 � 0: (40) has a
solution in terms of hypergeometric functions and (41) in
terms of spherical harmonics on SD�3 [40]. Since the most
general solution is not particularly illuminating to depict
here for the sake of simplicity let us concentrate onD ¼ 4,
for which one has

Fðu; 
Þ ¼ c1ðuÞ
a

�
tan




2

�
a
sec
ðaþ sec
Þ

þ c2ðuÞ
ða2 � 1Þ

�
tan




2

��a
sec
ða� sec
Þ; (42)

Gðu;�Þ ¼ c3ðuÞ cosða�Þ þ c4ðuÞ sinða�Þ: (43)

Here, one of the functions ciðuÞ can be set to 1 without loss
of generality, if it is not zero. Note that a ¼ 0 and a2 ¼ 1
are the special values for which the solutions can be
obtained as
(i) D ¼ 4 and a ¼ 0:

Fðu;
Þ¼c1ðuÞsec2

þc2ðuÞ

�
cos
þ log

�
tan

�



2

���
sec2
; (44)

Gðu;�Þ ¼ c3ðuÞ þ c4ðuÞ�: (45)

More explicitly, the solution reads

Vðu;
;�Þ¼ 1

cos2


�
1þc2ðuÞ

�
cos
þ log

�
tan

�



2

����

�ðc3ðuÞþc4ðuÞ�Þ: (46)

Let us investigate the near-boundary behavior of
this metric by defining x � �=2� 
 and finding
the asymptotic form for small x. In order to have
complete comparison with the AdS-wave boundary
behavior, one needs to expand up to Oðx4Þ which
yields

Fðu; xÞ � 1

x2

�
1þ 1

3
x2 þ c2ðuÞx3 þOðx4Þ

�
: (47)

Here, the leading order represents the asymptoti-
cally AdS spacetime just like the AdS wave;
while the next-to-leading order shows that the
spherical-AdS wave approaches to AdS spacetime
more slowly than the AdS-wave which exactly
behaves as

VAdS-waveðu; xÞ ¼ 1

x2
½1þ c2ðuÞx3�: (48)

(ii) D ¼ 4 and a2 ¼ 1 is also a simple solution which
we depict here:

Fðu; 
Þ ¼ c1ðuÞ sec
 tan

þ c2ðuÞ csc


�
log

�
tan

�



2

��

� sec
þ arctanh½cos
�sec2

�
; (49)

Gðu;�Þ ¼ c3ðuÞ cosð�Þ þ c4ðuÞ sinð�Þ: (50)
Clearly, the solutions of (28), which we call massive
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modes, have the same functional form as the Einstein
modes in (42) and (43). In order to obtain the massive
modes explicitly, the only thing one should do is to replace

a in (42) with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þM2

p
.

Now, let us focus on the non-Einstein solutions of the
M2 ¼ 0 case with the field equation (29) corresponding to
the critical gravity. We are interested in the spherical-wave
solutions which spoil the asymptotically AdS nature of the
spacetime. Thus, in order to study the near-boundary be-
havior, it is enough to study the 
 dependence of the metric
function V by studying the square of the operator appear-
ing in the 
 equation (40) as acting on Vðu; 
Þ as

�
cos2


@2

@
2
þ ½ðD� 3Þ cot
� 3 sin
 cos
� @

@


� 2ðD� 2� sin2
Þ
�
2
Vðu; 
Þ ¼ 0: (51)

Besides the homogeneous solutions (44), the particular
solution of the equation

�
cos2


@2

@
2
þ ½ðD� 3Þ cot
� 3 sin
 cos
� @

@


� 2ðD� 2� sin2
Þ
�
Vðu; 
Þ

¼ 1

cos2


�
1þ c2ðuÞ

�
cos
þ log

�
tan

�



2

����
; (52)

also provide a solution to (51). As the 1=x2 part of (48)
gives rise to the Log mode which changes the boundary
behavior in the AdS-wave case, one may expect that
1=cos2
 part of the homogeneous solution (44), having
the same near-boundary behavior, should give rise to the
Log mode of the spherical-AdS wave. This expectation is
confirmed by investigating the asymptotic behavior of the
particular solution for the source with c2ðuÞ ¼ 0which can
be found as

Vpðu; 
Þ ¼ log½tan
�
3cos2


: (53)

Again with the definition x � �=2� 
, the asymptotic
form of (53) for small x becomes

Vpðu; 
Þ � � 1

3x2
logxþOð1Þ; (54)

which is same as the exact form of the Log mode of the
AdS wave. With the asymptotic behavior (54), the Log
mode associated with the spherical-AdS wave changes the
asymptotically AdS nature of the spacetime in the same
way as the AdS wave.

Since the solutions we have found in this section are also
solutions of the linearized field equations as we show
below, these metrics constitute new explicit solutions for
the Einstein and non-Einstein (Log mode) excitations
of the critical gravity besides the previously studied
AdS-wave solution [23,27].

IV. LINEARIZED FIELD EQUATIONS AS EXACT
FIELD EQUATIONS

Once one recognizes the fact that the curvature tensors,
(10) and (13), and the two tensors appearing in the field
equations, (15)–(19), are linear in the metric function V for
the Kerr-Schild-Kundt class of metrics defined as

g�� ¼ �g�� þ 2V����; ��@�V ¼ 0;

r��� ¼ �ð���Þ; ���
� ¼ 0;

(55)

one realizes that the exact field equations of the quadratic
curvature gravity reduce to the linearized field equations
in the metric perturbation h�� � g�� � �g�� ¼ 2V����

for the KSK class (55). Even though this is straight forward
to see, let us analyze this observation in a little more detail
for the sake of completeness. First of all, for a generic
metric perturbation h��, the linearized field equations

corresponding to the field equations of the quadratic cur-
vature gravity (21) has the form [38,39,41]

cGL
�� þ ð2�þ �Þ

�
�g��

�h� �r�
�r� þ 2�

D� 2
�g��

�
RL

þ �

�
�hGL

�� � 2�

D� 1
�g��R

L

�
¼ 0; (56)

where the parameter c is defined in (24), and GL
��, RL

represent the linearized cosmological Einstein tensor and
the linearized scalar curvature, respectively, which have
the forms

G L
�� ¼ RL

�� � 1

2
�g��R

L � 2�

D� 2
h��; (57)

RL
�� ¼ 1

2
ð �r� �r�h�� þ �r� �r�h�� � �hh�� � �r�

�r�hÞ;

RL ¼ � �hhþ �r� �r�h�� � 2�

D� 2
h:

(58)

Here, RL
�� is the linearized Ricci tensor, and � is the

effective cosmological constant corresponding to the AdS
background and satisfies the field equation (22).
After describing the linearized field equations and the

linearized quantities for generic h��, let us focus on the

KSK class where h�� ¼ 2V���� and after this point h��

represents the metric perturbation defined for the KSK
class. First thing to notice is that h�� satisfies h ¼ 0 and

r�h
�� ¼ 0; therefore, the nontrivial part of h�� is its

transverse-traceless part which represents the (massive
and/or massless) spin-2 excitations. For tranverse-traceless
h��, the linearized field equations take the form

ð� �hþ cÞGL
�� ¼ 0; (59)

where

GL
�� ¼ RL

�� � 2�

D� 2
h�� ¼ RL

�� þ k2ðD� 1Þh��: (60)
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Now, let us compare (59) with the quadratic curvature
gravity field equation for the KSK class (23). From (13),
one can find the linearized Ricci tensor for the KSK
class as

RL
�� ¼ ������ � k2ðD� 1Þh��; (61)

therefore, GL
�� is just GL

�� ¼ ������. As a result, the

field equations of the exact theory and the linearized
field equations are equivalent for the KSK class of metrics
which includes the AdS wave [23] and the spherical-AdS-
wave metrics presented above. Note that not all solutions
of (59) taken as a linear equation of generic perturbation
h�� solve the full nonlinear theory. Such linear solutions

were studied in [42,43].

V. FURTHER RESULTS AND CONCLUSIONS

We have defined a new subclass of metrics in the Kerr-
Schild-Kundt class for which the null vector �� has a
symmetric covariant derivative, namely r��� ¼ �ð���Þ
(note that �� is not a recurrent vector; therefore, our
subclass does not have the special holonomy group
Simðn� 2Þ discussed in [29]). Up to now two explicit
metrics in this class as solutions to quadratic gravity theo-
ries has been shown to exist. One of them is the previously
found AdS-wave metric [23], and the other one which we
called spherical-AdS wave was presented above. The latter
solution is a generalization of the D ¼ 3 solution of new
massive gravity given in [10,17]. Just like the AdS wave,
the spherical-AdS wave has Log modes which do not
asymptote to the AdS space [23,27]. As of now, it is not
clear if these two metrics exhaust the class of Kerr-Schild-
Kundt metrics having a null vector with a symmetric-
covariant derivative or there are some other.

In this work, even though we have concentrated in the
quadratic gravity theories both for the sake simplicity and
for recent activity in quadratic gravity theories, the class
of metrics that we have studied has rather remarkable
properties which make them potential solutions to a large
class of theories that are built on arbitrary contractions
of the Riemann tensor whose Lagrangian is given as
fðg��; R����Þ along the lines of [11]. Leaving the details

for another work [44], let us summarize the curvature
properties of the Kerr-Schild-Kundt class having a null
vector with a symmetric-covariant derivative:

(1) These metrics describe spacetimes with constant sca-
lar invariants built form the contractions of the
Riemann tensor, but not its covariant derivative, de-
noted as CSI0 [28], for example R ¼ �DðD� 1Þk2,
R�
� R�

�¼DðD�1Þ2k4, R����R
����¼2DðD�1Þk4.

(2) All symmetric second rank tensors built from the
contractions of the Riemann tensor are linear in
���� for example see (17)–(19). This property

implies property 1 above. This property is also

sufficient to show that this class of metrics also solve
the Lovelock theory [44].

(3) Related to property 2, these metrics linearize the
field equations. For example,

hR�� ¼ �hR��

¼ �����½ �h�þ 2��@
��þ 1

2����
�

� 2�k2ðD� 2Þ�: (62)

We expect that similar properties hold for symmetric
two tensors built from the covariant derivatives of the

Riemann tensor, namely ½ðrðmÞ
� R����Þn��� ¼ aðk2Þg�� þ

bð�Þ����, which is consistent with the boost weight de-

composition of the Riemann tensor and its derivatives [45]
This would lead to the result that these metrics could solve
all geometric theories.
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APPENDIX A: DEFINITION OF ��

Let us discuss the symmetric-covariant derivative of the
vector ��, r��� ¼ �ð���Þ. Here, ���

� ¼ 0 should hold

in order to have �� as a null geodesic. Besides, note that

r��� ¼ �r��� (see Appendix B). One can take the AdS

background metric in the canonical form as

d�s2 ¼ 1

k2z2

�
�dt2 þ XD�2

m¼1

ðdxmÞ2 þ dz2
�
; (A1)

where z > 0 and z ! 0 represents the AdS boundary.
The Christoffel connection of (A1), which is in the form
�g�� ¼ !�2��� where !ðzÞ ¼ kz, can be calculated with

the usual conformal transformations as

��
�
�� ¼ 1

z
����

�
z � 1

z
ð��

��
z
� þ �

�
��

z
�Þ: (A2)

With this result, �r��� becomes

�r ��� ¼ @��� � 1

z
����z þ 1

z
ð���

z
� þ ���

z
�Þ: (A3)

Note that the last term in the parenthesis is already in the
form where �ð���Þ. Therefore, the first two terms should

take a form

@��� � 1

z
����z ¼ a���� þ ��	� þ ��	�: (A4)
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Now, let us define �� for the AdS-wave and the

spherical-AdS wave metrics. For AdS-wave metric, ��

has the form

��dx
� ¼ 1ffiffiffi

2
p ðdtþ dxÞ; (A5)

in the canonical coordinates of AdS, and one has

�r ��� ¼ 1

z
ð���

z
� þ ���

z
�Þ ) �� ¼ 2

z
�z
�: (A6)

For the spherical-AdS wave, one has

��dx
� ¼ dtþ XD�2

m¼1

xm

r
dxm þ z

r
dz;

r2 ¼ XD�2

m¼1

ðxmÞ2 þ z2; (A7)

and �r��� becomes

�r��� ¼ � 1

r
���� þ 1

r
�t
��� þ 1

r
�t
���

þ 1

z
ð���

z
� þ ���

z
�Þ (A8)

therefore,

�� ¼ � 1

r
�� þ 2

r
�t
� þ 2

z
�z
�: (A9)

APPENDIX B: CURVATURE TENSORS OF THE
KERR-SCHILD METRIC

In this section, we obtain the forms of the Riemann and
Ricci tensors, and the scalar curvature for the Kerr-Schild
metric

g�� ¼ �g�� þ 2V����; (B1)

where �g�� is the metric of the AdS spacetime, the vector

�� is null and geodesic for both g�� and �g��;

���
� ¼ g���

��� ¼ �g���
��� ¼ 0; (B2)

��r��� ¼ �� �r��� ¼ 0; (B3)

and, finally, V is a function of spacetime which is assumed
to satisfy ��@�V ¼ 0.3 The Christoffel connection of g��

has the form

��
�� ¼ ���

�� þ��
��; (B4)

where ���
�� is the Christoffel connection of the background

metric �g��, and the terms linear in V collected in �
�
��

which can be written as

��
��¼ �r�ðV����Þþ �r�ðV����Þ� �r�ðV����Þ: (B5)

One can easily show that ��
�� satisfies the properties

��
�� ¼ 0; ���

�
�� ¼ 0; ����

�� ¼ 0; (B6)

which have the important implication that the covariant
derivative of �� reduces to the covariant derivative with
respect to the background AdS metric, namely

r��� ¼ �r���: (B7)

With (B4), the Riemann tensor has the form

R�
��� ¼ �R�

��� þ �r��
�
�� � �r��

�
��

þ��
���

�
�� ���

���
�
��; (B8)

where �R�
��� is the Riemann tensor of the AdS spacetime

having the form

�R�
��� ¼ �k2ð��

� �g�� � �
�
� �g��Þ: (B9)

Contraction of the Riemann tensor with two �� vectors has
the simple form

���
�R�

��� ¼ ���
� �R�

��� ¼ k2����;

����R�
��� ¼ ���� �R�

��� ¼ �k2����:
(B10)

Using (B6), one can obtain the Ricci tensor from (B8) as

R�� ¼ �R�� þ �r��
�
�� ���

���
�
��; (B11)

where the Ricci tensor of the AdS spacetime is �R�� ¼
�k2ðD� 1Þ �g��. The last term can be written in the form

��
���

�
�� ¼ �4V2����ð �r½����Þ �r���; (B12)

therefore the Ricci tensor with down indices is quadratic in
V. However, it is well-known that the Ricci tensor with up-
down indices, R

�
� ¼ g��R��, is linear in V for a metric in

the Kerr-Schild form [48];

R
�
� ¼ �R

�
� � 2V���� �R�� þ �g�� �r��

�
��: (B13)

Finally, the scalar curvature is a constant having a value
which is equal to the background one;

R ¼ �R ¼ �DðD� 1Þk2: (B14)

1. Curvature tensors of the Kerr-Schild-Kundt class

Up to now, we consider the Kerr-Schild metrics for
which �� is a null geodesic as usual. On the other hand,
the AdS-wave and spherical-AdS-wave metrics belong to
the class of Kerr-Schild-Kundt metrics for which the vector
�� satisfies the property

3The exposition until Appendix B 2 is rather standard. Here,
we provide self-contained presentation on curvature tensors of
the Kerr-Schild metric (B1) satisfying ��@�V ¼ 0 in addition to
the generally assumed properties (B2) and (B3). See [46,47] for
Kerr-Schild metrics having the property (B2) with a flat back-
ground and [36] for Kerr-Schild satisfying (B2) and (B3) for
generic backgrounds and generic V.
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r��� ¼ �ð���Þ; ���� ¼ 0: (B15)

Note that due to ���� ¼ 0, one has �� ¼ g���� ¼
�g����. The nonexpanding, r��

� ¼ 0, shear-free,

r���rð���Þ ¼ 0, and nontwisting, r���r½���� ¼ 0, na-

ture of the vector �� simply follows from (B15) which
means the Kerr-Schild metric is a member of the Kundt
class by definition. Immediate implications of (B15) are

��r��� ¼ ��r��� ¼ 1
2���

���; (B16)

and

�r �ð����Þ ¼ 0 ) �� �r��� ¼ ��� �r���: (B17)

Using the Ricci identity in the form ½ �r�;
�r���� ¼ �R���

�

together with �r��
� ¼ 0, one can obtain

�h�� ¼ �k2ðD� 1Þ��; (B18)

and explicitly calculating the left-hand side yields the
relation

�� �r���¼���½ �r��
�þ 1

2�
���þ2k2ðD�1Þ� (B19)

that is used in the calculations below.
In order to study the curvature tensors, first one should

find the ��
�� part of the Christoffel connection which is

linear in V, and it becomes

��
�� ¼ �����@

�V þ 2���ð�@�ÞV þ 2V���ð���Þ:

(B20)

Note that contraction of the vector �� with ��
�� yields

���
�
�� ¼ �������@

�V;

����
�� ¼ ����ð��@�V þ V����Þ;

(B21)

so r��� � �r���. Now, using (B20), we can calculate
�r��

�
�� and ��

���
�
�� for the KSK class. First,

�r��
�
�� can be obtained as

�r��
�
��¼�����ð �r�@

�Vþ��@
�VÞ����ð���Þ@�V

þ2���ð� �r�Þ@�Vþ2���ð���Þ@�V

þ2V���ð�j �r��j�Þþð2����þ����Þ
�ðV�ð���Þþ�ð�@�ÞVÞ
þ����ðV����þ�ð�@�ÞVÞ: (B22)

Then, the linear in V terms in the Riemann tensor becomes

�r��
�
�� � �r��

�
��

¼ 2���½� �r��@�V � 2���½� �r��@�V

þ �½����ð��@
�V � ��@�V þ ���

�VÞ
þ ð���

� � ����Þ�½�@��V

þ 2V��ð��
�r½���� � �½� �r����Þ: (B23)

Second, the term ��
���

�
�� has the form

��
���

�
�� ¼ ���������ð@�VÞðV�� þ @�VÞ: (B24)

Note that ��
���

�
�� is symmetric in � and � indices;

therefore, the quadratic in V terms in the Riemann tensor
cancel each other due to antisymmetry in � and �. Thus,
the Riemann tensor for the KSK class is linear in V and has
the form

R�
��� ¼ �R�

��� þ �r��
�
�� � �r��

�
��; (B25)

where the last two terms are given in (B23). Now, let us
discuss the contractions of the Riemann tensor with one ��

vector. By using (B6), (B15), and (B21), one can show that

��R
�
��� ¼ ��

�R�
���; ��R�

��� ¼ �� �R�
���;

��R�
��� ¼ �� �R�

��� � 2k2V������; (B26)

where the last one is implied by either one of the previous
two results. After using (B9), one can also have

��R
�
��� ¼ R

DðD� 1Þ ð��g�� � ��g��Þ; (B27)

where the right-hand side can also be written in terms of
background quantities, and the other two contractions fol-
low similarly. On the other hand, one can calculate
��R�

��� explicitly by using (B6), (B15), (B22), (B21),

and (B19), as

��R�
��� ¼ �� �R�

��� � 2V������ð �r��
�

þ 1
4���

� þ 2k2ðD� 1ÞÞ; (B28)

which together with (B26) implies

�r ��
� þ 1

4���
� þ k2ð2D� 3Þ ¼ 0: (B29)

This relation can be verified explicitly for the AdS-wave
and the spherical-AdS wave cases.
In order to calculate the Ricci tensor, one needs to

calculate �r��
�
��. One may follow two routes: directly

computing it from (B22) by using (B19) and (B29) or using
the following result obtained by use of the Ricci identity;

�r �
�r�ðV����Þ ¼ �k2DV����; (B30)
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with the original form of the ��
�� in (B5). Then, one can

obtain the Ricci tensor as

R�� ¼ �k2ðD� 1Þg�� � �����; (B31)

where

� � �hV þ 2��@
�V þ 1

2V���
� � 2Vk2ðD� 2Þ; (B32)

or

R�� ¼ �k2ðD� 1Þg�� � ð �hþ 2k2ÞðV����Þ: (B33)

Two forms of the Ricci tensor imply

�hðV����Þ ¼ ð�� 2Vk2Þ����: (B34)

It is possible to verify this relation by explicitly calculating
the left-hand side by using (B18). Besides, one can easily
show that the scalar curvature is constant, since the linear
part of the Ricci tensor is in the form RL

�� � ����.

Finally, let us show that the KSK metrics satisfy
C�����

� ¼ 0 where the Weyl tensor is defined as

C���� � R���� � 2

D� 2
ðg�½�R��� � g�½�R���Þ

þ 2

ðD� 1ÞðD� 2ÞRg�½�g���: (B35)

Using (B26), g�� � �g�� � ���� and R�� � �R�� � ����,

it can be shown that C�����
� reduces to �C�����

� where
�C���� ¼ 0; therefore, one has

C�����
� ¼ �C�����

� ¼ 0: (B36)

2. Two tensors in the field equations

In order to find the field equations of the quadratic
curvature gravity for the KSK metrics (B15), one needs
to obtain the form of the two tensors R

�
�R��, R����R

��,

R����R�
��� and hR�� for this class of metrics. By using

(B31), the term R
�
�R�� can easily be calculated as

R�
�R�� ¼ ðD� 1Þ2k4g�� þ 2ðD� 1Þk2�����: (B37)

The term R����R
�� is also rather simple: after using (B31)

and (B26), one has

R����R
�� ¼ ðD� 1Þ2k4g�� þ ðD� 2Þk2�����:

(B38)

Then, moving to R����R�
��� whose calculation is

straightforward, but time consuming. It is better to calcu-
late R�

���R�
��� ¼ R��

��R
��

�� which can be written as

R��
��R

��
�� ¼ R��

�� �g
��R�

���

� 2V �R��
���

���R�
���; (B29)

where (B26) is used and the first term explicitly has the
form

R��
�� �g

��R�
��� ¼ R��

�� �g
��f �R�

��� þ 2���½� �r��@�V

� 2���½� �r��@�V þ �½����
� ð��@

�V � ��@�V þ ����VÞ
þ ð���

� � ����Þ�½�@��V þ 2V��

� ð��
�r½���� � �½� �r����Þg: (B40)

Since the terms in R�
��� which are linear in V involve

either �� or �� or ��, using again (B26) yields

R��
�� �g

��R�
��� ¼ �R��

�� �g
��R�

��� þ ðR��
��ÞL �R��

��;

(B41)

where ðR��
��ÞL � R��

�� � �R��
��. With this result and

(B9), R��
��R

��
�� becomes

R��
��R

��
�� ¼ �R��

��R
��

�� þ ðR��
��ÞL �R��

��

¼ �2k2½R�
� þ ðR�

� ÞL�; (B42)

where ðR�
� ÞL ¼ ������ from (B31). As a result, one

obtains

R����R�
��� ¼ 2ðD� 1Þk4g�� þ 4k2�����: (B43)

Finally, let us study the term hR��, and from (B31) it

immediately becomes hR�� ¼ �hð�����Þ. Then, since
r��� ¼ �r���, h�� ¼ �h�� and h� ¼ �h�, one has

hR�� ¼ � �hð�����Þ: (B44)

In Appendix B 1, we have discussed the explicit calcula-
tion of �hðV����Þ which becomes

�hðV����Þ ¼ ����ð �hV þ 2��@
�V þ 1

2V���
�

� 2Vk2ðD� 1ÞÞ; (B45)

and in deriving this relation ��@�V ¼ 0 is used. One can

show that ��@�� ¼ 0 (note that �� �r��� � ��), then the

same relation also holds for �. Hence, one has

hR�� ¼ �����ð �h�þ 2��@
��þ 1

2����
�

� 2�k2ðD� 1ÞÞ: (B46)

APPENDIX C: SPHERICAL-ADS
WAVE COMPUTATIONS

Let us have the AdS metric in the coordinates

d�s2 ¼ 4dudv

k2cos2
ðuþ vÞ2 þ
1

k2cos2

d�2

D�2: (C1)

Then, some components of the Christoffel connection for
this metric are
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��u
uu¼� 2

uþv
; ��u

uv¼0; ��u
u
¼ tan
;

��u


¼0 ��v

uv¼0; ��v


¼0;

��

uv¼� 2tan


ðuþvÞ2 ;
��



¼ tan
;

��

�i�i

¼�k2 �g�i�i
cot
; ��u

�i�i
¼0; ��v

�i�i
¼0: (C2)

where �i denotes the angular coordinates of d�
2
D�2 other

than 
. Now, let us first discuss the form of �r���;

�r ��� ¼ � ��u
�� ¼ �����

��u
uu � ��

��u
u
�



� � �


�
��u

u��

(C3)

and one has

�� � � ��u
uu�� � 2 ��u

u
�


�: (C4)

Finally, one can calculate � as

�¼ �hV�4k2 sin
cos
@
V�2k2ðD�2�sin2
ÞV: (C5)
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[37] T. Málek and V. Pravda, Classical Quantum Gravity 28,
125011 (2011).

[38] S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002).
[39] I. Gullu and B. Tekin, Phys. Rev. D 80, 064033 (2009).
[40] A. Higuchi, J. Math. Phys. (N.Y.) 28, 1553 (1987); 43,

6385(E) (2002).
[41] S. Deser and B. Tekin, Phys. Rev. D 67, 084009 (2003).
[42] E. A. Bergshoeff, O. Hohm, J. Rosseel, and P. K.

Townsend, Phys. Rev. D 83, 104038 (2011).
[43] Y. -X. Chen, H. Lu, and K. -N. Shao, Classical Quantum

Gravity 29, 085017 (2012).
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