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We show by explicit computations that the product of all the horizon areas is independent of the mass,

regardless of the topology of the horizons. The universal character of this relation holds for all known five-

dimensional asymptotically flat black rings, and for black strings. This gives further evidence for the

crucial role that the thermodynamic properties at each horizon play in understanding the entropy at the

microscopic level. To this end we propose a ‘‘first law’’ for the inner Cauchy horizons of black holes. The

validity of this formula, which seems to be universal, was explicitly checked in all cases.
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I. INTRODUCTION

The establishment that laws of black hole mechanics are
thermodynamical laws [1,2] has raised challenging ques-
tions. A statistical derivation of the thermal properties of
the black hole, and hence an account of its microstates,
remains puzzling. Within string theory, the seminal work
of [3] identified precisely the microscopic degrees of free-
dom for a supersymmetric zero temperature black hole.
Despite the narrowness of the construction, it provided a
framework to explore the robustness of the result beyond
its initial scope. Since then we have outgrown our insights
to move the discussion towards a larger class of black
holes, including solutions at finite temperature [4,5]. The
core idea of this program is not in string theory, but rather
guided by the holographic principle: there is a nontrivial
match between features of a 2D conformal field theory
(CFT2) and features of black holes.

Part of our current understanding of black hole thermo-
dynamics relies essentially on the universal symmetry
arguments that follow from the analysis of 3D gravity in
anti-de Sitter (AdS) spacetime [6,7]. The microscopic
degrees of freedom of the black hole are described in terms
of those of a conformal field theory—without gravity—
living in the boundary. A by-product of the construction is
that the area product of the inner A� and outer Aþ Killing
horizons of black holes gives

AþA�
ð8�G3Þ2 ¼ NR � NL; (1)

whereNR,NL are, respectively, the number of right and left
moving excitations of the CFT2. The left-hand side of this
equation is the level matching condition of the CFT, i.e. the
requirement that the momentum along a compact spatial
direction is quantized.

Interestingly, it seems to be the case that any asymptoti-
cally flat black hole in d spacetime dimensions, which
admits a smooth extremal limit, satisfies [8]

AþA�
ð8�GdÞ2 2 Z; (2)

resembling (1). The precise statement is that the products
of areas are independent of the mass of the black hole and,
therefore, depend solely on the quantized charges. This
suggestive general relation for black holes prompted the
purely gravitational investigation of the product of areas of
black holes [9], where the topology of the horizon is a
sphere. The product of areas had also been investigated for
Kerr-Newman black holes in [10,11].
Higher dimensional gravity allows for more exotic spe-

cies of regular solutions. It is natural then to inquire
whether the simple relation (2) is truly universal and,
hence, satisfied for less symmetric nonspherical black
holes such as black rings and black strings. By direct
computation for all known nonspherical asymptotically
flat black holes in five dimensions we find that the relation
is indeed independent of the mass. We take this observation
as a starting point to construct the microscopic structure for
black rings and black strings, which we will elaborate
below.
Contrary to the outer horizon thermodynamics, it is not

clear whether the inner horizon has any relevance for a
statistical accounting of the black hole entropy; our first
hint is (2). However, as we show, one can similarly con-
sider the inner thermodynamics of black holes. In particu-
lar, there is a ‘‘first law’’ for the inner horizon that is valid
for all the black solutions that we have so far considered.
The first law of the black hole inner mechanics is sche-
matically

� dM ¼ T�
dA�
4G5

� ð��dJ þ��
E dQþ��

mdqÞ; (3)

where the extensive quantities are the Arnowitt-Deser-
Misner (ADM) charges and the corresponding intensive
quantities are defined at the inner Cauchy horizon.
References [12,13] studied this relation for the Kerr black
hole and for more general black holes in [14,15]; we show
that (3) holds regardless of the complexity of the solution.
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For the sake of comparison, the first law for the outer
horizon is

dM ¼ Tþ
dAþ
4G5

þ ð�þdJ þ�þ
E dQþ�þ

mdqÞ: (4)

Contrasting Eqs. (3) and (4), we observe that up to signs
they are essentially the same after exchanging the defini-
tions of the potentials and areas at the inner and outer
horizons. The minus signs in (3) are due to the Killing
horizon vector field being spacelike inside the black hole
event horizon. We are assigning negative energy (�M) to
the inner horizon, similar to the negative energies within
the ergosphere.

Classically the inner horizon is perturbatively unstable;
the physical implications of this instability have been
recently revisited in [16]. For our purposes, the inner
horizon is a mathematical artifact that provides an interest-
ing venue. Our aim is to revive the topic and illustrate how
it could impact a statistical interpretation of black hole
thermodynamics.

II. DEFINITIONS

Our focus is on thermodynamics properties of solutions
which have smooth horizons with nonspherical topologies.
We require that the solutions have a regular inner ðr�Þ and
outer ðrþÞ horizon, and admit a smooth extremal limit
rþ ¼ r� with vanishing Hawking temperature. Known
analytic solutions in 5D supergravity are the neutral and
charged rotating black rings [17–19]; the horizons have
topology S1 � S2.

To begin we first define the quantities appearing in (3).
The extensive variables ðM; J�; Jc ; Qi; qiÞ are the ADM

charges defined at asymptotic infinity. Strictly speaking the
dipole charge qi is not a conserved charge; its role in the
thermodynamics of the black ring was discussed in detail
in [20]. These are the same definitions as in [19], with the
exception that charges are measured in Planck units

Qi ! ‘2PQi; qi ! ‘Pqi; ‘3P � �

4G5

: (5)

The index i ¼ 1, 2, 3 labels the Uð1Þ3 charge that the
supergravity solution carries.

The intensive variables are intrinsic to each horizon. In
all cases the subscripts indicate the values of the intensive
quantities and areas at the outer ðþÞ or inner ð�Þ horizons.
To compute them, the ADM form is convenient where we
have

ds2 ¼ �N2dt2 þ �abðdxa þ NadtÞðdxb þ NbdtÞ; (6)

with xa four spatial directions; NðxaÞ and NbðxaÞ are the
lapse function and the shift vector, respectively. The hori-
zons are defined as the zeros of the appropriate radial
component of the metric. As in [21], the angular potentials
and temperatures for each horizon are defined as

��
k ¼ �Nkjr� ; T� ¼ 1

4�

�������� ðN2Þ0ffiffiffiffiffiffiffiffiffiffiffiffi
grrN

2
p

��������r�
; (7)

where k ¼ 1; 2; . . . ; ½ðd� 1Þ=2�. With this definition Tþ
corresponds to the Hawking temperature. A semiclassical
physical interpretation of T� is subtle. In analogy, how-
ever, we can define a geometrical positive quantity suitable
for (3) that we will call the ‘‘inner temperature’’ and is
constant over the inner horizon.
The solutions under consideration have three Killing

vectors: timelike vectors @t, @� and @c . The Killing vec-

tors that define the inner and outer horizons are then

�� ¼ @t ���
c @c ���

�@�; (8)

where the coordinates ðc ; �Þ as those with periodicity 2�.
The solutions are supported as well by one-form poten-

tials Ai
�, which due to the nonspherical shape of the

horizon create both electric and dipole moments. The
electric potential for each horizon is

��
E;i ¼ ‘P½ð��Ai

�Þ1 � ð��Ai
�Þr��: (9)

To compute the dipole potential we employ the formula
presented in [20]. In the absence of electric charges, this
reduces to

��
m;i ¼ ‘2P½ðAi

�Þ1 � ðAi
�Þr��: (10)

III. UNIVERSALITY OF AþA�
Our first observation is the universal behavior of product

of the horizon areas for black rings in d ¼ 5. Currently
there are three classes of known black ring solutions that
are not smoothly connected to each other and that satisfy
the requirements specified in the previous section.
First, consider the neutral doubly spinning black ring

[17] with mass M, and two angular momenta: Jc along S1

and J� on S2. Evaluating (2) gives

AþA�
ð8�G5Þ2 ¼ J2�: (11)

The product is not only independent of M, but also Jc .

The second class includes electrically and magnetically
charged black rings [18,19]. The most general solution
carries electric ðQiÞ and dipole ðqiÞ charges in addition to
rotation ðJc Þ along S1. We find

AþA�
ð8�G5Þ2

¼Jcq1q2q3�1

4
½ðQ1q1Þ2þðQ2q2Þ2þðQ3q3Þ2�

þ1

2
½Q1q1Q2q2þQ2q2Q3q3þQ3q3Q1q1�:

(12)

A peculiarity is that the solution is as well rotating along
S2, but it is not an independent parameter. Taking Qi ¼ 0
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and q � qi, the system reduces to the dipole black ring
[18], and formula (12) still holds in this limit.

The third class are electrically and magnetically charged
black string [22]. These are the solutions of minimal
supergravity where Q � Qi and q � qi and there are two
independent rotation parameters. We obtain

AþA�
ð8�G5Þ2 ¼ Jc q

3 þ 3

4
ðQqÞ2 þ J2�: (13)

See also [23] for further examples. The solution is not,
strictly speaking, a ring; still, it should be the limiting
solution of the most general black ring solution of minimal
supergravity when its size R ! 1.

The most general black ring solution of Uð1Þ3 super-
gravity should be characterized by nine independent pa-
rameters ðM; J�; Jc ; Qi; qiÞ; unfortunately it has not been

constructed. A five parameter solution is being scrutinized
[24]. We expect no departure from (2) for other cases, and
anticipate for the general case

AþA�
ð8�G5Þ2

¼ J2� þ Jc
Y3
i¼1

qi

� 1

4

X3
i¼1

�
ðQiqiÞ2 �Qiqi

X3
j�i¼1

Qjqj

�
; (14)

in agreement with the near extremal analysis of [25].

IV. FIRST LAW OF BLACK HOLE
INNER MECHANICS

Pursuing our curiosity about the inner Cauchy horizon,
and the definitions in Sec. II, we propose a first law for the
mechanics of the inner horizon,

�dM ¼ T�
dA�
4G

� ð��
k dJk þ��

E;idQi þ��
m;idqiÞ; (15)

that is satisfied for all known 5D black rings [17–19], black
strings [22] and d-dimensional black holes [26] (as well as
AdS black holes [27]).

To illustrate our computations we present three ex-
amples. The inner horizon area and extensive thermody-
namical quantities at the inner horizon are new.

(i) Black holes: For AdS black holes [27] and Myers-
Perry black holes [26] (L ! 1 below) in d-dim we
find

A� ¼ �d�2

r1���

Y
k

ðr2� þ a2kÞ
�k

;

��
k ¼ ak

ðr2� þ a2kÞ�
;

2�T� ¼ 1

r�
� r�

�

�X
k

1

r2� þ a2k
þ �

2r2�

�
;

(16)

where � ¼ ðd� 1Þ mod 2, r� is the smallest (posi-
tive) root of r��2� ð1þ r2�=L2ÞQkðr2� þ a2kÞ ¼ 2m,

�k ¼ 1þ a2k=L
2 and � ¼ ð1þ r2�=L2Þ�1. We

elaborate on the inner black hole mechanics in
Fig. 1. The areas (for fixed mass) as functions of
the angular momenta have mirroring behaviors.

(ii) Doubly spinning black ring [17]: The solutions are
parametrized by a scale R and parameters � and �
that satisfy 0 � � < 1 and 2

ffiffiffi
�

p � � < 1þ �. The

inner horizon is at r� ¼ ð���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p
Þ=2�.

Our results are

A� ¼ 32�2R3 ð1þ �þ �Þ�
ðr�1� � r�Þð1� �Þ2 ;

T� ¼ ðr�1� � r�Þð1� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p

8�R�ð1þ �þ �Þ ;

��
c ¼ 1

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �� �

1þ �þ �

s
;

��
� ¼ �ð1þ �Þ þ ð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p

4R�
ffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �� �

1þ �þ �

s
:

(17)

(iii) Dipole black rings [18]: This solution is parame-
trized by a scale R, the dipole parameter� and �, �
within 0< � � � < 1 and 0 � �< 1. We find

A�¼8�2R3 ð1þ�Þ3
ð1��Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3�ð���Þð1��2Þ

q
;

��
c ¼ð1��Þ

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ð1þ�Þ3ð1þ�Þð���Þ

s
;

T�¼ �

4�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

�3ð1þ�Þð���Þ

s
;

��
m ¼3R‘2P

1þ�

1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ�Þð1��Þð1��Þ

�

s
:

(18)

With these results (16)–(18) and, respectively, the
ADM charges found in [17,18,26,28] we verified
(15).

We can also construct a Smarr relation for the inner
horizon

�M ¼ d� 3

d� 2

�
T�

A�
4Gd

���J
�
���

EQ� 1

2
��

mq;

(19)

which mimics the Smarr relation for the outer horizon. It is
straightforward to check this relation for all the asymptoti-
cally flat solutions of interest.
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V. CONCLUSIONS

In this work, we have explored formulas for the products
of the horizon areas for solutions with nonspherical
horizon topology and consistently found that it is indepen-
dent of the mass. We also observe that the inner Cauchy
horizon of all solutions discussed above satisfies the first
law (15), and for asymptotically flat solutions, the Smarr
relation (19).

Besides this mathematical curiosity, from these relations
we can speculate on how to account microscopically for
the entropy of black rings. There is accumulating evidence
that the Bekenstein-Hawking area law for spherical black
holes agrees exactly with the microscopic degeneracy
inferred from a CFT2, i.e.

Aþ
4Gd

¼ 2�
ffiffiffiffiffiffiffi
NR

p þ 2�
ffiffiffiffiffiffiffi
NL

p
: (20)

It is also the case that the inner horizon area satisfies
A�=4Gd ¼ 2�

ffiffiffiffiffiffiffi
NR

p � 2�
ffiffiffiffiffiffiffi
NL

p
. The consistency and cohe-

siveness of this statistical derivation of the entropy is due in
part to two facts. The first is that ðAþA�Þ obeys (2) as

predicted by the CFT2 description. Second, the first law (3)
is consistent with the treatment of NR;L as weakly interact-

ing sectors in the thermodynamic limit.
Extending this proposal to black rings has been chal-

lenging. Several of the ingredients used to obtain (20) in
e.g. [5,29] are based on features that black holes do not
share with their ring cousins. To date, only in the (near-)
extremal limit is there a sense in which we can still use a
CFT2 [25,30,31].
Nevertheless, we can argue the following. Because all

black rings admit two independent thermodynamical rela-
tions on each Cauchy horizon, nothing prevents us from
writing A�=4Gd ¼ SR � SL. Hence, we can pretend that
the entropy comes from counting ‘‘right’’ and ‘‘left’’ mov-
ers with degeneracy SR;L, respectively, and by construc-

tion, in the extremal limit where Aþ ¼ A� we have
SL ¼ 0. We can also make a well-educated guess and

declare that SL;R ¼ 2�
ffiffiffiffiffiffiffiffiffiffi
NL;R

p
. This would naturally fit with

(2) and the results mentioned above for the extremal limit.
To justify such a bold guess, we need to provide a gravi-
tational definition of NL;R; this can be done and will be

carefully discussed elsewhere [32].
In summary, the two universal properties (2) and (3) are

necessary, but far from sufficient, ingredients needed to
account for the entropy via the statistical properties of a
CFT2. It would be interesting to test the applicability of our
findings to more general theories and investigate the ther-
modynamic nature of the inner horizons. A natural exten-
sion of our work is to de Sitter black holes and to explore
the effects of the cosmological horizon in the construction
presented here.
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