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We consider a theory of gravity with a hidden extra dimension and metric-dependent torsion. A set of

physically motivated constraints are imposed on the geometry so that the torsion stays confined to the

extra dimension and the extra dimension stays hidden at the level of four-dimensional geodesic motion.

At the kinematic level, the theory maps onto general relativity, but the dynamical field equations that

follow from the action principle deviate markedly from the standard Einstein equations. We study static

spherically symmetric vacuum solutions and homogeneous-isotropic cosmological solutions that emerge

from the field equations. In both cases, we find solutions of significant physical interest. Most notably, we

find positive mass solutions with naked singularity that match the well-known Schwarzschild solution at

large distances but lack an event horizon. In the cosmological context, we find an oscillatory scenario, in

contrast to the inevitable singular big bang of the standard cosmology.
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I. INTRODUCTION

Einstein viewed space-time as a pseudo-Riemannian
differentiable manifold in order to generalize the special-
relativistic flat space-time to include gravity. This was
primarily motivated by the fact that the local flatness of
the manifold structure naturally implemented his principle
of equivalence. The generalization came along with the
revolutionary idea that the trajectory of any freely moving
test body is simply a geodesic in the curved manifold and
that gravity is not a Newtonian instantaneous action force
but an effect of the curvature of the space-time manifold.

The basic constituents of the manifold structure are the
metric, which defines the distance between any two points
of the manifold, and the connection, which defines the
covariant derivative and the curvature of the manifold.
Any theory of gravity should couple the dynamics of
these quantities to the dynamics of the matter moving in
the space-time manifold. Among the existing theories, the
ensuing field equations of general relativity (GR) are per-
haps the simplest. Since in GR, torsion, the antisymmetric
combination of connection coefficients, is identically zero,
and since GR has withstood numerous precise experimen-
tal tests [1,2], introduction of torsion has seemed super-
fluous except in the presence of matter with intrinsic spin
as in Einstein-Cartan formulations [3–7].

However, for two major reasons, alternate theories of
gravity that reduce to GR in the weak field limit are
seriously pursued. The first reason is that GR leads to
inevitable singularities—black holes (death of a massive
star) and big bang (birth of the universe). Though it is
conventionally assumed that quantization would eliminate
these singularities, GR is not readily amenable to quanti-
zation. The second reason is that the standard model of
cosmology based on GR requires most of the universe to be

composed of unknown dark energy in order to account for
various cosmological observations [8]. A common strategy
to construct modified theories of gravity is to make the
Lagrangian density a nontrivial function of the Ricci scalar
[9,10] and use the action principle to derive the modified
field equations. Another common strategy is to introduce
extra dimensions while constraining the physical particles
to a ð3þ 1Þ-dimensional hypersurface as in the brane-world
theories [11–13]. In this paper we explore a different ap-
proach by introducing metric-dependent torsion in Kaluza-
Klein–type theories [14,15] with one extra dimension.
In our approach, we consider a five-dimensional (5D)

manifold foliated by a family of 4D hypersurfaces, whose
geometries are virtually indistinguishable from that of the
4D space-time of GR. The axis of foliation is special in the
sense that there could exist nonvanishing torsion compo-
nents along that dimension. We impose constraints on the
connection so that anymotion in the fifth dimension does not
affect observations based on the geodesic motions along the
4D hypersurfaces, thus keeping the fifth dimension essen-
tially hidden. The imposed constraints determine uniquely
all the nonvanishing torsion components in terms of the 5D
metric fields, making this a purely metric theory of gravity.
Besides uniquely determining the torsion in the 5D geome-
try, the imposed constraints lead to interesting equivalence
between the 5D geometry with torsion and the torsion-free
4D geometry of GR. In particular, it turns out that the
components of the connection and the Ricci tensor along
the 4D hypersurfaces exactly match what would arise from
GRon a 4D space-time. Consequently, any test of this theory
based on geodesicmotions will yield the same results as GR.
Though, by construction, the extra dimension is hidden

at the level of geodesic motion, its effect is clearly reflected
in the field equations. The field equations are obtained by
imposing the constraints on the action and varying it with
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respect to the metric. This leads to global solutions that are
qualitatively distinct from those obtained from GR. Most
notably, we find positive mass naked singularity solutions
that match the Schwarzschild solution at large distances
but lack an event horizon. In the cosmological context, we
find oscillatory solutions, in contrast to the inevitable
singular big bang of the standard cosmology.

We begin in Sec. II with a review of the general frame-
work of the 5D geometry. Section III deals with the speci-
fication of the constraints and the determination of the
torsion and connection in terms of the metric. Section IV
is devoted to the derivation of modified Einstein equations
from the standard action principle using the Ricci scalar as
the Lagrangian density. In Sec. V, we apply the modified
Einstein equations to the homogeneous and isotropic cos-
mology and identify numerical solutions pointing to accel-
erating and oscillatory solutions to the universe. In Sec. VI,
we discuss static spherically symmetric vacuum solutions
and demonstrate the existence of positive mass naked
singularity solutions. The final section is devoted to a
summary and discussion of the results.

II. GENERAL FRAMEWORK OF 5D GEOMETRY

We denote the coordinates of the 5D manifold by the
Latin indices, i; j; k; . . . that take values 0, 1, 2, 3, and 5,
and the coordinates along the 4D hypersurfaces by the
Greek indices, �; �; �; . . . that take values 0, 1, 2, and 3.
Figure 1 is a schematic representation of the 5D geometry.
With x5 denoting the axis of foliation, the metric of the
foliated 5D geometry has the form

g ij ¼ g�� þ �A�A��
2 �A��

2

�A��
2 ��2

" #
; (1)

g ij ¼ g�� �A�

�A� A�A
� þ ���2

� �
; (2)

g��¼g��þ�A�A��
2; g�5¼�A��

2; g55¼��2;

g��¼g��; g�5¼�A�; g55¼A�A
�þ���2: (3)

Here A� is a 4D vector whose indices are raised and

lowered with respect to the 4D metrics g�� and g��. The

fifth dimension is spacelike if � ¼ þ1, and it is timelike if
� ¼ �1. Note that the 5D metric is denoted by g, and the
4D metric is g.

Let us denote the connection in the 5D geometry by ~��
and its antisymmetric part, the torsion, by T�.

Ti
�jk ¼ ~�i

�jk � ~�i
�kj: (4)

Denoting the covariant derivative induced by the con-

nection by ~r, the metricity condition is expressed as
~rkgij ¼ 0. With the metricity condition, the connection
~�� can be expressed as a sum of the Levi-Civita connection

�̂� and the contorsion K�,

~� i
�jk ¼ �̂i

�jk þ Ki
�jk; (5)

where the Levi-Civita connection is expressed purely in
terms of the metric

�̂ i
�jk ¼

�
i
j k

�
¼ 1

2
gim½@jgkm þ @kgjm � @mgjk�; (6)

and the contorsion is expressed in terms of the torsion [16]

Ki
�jk ¼ 1

2½Ti
�jk þ T�i

j�k þ T�i
k�j�: (7)

In the absence of torsion, the connection is simply the
Levi-Civita part. In order to compare the dynamics of this
geometry to GR, we consider a reference space-time in
four dimensions with the metric g�� and torsion-free 4D

Levi-Civita connection �����,

����� ¼ 1
2g

��½@�g�� þ @�g�� � @�g���: (8)

This connection is different from the 4D components of
the 5D Levi-Civita connection that contains additional

terms ������ [see Eq. (A7)] that depend on the extra-

dimensional metric fields A� and �. Hence the 4D com-

ponents of the 5D Levi-Civita connection can be written as

�̂ ���� ¼ ����� þ ������: (9)

In the presence of torsion, with the inclusion of contorsion,
the 4D components of the 5D connection take the form

~� ���� ¼ ����� þ ������ þ K����: (10)

We note that the additional terms ( ������ þ K����) do not

generally vanish. However, in the next section we impose
constraints on the connection and find that these terms do
vanish.

III. CONSTRAINTS ON THE CONNECTION

With minimal modifications to standard GR in mind, we

first assume that the 4D components of the connection ~�����

are symmetric, that is, (i) T���� ¼ 0. Next, we require that

geodesic motion and its observable effects in 4D are not
affected by any motion in the fifth dimension. This require-
ment essentially ensures that the fifth dimension stays
hidden at the level of 4D geodesics. For this purpose,
considering the 4D components of the geodesic equations
in the 5D geometry, namely,FIG. 1. Schematic representation of the 5D geometry.
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€x � þ ~����� _x
� _x� þ ð~��

��5 þ ~��
�5�Þ _x� _x5 þ ~��

�55ð _x5Þ2 ¼ 0;

we are led to the second constraint, (ii) ~��
�i5 ¼ ~��

�5i ¼ 0.
An alternative formulation of these constraints in terms
of vielbeins is worked out in [17]. These constraints are
clearly not tensorial in nature because the fifth dimension is
singled out. It turns out, however, that they are sufficient to
determine uniquely all the nonvanishing torsion compo-
nents in terms of the metric (see Appendix A for details).

T�
�ij ¼ 0;

T5��� ¼ 2@½�A�� þ 2J½�A��;

T5
��5 ¼ J� � @5A� � A�J5;

(11)

where Ji � ��1@�=@xi.
Using the above results for torsion and Eqs. (5)–(7), we

find the connection coefficients

~��
�55 ¼ ~��

��5 ¼ ~��
�5� ¼ 0; ~�5��� ¼ r�A� þ J�A�;

~�5
�5� ¼ @5A� þ J5A�; ~�5

��5 ¼ J�; ~�5
�55 ¼ J5;

~����� ¼ �����: (12)

Here r� is the covariant derivative operator in the torsion-

free 4D geometry with metric g��. This connection has

a very special property: its 4D components are exactly

the 4D Levi-Civita connection. That is, ������ and K���� in

Eq. (10) exactly cancel each other.
In addition to determining the torsion and the connection

in terms of the metric fields, the constraints also imply that
the 4D metrics on all the hypersurfaces are identical. As a
consequence, the 4D components of the connection do not
depend on x5 either,

@g��

@x5
¼ 0 ) @~�����

@x5
¼ 0: (13)

This should be contrasted with the Kaluza-Klein–type
theories where it is a priori assumed that g��, A�, and �

are independent of x5, known as the cylindrical condition.
In our framework, though g�� is required to be indepen-

dent of x5, A� and � can, in principle, depend on x5.

Substituting the connection [Eq. (12)] in the Ricci tensor
defined by

~R ik ¼ @k~�
j
�ji � @j~�

j
�ki þ ~�j

�km~�
m�ji � ~�j

�jm~�
m
�ki; (14)

we find

~R�� ¼ R��; ~R�5 ¼ ~R5� ¼ ~R55 ¼ 0: (15)

Here R�� represents the Ricci tensor constructed from the

torsion-free 4D Levi-Civita connection. Hence the 4D
components of the Ricci tensor exactly match the Ricci
tensor in GR with the metric g��. It also follows that the

5D Ricci scalar is exactly the same as the Ricci scalar in the
torsion-free 4D space-time, that is, ~R ¼ R.

An important point to emphasize is that, at the level of
geometry, this framework is virtually indistinguishable
from the torsion-free 4D space-time of GR. Any observ-
able geodesic motion or geodesic deviations between par-
ticles would match what we expect based on GR. However,
this is true only to the extent that the metric g�� is identical

to the solution of the Einstein equations in GR. In Sec. VI,
wewill see that this is indeed true in the weak field limit for
spherically symmetric vacuum solutions that are relevant
for experimental observations within the solar system.

IV. ACTION PRINCIPLE AND MODIFIED
EINSTEIN EQUATIONS

We start with the standard Einstein-Hilbert action with
the Ricci scalar as the Lagrangian density,

S ¼
Z

~R
ffiffiffiffiffiffiffiffi�g

p
d5x: (16)

In varying the action, we note that the Ricci scalar and the
connection coefficients described in the previous section
are functions of the metric components alone.

�S ¼
Z
½ ~R� ffiffiffiffiffiffiffiffi�g

p þ ~Rik�g
ik ffiffiffiffiffiffiffiffi�g
p �d5x

þ
Z

� ~Rikg
ik ffiffiffiffiffiffiffiffi�g
p

d5x: (17)

The first term gives rise to the usual Einstein tensor,

~G ik ¼ ~Rik � ð1=2Þgik
~R:

In the absence of torsion, the second term becomes a
boundary integral which vanishes when the variation is
fixed at the boundary and hence will not contribute to the
equations of motion. But in the presence of torsion, the
second term gives a nonzero contribution.
From Eq. (14), we find the variations of the Ricci tensor

to be

� ~Rik ¼ @k�~�
j
�ji � @j�~�

j
�ki þ ~�j

�km�~�
m�ji þ ~�m�ji�~�

j
�km

� ~�j
�jm�~�

m
�ki � ~�m

�ki�~�
j
�jm

¼ ½~rk�~�
j
�ji � ~rj�~�

j
�ki� þ Tm

�kj�~�
j
�mi: (18)

Then, the second term in the right-hand side (r.h.s.) of
Eq. (17) takes the formZ

� ~Rikg
ik ffiffiffiffiffiffiffiffi�g
p

d5x ¼
Z
½~rkðgik�~�j

�jiÞ
� ~rjðgik�~�j

�kiÞ�
ffiffiffiffiffiffiffiffi�g

p
d5x

þ
Z

gikTm
�kj�~�

j
�mi

ffiffiffiffiffiffiffiffi�g
p

d5x: (19)

In deriving the above equation, we have used the metri-

city condition, namely, ~rjg
ik ¼ 0. Substituting for the

covariant derivative in the first term of the r.h.s. of
Eq. (19), we obtain
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Z
½~rkðgik�~�j

�jiÞ� ~rjðgik�~�j
�kiÞ�

ffiffiffiffiffiffiffiffi�g
p

d5x

¼
Z
½@kðgik�~�j

�ji
ffiffiffiffiffiffiffiffi�g

p Þ�@jðgik�~�j
�ki

ffiffiffiffiffiffiffiffi�g
p Þ�d5x

þ
Z
gik�~�j

�ji
�
~�m
�mk�

@k
ffiffiffiffiffiffiffiffi�g

pffiffiffiffiffiffiffiffi�g
p

� ffiffiffiffiffiffiffiffi�g
p

d5x

�
Z
gik�~�j

�ki
�
~�m�mj�

@j
ffiffiffiffiffiffiffiffi�g

pffiffiffiffiffiffiffiffi�g
p

� ffiffiffiffiffiffiffiffi�g
p

d5x: (20)

The first term on the r.h.s. of the above equation is a
boundary term, an integral of a total divergence. This
will vanish when the variation is fixed at the boundary,
and hence can be ignored. The second and third terms on

the r.h.s. can be simplified by noting ~�m
�mk ¼ �̂m

�mk þ Tm
�mk

and �̂m
�mk ¼ ð@k ffiffiffiffiffiffiffiffi�g

p Þ= ffiffiffiffiffiffiffiffi�g
p

, leading toZ
½~rkðgik�~�j

�jiÞ � ~rjðgik�~�j
�kiÞ�

ffiffiffiffiffiffiffiffi�g
p

d5x

¼ �
Z

Tm
�kmg

ik�~�j
�ji

ffiffiffiffiffiffiffiffi�g
p

d5x

þ
Z

Tm�jmgik�~�j
�ki

ffiffiffiffiffiffiffiffi�g
p

d5x; (21)

and Eq. (19) becomesZ
� ~Rikg

ik ffiffiffiffiffiffiffiffi�g
p

d5x ¼
Z
½�Tm

�kmg
ik�~�j

�ji þ Tm�jmgik�~�j
�ki

þ Tm
�kjg

ik�~�j
�mi�

ffiffiffiffiffiffiffiffi�g
p

d5x:

(22)

The second term on the r.h.s. of Eq. (17) is thus a
function of torsion and variations in the connection given
by Eq. (22). Clearly, this term vanishes if we assume that
torsion is zero, and the action principle would yield the
standard Einstein equations. Alternatively, if we treat the
variation in the connection to be composed of independent
variations in the metric and torsion, we obtain the Einstein-
Cartan equations [3], which ultimately lead to zero torsion
when the matter is not coupled to the connection. However,
since torsion is not an independent degree of freedom in
our framework but it is a function of the metric components
given by Eq. (11), we first substitute its components in
terms of the metric and then carry out the variation with
respect to the metric. To this end, we note

Tm
�kmg

ik�~�j
�ji ¼ T5

��5½g��ð�~����� þ �~�5
�5�Þ þ g5��~�5

�55�;
Tm�jmgik�~�j

�ki ¼ T5
��5g

���~�����;

Tm
�kjg

ik�~�j
�mi ¼ T5

��5½g���~�5
�5� þ g5��~�5

�55�: (23)

Taking these terms together, Eq. (22) takes the formZ
� ~Rikg

ik ffiffiffiffiffiffiffiffi�g
p

d5x ¼
Z

T5
��5½g��������

� g��������� ffiffiffiffiffiffiffiffi�g
p

d5x: (24)

Note that the variations in the connection, ������ and

������, involve only the 4D components. Since these are

the 4D Levi-Civita components that only depend on the 4D
metric g��, the above equation takes the formZ

� ~Rikg
ik ffiffiffiffiffiffiffiffi�g
p

d5x ¼
Z

H���g
�� ffiffiffiffiffiffiffiffi�g
p

d5x; (25)

where (see Appendix B for details)

H�� ¼ rð�B�Þ � ðr � BÞg�� þ Jð�B�Þ � ðJ � BÞg��;

B� � T5
��5 ¼ J� � @5A� � A�J5: (26)

Taking together the variations in both terms in Eq. (17),
we obtain the modified Einstein tensor

~G�� ¼ R�� � 1
2ðg�� þ A�A���

2ÞRþH�� ¼ ���;

~G�5 ¼ �1
2A���

2R ¼ ��5;

~G55 ¼ �1
2 ��

2R ¼ �55;

where � is the stress-energy tensor that arises from the
variations of the assumed matter fields in the Lagrangian.
Our focus being on gravity, wewill not discuss the origin of
� further. Since the physical interpretation of the stress
energy is more transparent with one covariant and one
contravariant index, we express the above equations in an

alternate form, by noting ~Gi
j ¼ gkj ~Gik,

R�
� � 1

2R��
� þH�

� ¼ ��
�; (27)

� A�R�� � A�H�� ¼ ��
5; (28)

0 ¼ ��
5 ; �1

2R ¼ �5
5 (29)

These are the modified Einstein equations in our frame-
work. Since, by construction, the fifth dimension is hidden
with respect to the observable 4D motion, the 5D compo-
nents of the stress tensor,��

5 and�5
5, are unobservable. It

is not possible to solve Eqs. (28) and (29) unless these
components are theoretically known from the 5D matter
Lagrangian. In the present formulation, for simplicity, we
shall ignore these equations as though they simply serve
to evaluate the components ��

5 and �5
5, and treat only

Eq. (27) with the observable 4D stress tensor to be relevant
to physical solutions. In the absence of specified matter
fields in the Lagrangian, an alternate way to interpret the
modified Einstein equations is to regard �H�

� as extra-

dimensionally induced matter.
When H�

� ¼ 0, Eq. (27) reduces to the standard

Einstein equations for the 4D metric components g��. In

this case the 4D Bianchi identity necessarily implies the
conservation of matter, r���

� ¼ 0. But, in general, when

H�
� is nonvanishing and dependent on the extra-

dimensional metric fields A� and �, Eq. (27) by itself

may not be sufficient to solve for g�� along with A� and

�, even after fixing the gauge. However, an important
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physical simplification can be achieved by generalizing the
cylindrical condition to assume that A� and � do not

depend on x5. With this assumption, B� ¼ J� and H�
�

depends only on � and not on A�; Eq. (27) is sufficient to

solve for both g�� and �. The vector A� can, in principle,

be evaluated from Eq. (28) by setting ��
5 to zero, but this

would be inconsequential as A� is decoupled from the

physically relevant equation that solves for the 4D metric
g��. Hence, in the rest of the paper we will make the

assumption of the cylindrical condition in order to explore
solutions of physical interest to the modified Einstein
equations.

Finally, when H�
� is nonvanishing, we note that ��

�

does not necessarily have to satisfy the 4D matter conser-
vation. However, with minimum modifications to GR and
the empirical conservation laws in mind, it is reasonable to
assert the conservation of ��

�. Since the standard Einstein

tensor satisfies the 4D Bianchi identity independently of
H�

�, the 4D matter conservation implies

r���
� ¼ 0 ) r�H�

� ¼ 0: (30)

In the reminder of the paper, we study the solutions to
the modified Einstein equations [Eq. (27)] in two ex-
tremely symmetric situations, namely, the homogeneous-
isotropic geometry and the static spherically symmetric
geometry.

V. HOMOGENEOUS-ISOTROPIC COSMOLOGY

The 4D metric of a homogeneous and isotropic universe
has the form

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2d�2

�
: (31)

The values of k ¼ 0, þ1, �1 correspond, respectively, to
flat, closed, and hyperbolic spatial geometries. The stan-
dard Einstein tensor for this metric is given by [18]

Gt
t ¼ 3ð _a=aÞ2 þ 3k=a2;

Gr
r ¼ 2ð €a=aÞ þ ð _a=aÞ2 þ k=a2;

G�
� ¼ G�

� ¼ Gr
r;

(32)

where an over-dot denotes a derivative with respect to time.
Since the geometry is spatially homogeneous and isotropic,
the metric fields including A� and � in the 5D geometry

only depend on time. Hence the only nonvanishing com-
ponent of J� is Jt. The induced matter terms given in

Eq. (26) are

Ht
t ¼ 3Jtð _a=aÞ;

Hr
r ¼ 2Jtð _a=aÞ þ _Jt þ J2t ;

H�
� ¼ H�

� ¼ Hr
r:

(33)

Before writing out the modified Einstein equations, we
note that the conservation equation [Eq. (30)] now reduces to

r�H�
� ¼ 3Jt½ð €a=aÞ � ð _a=aÞJt� ¼ 0 )
Jt ¼ 0 or Jt ¼ €a= _a: (34)

These are the only two possibilities. From the definition
of J�, this implies that either� is a constant, which would

give rise to the usual Friedmann-Robertson-Walker (FRW)
cosmology, or � ¼ _aðtÞ. Focusing on the latter case, H�

�

simplifies to

Ht
t ¼ 3 €a=a; Hr

r ¼ 2ð €a=aÞ þ ða:::= _aÞ: (35)

Taking the stress tensor to be that of a perfect fluid, the
modified Einstein equations [Eq. (27)] take the form

3ð _a=aÞ2 þ 3k=a2 þ 3 €a=a ¼ 8	
; (36)

4ð €a=aÞ þ ð _a=aÞ2 þ ða:::= _aÞ þ k=a2 ¼ �8	P; (37)

where 
 and P are the density and pressure of the 4D
matter. Combining the above equations, we find

_
þ 3ð
þ PÞ _a=a ¼ 0; (38)

which is just a restatement of the 4D matter conservation
equation. For a matter dominated universe, P ¼ 0, and
consequently Eq. (38) yields


a3 ¼ constant or 
 ¼ 
o=a
3: (39)

In effect, Eqs. (36) and (39) are sufficient to solve for aðtÞ,
which needs two initial conditions along with the specifi-
cation of 
o.

a2 €aþ að _aÞ2 þ ka ¼ 8	
o=3: (40)

Without loss of generality, we choose the current epoch to
be at t ¼ 0, set the current size of the universe as að0Þ ¼ 1,
and set the unit of time such that _að0Þ ¼ 1. In this unit of
time, the current value of the Hubble constant will be 1.
Rather than specifying the value of 
o, we choose to
specify the current value of €a. The effective equation for
aðtÞ then takes the form

a2 €aþ að _aÞ2 þ ka ¼ 1þ k� qo; (41)

where qo ¼ �að0Þ €að0Þ= _a2ð0Þ, the current value of the
deceleration parameter, is the only free parameter to be
specified. Figure 2 shows the behavior of aðtÞ for various
values of qo for spatially flat and closed topologies. For the
spatially flat topology, shown in the top panels of the
figure, we find that the universe does not originate from a
singular big bang for all qo <þ0:5. For the spatially
closed topology shown in the bottom panels, we find
oscillatory solutions for all qo <þ1.
Oscillatory solutions in the spatially closed topology ex-

hibit a scale factor that oscillates between a maximum amax

and a minimum amin. The acceleration reaches a positive
value in a narrow interval around amin, and then becomes
negative for the rest of the cycle until it gets back near amin.
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By taking the value of qo arbitrarily close to 1, we can make
amin arbitrarily close to zero. This can be seen in the bottom-
left and bottom-middle panels of Fig. 2. Thus one could
construct a universe that collapses and bounces back to
expand when it reaches an arbitrarily small size or, equiv-
alently, arbitrarily high energy densities. It remains to be
seen if such solutions would fit the empirical redshift data.

VI. STATIC SPHERICALLY SYMMETRIC
VACUUM SOLUTIONS

The most general static spherically symmetric 4Dmetric
has the form1

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ r2d�2; (42)

and the standard Einstein tensor for this metric is [18]

Gt
t ¼ rB0 þ B2 � B

r2B2
;

Gr
r ¼ AB� rA0 � A

r2AB
;

G�
� ¼

2A2B0 � 2ABA0 � 2rABA00 þ rBA02 þ rAA0B0

4rA2B2
;

G�
� ¼ G�

�; (43)

where a prime in the above equations denotes a derivative
with respect to r.
The additional term H�

� in the modified Einstein equa-

tions [Eq. (27)] depends only on � when the cylindrical
condition is imposed on all metric components, and is
given by

H�
� ¼ r�J

� � ðr � JÞ��
� þ J�J

� � ðJ � JÞ��
�: (44)

Since J� ¼ ��1@��, the quantity r�J
� is intrinsically

symmetric in� and �. The static spherical symmetry of the
geometry implies that Jr is the only nonvanishing compo-
nent, which we denote by JðrÞ. With this,

Ht
t ¼ rJB0 � 2BðrJ0 þ 2J þ rJ2Þ

2rB2
;

Hr
r ¼ �JðrA0 þ 4AÞ

2rAB
;

H�
� ¼ rJAB0 � 2rABJ0 � rJBA0 � 2ABJð1þ rJÞ

2rAB2
;

H�
� ¼ H�

�: (45)

In order to obtain vacuum solutions, we set ��
� ¼ 0 in

Eq. (27) and find the following three equations:

FIG. 2 (color online). Solutions for aðtÞ for different values of the deceleration parameter for k ¼ 0 and k ¼ þ1.

1The scalar functions AðrÞ and BðrÞ defined in this section
should not be confused with the vectors A� and B� defined in
Eqs. (3) and (26), respectively.
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J0 ¼ � Jð1þ BÞ
r

;

A0 ¼ � 2Að1� Bþ 2rJÞ
rð2þ JrÞ ;

B0 ¼ 2Bðr2J2 þ ð1þ rJÞð1� BÞÞ
rð2þ JrÞ :

(46)

A close examination of the above equations reveals two
basic properties of the function JðrÞ. First, if JðrÞ is a
constant, it has to be identically zero. Second, if JðrÞ
vanishes at some point, it has to vanish identically every-
where. The simplest solution to the coupled equations
[Eq. (46)] is when JðrÞ vanishes everywhere,

JðrÞ¼0; AðrÞ¼
�
1�2M

r

�
; BðrÞ¼

�
1�2M

r

��1
;

(47)

which of course is the well-known Schwarzschild solution,
as expected.

A. General solution to JðrÞ
Let FðrÞ � 1=rJðrÞ when JðrÞ is nonvanishing.

Substituting for JðrÞ in terms of FðrÞ, the coupled equa-
tions [Eq. (46)] lead to the following equation for FðrÞ,

r½ð2F2 þ FÞF00 þ F02� ¼ F0ðFþ 2Þ; (48)

whose solution in turn determines the 4D metric functions
AðrÞ and BðrÞ. The obvious solution of Eq. (48) is FðrÞ ¼
constant. This leads to

JðrÞ¼c=r; AðrÞ¼ ðrÞ�ð2þ4c=2þcÞ; BðrÞ¼0; (49)

which is clearly unacceptable because BðrÞ is identically
zero.

Assuming that FðrÞ is not a constant, we can obtain
solutions to the second order differential equation
[Eq. (48)]. In principle, the solution would have two in-
tegration constants that would be determined by the bound-
ary conditions, one of which immediately follows from the
form of the equation. It can be easily seen that if FðrÞ is a
solution, then Fð�rÞ is also a solution for any scaling
constant �. We find a general solution in the implicit form

�2r2 ¼ �2jF=�þ �þ 1j1þ�jF=�þ �� 1j1��; (50)

where � and � are defined in terms of an independent
arbitrary constant c.

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cþ c2

p
; � ¼ 1þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cþ c2
p : (51)

With � and c as two arbitrary constants, Eq. (50) repre-
sents the general solution to the second order differential
equation [Eq. (48)]. From Eq. (50), we find the derivatives
of FðrÞ to be

F0 ¼ 1

r

F2 þ 2ð1þ cÞFþ c

F
; F00 ¼ � c

r

F0

F2
; (52)

and substituting them into Eq. (46), we obtain the metric
functions AðrÞ and BðrÞ in terms of FðrÞ.

A0ðrÞ ¼ 2cAðrÞ=rFðrÞ; (53)

BðrÞ ¼ 1þ 2ð1þ cÞ=FðrÞ þ c=F2ðrÞ: (54)

In order to obtain asymptotically flat solutions, we
shall impose the boundary conditions Aðr ! 1Þ ¼ 1 and
Bðr ! 1Þ ¼ 1. To understand the behavior of the func-
tions AðrÞ and BðrÞ which define the observable 4D
geometry, we start with the properties of FðrÞ.
Unfortunately Eq. (50) does not yield an explicit func-

tional form for FðrÞ except for simple cases when c is
either 0 or�1. Nevertheless, the relevant properties of FðrÞ
can be inferred from analyzing this implicit function. First
note that the quantity ð1þ cþ c2Þ is positive definite and
� is finite and bounded for all values of c. Figure 3 plots
the behavior of� to show that it asymptotically reachesþ1
and �1 at c ¼ þ1 and �1, respectively. The following
observations summarize the qualitative properties of FðrÞ.

(1) At r ¼ 0, F can take one of two possible values. If
c < 0 (�< 1), then Fð0Þ can be either �ð��� 1Þ
or �ð��þ 1Þ, while if c > 0 (�> 1), then Fð0Þ can
only be �ð��� 1Þ.

(2) In the limit r ! 1, F necessarily has to diverge in
order to satisfy the boundary condition Bðr ! 1Þ ¼
1. Equation (50) then implies that for large r,
�2r2 ¼ F2, implying that F could be either positive
or negative, such that

Fðr ! 1Þ ¼ �r ) Jðr ! 1Þ ¼ ��1=r2: (55)

The behavior of FðrÞ at the extremities is summa-
rized in the following table.

c < 0ð�< 1Þ c > 0ð�> 1Þ

r ¼ 0 F ¼
�
�ð��þ 1Þ >0
�ð��� 1Þ <0

F ¼ �ð��� 1Þ< 0

r ! 1 F ¼ �r F ¼ �r

FIG. 3. � is plotted as a function of c.
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(3) From Eq. (52), it can be shown that F0 ¼ 0 when F
is either �ð��þ 1Þ or �ð��� 1Þ, which can hap-
pen only at r ¼ 0. Hence F0 is either positive defi-
nite or negative definite, and so FðrÞ is a monotonic
function.

(4) Though F is monotonic and finite for any finite r, it
can reach zero at ro, given by

�2r2o ¼ jcj
���������þ 1

�� 1

���������

; (56)

and from Eq. (52), F0 diverges at ro. Considering
the physical relevance of these solutions, we shall
only focus on solutions that are nonvanishing
everywhere. Such solutions do indeed exist for
a range of parameter values. Rewriting Eq. (50) at
r ¼ ro,�������� FðroÞ

�ð�þ 1Þ þ 1

��������1þ�
�������� FðroÞ
�ð�� 1Þ þ 1

��������1��¼ 1;

(57)

we note that FðroÞ ¼ 0 is not the only solution.
Numerical plots in Fig. 4 demonstrate the existence
of nonvanishing FðrÞ solutions.

(5) From the table above, we see that (i) for c > 0, since
Fð0Þ is negative, FðrÞ has to be negative definite,
which requires � to be negative, and (ii) for c < 0, �
can be either positive or negative, makingFðrÞ either
positive definite or negative definite, respectively.

The functional form of FðrÞ described by the above five
properties along with Eqs. (53) and (54) will yield the
functional form of the metric functions AðrÞ and BðrÞ.

B. Metric functions AðrÞ and BðrÞ
With the boundary condition Að1Þ ¼ Bð1Þ ¼ 1,

Eqs. (53) and (54) yield

AðrÞ ¼ exp

�
�

Z 1

r

2c

rFðrÞdr
�
; (58)

BðrÞ ¼ 1þ 2ð1þ cÞ=FðrÞ þ c=F2ðrÞ: (59)

The following observations summarize the qualitative be-
havior of AðrÞ and BðrÞ.

(1) From the asymptotic behavior of FðrÞ ! �r for
large r, we note that

AðrÞ ¼ 1� 2c��1

r
þOð1=r2Þ; (60)

BðrÞ ¼ 1þ 2ð1þ cÞ��1

r
þOð1=r2Þ: (61)

Hence, when jcj � 1 and r ! 1, the above solu-
tions approximate the Schwarzschild solution with
mass M � ½c��1�. When both c and � are either
positive or negative, the gravity is attractive, while
when one is positive and the other is negative, the
gravity is repulsive.

(2) Since FðrÞ is either positive definite or negative
definite, both AðrÞ and BðrÞ are finite and positive
for all r > 0. At r ¼ 0, since Fð0Þ is either
�ð��� 1Þ or �ð��þ1Þ, Eq. (59) implies Bð0Þ¼0.

(3) As r ! 0, the integral in Eq. (58) diverges as
½2c=Fð0Þ� lnðrÞ. When ½c=Fð0Þ� is positive, then
Að0Þ ¼ 0, and when ½c=Fð0Þ� is negative, Að0Þ ¼
1. The sign of ½c=Fð0Þ� is the same as the sign of
M ¼ ½c��1�. For M> 0, AðrÞ monotonically in-
creases from Að0Þ ¼ 0 to Að1Þ ¼ 1; for M< 0,
AðrÞ monotonically decreases from Að0Þ ¼ þ1 to
Að1Þ ¼ 1.

(4) Irrespective of the sign ofM, Bð0Þ ¼ 0 and Bð1Þ ¼
1. However, BðrÞ is not necessarily monotonic.
From Eq. (59), we see that B0 ¼ 0 when either F0 ¼
0 or when FðrÞ ¼ �c=ð1þ cÞ. From the previous
subsection, F0 � 0 for all r > 0, but FðrÞ could
attain the value �c=ð1þ cÞ for certain values of c
and �. Since FðrÞ is a nonvanishing monotonic
function taking all values from Fð0Þ to �1, it is
straightforward to check if it would attain the value
�c=ð1þ cÞ. When � < 0, FðrÞ is negative definite,
and �c=ð1þ cÞ needs to be a negative number less
than Fð0Þ ¼ �ð��� 1Þ, which happens only when
c <�1. When � > 0, FðrÞ is positive definite, and
�c=ð1þ cÞ needs to be a positive number greater
than Fð0Þ ¼ �ð��þ 1Þ, which happens only when
�1< c< 0.

FIG. 4 (color online). Numerical solution to FðrÞ with � ¼ �1.
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The qualitative behavior of the functions AðrÞ and BðrÞ
for the various allowed ranges of c and � are shown in
Fig. 5. When M ¼ ½c��1� is positive, AðrÞ is a monotoni-
cally increasing function leading to attractive gravity, and
it corresponds to a Schwarzschild solution at large r when
jcj � 1.

C. Naked singularity at r ¼ 0

An important point to note from Fig. 5 is that these
solutions do not have an event horizon because both AðrÞ
and BðrÞ are finite and positive for all r > 0.

Clearly, these solutions are smooth for all r > 0.
However, the point r ¼ 0 is a physical singularity.
Explicit calculations show that the Ricci scalar R�

� van-
ishes everywhere, but the quantity R��R

�� is nonvanish-

ing. It turns out that

R��R
�� ¼ 2ð3F2ðrÞ þ 2cFðrÞ þ c2Þ

F4ðrÞB2ðrÞr4 : (62)

At r ¼ 0, the numerator does not generally vanish, but the
denominator vanishes, making R��R

�� diverge. Hence

these solutions correspond to a naked singularity at r ¼ 0
with no event horizon to censor it.

VII. SUMMARYAND DISCUSSION

The metric and torsion are two independent constituents
of metric compatible Riemannian geometry. Because of
the immense successes of torsion-free GR, torsion has not
played a significant role in theories of gravity. However,
when gravity is to be included with other interactions of
elementary particles with intrinsic spin, a more general
theory including torsion becomes imperative [3].

In the present work, torsion is incorporated in a novel
way in higher dimensional Kaluza-Klein–type theories.
Here torsion is not an independent degree of freedom
coupled to spin; rather, it is determined in terms of the
metric through a set of physically motivated constraints,
which serve (i) to confine torsion to the extra dimension,
leaving the 4D space-time torsion-free, and (ii) to ensure
that geodesic motions in 4D remain totally unaffected by

the presence of the extra dimension. These constraints have
previously been imposed in terms of veilbeins [17,19], but
here it is realized that they essentially impose the require-
ment that the fifth dimension is hidden at the level of
geodesic motion. It turns out that the nonvanishing torsion
components are functions of the 5D metric components
with the 4D metric g�� obeying the so-called cylindrical

condition; namely, it is independent of x5. In the resulting
geometry, all the 4D hypersurfaces are equivalent, and the
4D components of the connection and the Ricci tensor
exactly match those of the standard 4D GR. Hence, at
the level of geodesics, this geometry is virtually indistin-
guishable from that of the standard GR.
To proceed further, we derive modified Einstein equa-

tions from the action principle with the Ricci scalar as the
Lagrangian density. In this respect, an alternate approach
presents itself. In the Palatini formulation of GR, the action
is varied independently with respect to the connection, and
in the absence of torsion, the metricity follows from the
equations of motion. Recently [20,21], it has been shown
that even without assuming the absence of torsion, varia-
tions of the action independently with respect to the metric
and the connection lead to GR equations along with met-
ricity, provided the matter Lagrangian is not coupled to the
connection. In our case, with the constraints imposed on
the connection, it is more convenient and natural to impose
metricity prior to action variation. Since the entire connec-
tion is determined to be a function of the metric, we only
need to vary the action with respect to the metric to obtain
the modified equations, making the theory a purely metric
theory of gravity. However, adopting a Palatini-style ap-
proach, one could relax the assumption of metricity and
vary the action independently with respect to the metric
and the connection along with the imposed constraints,
which might lead to a different set of modified Einstein
equations.
We apply the ensuing modified Einstein equations to

study the cosmology of a homogeneous-isotropic universe.
In the matter dominated phase of the universe (zero pres-
sure), we obtain a second order differential equation for the
scale factor aðtÞ, in contrast to the first order differential
equation in the usual FRW cosmology. In FRW cosmology,

FIG. 5 (color online). Schematic behavior of AðrÞ and BðrÞ.
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the second derivative of aðtÞ cannot be independently
prescribed as an initial condition, and decelerating expan-
sion is a necessary outcome in the absence of a cosmologi-
cal constant. However, in our case, we have the choice of
an initial condition for the second derivative of aðtÞ, which
can be tuned to fit the observed acceleration of the uni-
verse. Figure 2 presents the behavior of aðtÞ for various
choices of the current acceleration.

In an earlier version of the present work [22], the field
equations were derived differently: by varying the action
with respect to the metric prior to expressing the Ricci
tensor in terms of the metric. In the cosmology equations
generated from those field equations, acceleration was not
an independently prescribable initial condition. Chen and
Jing [23] showed that those equations yield accelerating
universe solutions without resorting to dark energy, and
that the model not only fits the supernovae data, but also
solves the cosmic age problem of old high redshift objects
[24]. Whether the cosmological solutions described in the
current work would fit empirical results just as well needs
to be investigated.

In the case of spherically symmetric vacuum solutions
to the modified Einstein equations, we find some remark-
ably interesting results. As is well known, in the unique
Schwarzschild solution of GR, when the mass is positive,
an event horizon censors the central singularity. In contrast,
we find positive mass naked singularity solutions that lack
an event horizon. Recently, similar positive mass solutions
without a horizon have been found [25] in a simpler setting
of torsion-free GR with multiple extra dimensions. It would
be interesting to see how the particular vacuum solutions in
the torsion induced geometry in the present case match with
those solutions in the torsion-free geometry.

The existence of positive mass solutions with a naked
singularity have immediate consequences on gravitational
collapse, opening up the possibility of an arbitrarily large
star collapsing to an arbitrarily small nonsingular state.
Since trapped surfaces would not necessarily form in
such collapses, finite matter pressure could be sufficient
to withstand a total collapse to a singularity. This suggests
a detailed analysis of such solutions by treating �H�

� in

Eq. (27) as extra-dimensionally induced matter in standard
GR. It then raises the possibility of a sufficiently strong
gravitational collapse that stops short of collapsing to a
singularity with a finite induced stress-energy tensor that
potentially violates the weak energy condition in the region
near the center. It remains to be seen if an arbitrarily small
static model star with a finite stress-energy tensor can be
constructed with the external geometry matching the type
of solutions discussed in this paper.

In conclusion, inclusion of the torsion in the context of
extra dimensions presents a novel way of obtaining modi-
fied Einstein equations that have significant physical con-
sequences. For clarity and simplicity, we have confined the
treatment to five dimensions. However, the framework can

be generalized to arbitrary dimensions D, producing a
torsion-free D� 1-dimensional metric theory. Further,
we could consider multiple extra dimensions and general-
ize the constraints so as to hide all the extra dimensions and
confine the torsion in them, which would lead to a more
general theory.

ACKNOWLEDGMENTS

The authors would like to thank Venky Krishnan,
Ramesh Anishetty, Johannes Noller, and Stanley Deser
for helpful discussions. The work was supported in part
by Grant No. AFOSR-FA9550-10-1-0149 (K.H. S.) and
U.S Department of Energy Grant No. DE-FG02-
85ER40237 (K. C.W.).

APPENDIX A: COMPUTING THE GEOMETRIC
QUANTITIES IN THE 5D MANIFOLD

In this appendix, expressions for the torsion, connection
coefficients, and the Ricci tensor of the 5D geometry are
computed in terms of the metric. It will be shown that the
physical constraints imposed on the connection will be
sufficient to determine uniquely all the components of
torsion and hence the other geometric quantities in terms
of the metric.

1. 5D Levi-Civita connection

The 5D Levi-Civita connection is given by

�̂
j
�ik ¼ 1

2g
jmð@kgim þ @igkm � @mgikÞ: (A1)

Expressing the 5D metric in terms of the 4D metric and the
extra-dimensional metric fields given by Eq. (3), we find
the 5D Levi-Civita connection to be

�̂5
��� ¼ 1

2ðr�A� þr�A�Þ þ ðA�J� þ A�J�Þ
þ 1

2��
2A�ðA�F�� þ A�F��Þ þ ��2A�A�A

�J�

� 1
2ðA�A� þ ���2Þ@5ð�A�A��

2Þ
� 1

2ðA�A� þ ���2Þ@5g��; (A2)

�̂
�
�55¼���2J�þ��2@5A

�þ��2A�J5���2A@5g
�;

(A3)

�̂ 5
�55 ¼ ��2A�ðJ� � @5A�Þ � ��2A�A�J5 þ J5; (A4)

�̂
�
�5�¼ 1

2��
2F

��
� ���2A�J

�þ 1
2g

�@5ð��2AA�Þ
þ 1

2g
�@5g�; (A5)

�̂ 5
�5� ¼ 1

2��
2A�F�� þ ��2A�A

�J� þ J�

� 1
2A

�@5ð�A�A��
2Þ � 1

2A
�@5g��; (A6)
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�̂�
��� ¼ ����� þ ������;

������ ¼ 1
2��

2ðA�F
��
� þ A�F

��
� Þ � ��2A�A�J

�

þ 1
2A

�@5ð�A�A��
2Þ þ 1

2A
�@5g��;

(A7)

where F�� � @�A� � @�A�, Ji � ���1@i��, ����� is the

4D Levi-Civita connection obtained from the metric g��,

and r� is the derivative operator with the 4D Levi-Civita

connection. The raising and lowering of indices on F��,

A�, and J� is performed with respect to the 4D metric.

2. Torsion components

We start with the conditions that T���� ¼ 0 and ~��
�i5 ¼

~��
�5i ¼ 0. Together these conditions imply T��ij ¼ 0. The

remaining nonvanishing components of torsion that need to
be determined are T5�ij, a total of ten independent compo-

nents. The conditions ~��
�5i ¼ 0, consisting of 20 equations,

are sufficient to determine uniquely all the nonvanishing
torsion components.

~�
�
�i5 ¼ �̂

�
�i5 þ K

�
�i5 ¼ 0: (A8)

From the above equation, the nonvanishing components of
contorsion and torsion can be determined in terms of

components of the 5D Levi-Civita connection �̂�. First
taking i ¼ 5,

K
�
�55 ¼ g�jg55T

5
�j5 ¼ g��g55T

5
��5 ¼ ��̂

�
�55: (A9)

From the 5D metric [Eq. (2)], we have g�� ¼ g��.
Multiplying both sides by g� and using the orthogonality

relations of the metric, we obtain

g�g
��g55T

5
��5 ¼ �g��̂

�
�55;

g55T
5
�5 ¼ �g��̂

�
�55;

) T5
�5 ¼ �g��̂

�
�55��

�2:

(A10)

Substituting for �̂
�
�55 from Eq. (A3), we obtain

T5
�5 ¼ g�½J� � @5A

� � A�J5 þ A@5g
��: (A11)

We have thus far used four equations and solved for four
of the ten independent torsion components. Next, take
i ¼ � in Eq. (A8). The contorsion components K

�
��5 can

be expressed in terms of the torsion components as follows:

K
�
��5¼ 1

2g
�jðg55T

5�j�þg�5T
5
�j5Þ

¼ 1
2g

�5ðg55T
5
�5�Þþ 1

2g
�ðg55T

5��þg�5T
5
�5Þ

¼ 1
2�A

��2T5
��5þ 1

2�A��
2g�T5

�5þ 1
2��

2g�T5��:
(A12)

From K
�
��5 ¼ ��̂

�
��5, and using Eq. (A10), we have

� 2�̂�
��5 þ A�g���̂

�
�55 þ A��̂

�
�55 ¼ ��2g�T5�� (A13)

and hence,

T5�� ¼ ���2g�½�2�̂
�
��5 þ A�g���̂

�
�55 þ A��̂

�
�55�:
(A14)

There are 16 equations. Though the torsion in the left-hand
side (l.h.s.) is antisymmetric, the r.h.s. is a combination of
symmetric and antisymmetric terms. Substituting for the
5D Levi-Civita connection from Sec. A 1, the above equa-
tion has the form

T5��¼½@A��@�A�þ½JA��J�A�
þ½���2@5g�þAA

�@5g��þA�A
�@5g��: (A15)

The first two terms on the r.h.s. above are antisymmetric in
 and �, while the third term is symmetric. The antisym-
metry of torsion implies that the symmetric terms on the
r.h.s. must be zero, and hence

@5g� ¼ 0: (A16)

Consequently,

T5�� ¼ ½@A� � @�A� þ ½JA� � J�A�: (A17)

Thus the 20 equations of the imposed condition
[Eq. (A8)] have determined all ten independent nonvanish-
ing components of the torsion [Eqs. (A11) and (A17)] and,
in addition, have imposed a constraint on the ten indepen-
dent components of the 4D metric g�, making them
independent of x5.

3. The contorsion, connection, and Ricci tensor

Some components of contorsion are directly prescribed

by the imposed condition, namely, K
�
�i5 ¼ K

�
�5i ¼ ��̂

�
�i5.

The remaining components of the contorsion can be calcu-
lated from the torsion components by using Eq. (7). Since
T5�ij are the only nonvanishing components of torsion, it

follows that

K
�
�i5 ¼ K

�
�5i ¼ ��̂

�
�i5;

K5
�i5 ¼ 1

2T
5
�i5 þ 1

2g
5jðgi5T

5
�j5 þ g55T

5�jiÞ;
K5

�5i ¼ K5
�i5 þ T5

�5i;

K�
��� ¼ 1

2g
�jðg�5T

5
�j� þ g�5T

5�j�Þ;
K5

��� ¼ 1
2T

5
��� þ 1

2g
5jðg�5T

5
�j� þ g�5T

5�j�Þ:

(A18)

Substituting for the nonvanishing torsion components
given by Eqs. (A11) and (A17), along with the requirement
that the 4D metric is independent of the fifth dimension
[Eq. (A16)], the components of contorsion are found to be
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K
�
�i5¼K

�
�5i¼��̂

�
�i5;

K5
�i5¼��̂5

�i5þJi; K5
�5i¼K5

�i5þT5
�5i;

K
�
���¼��2F

�
�ð�A�Þ þA�A�J

���2� 1
2A

�@5ð�A�A��
2Þ;

K5
���¼���2AFð�A�Þ�ðAJ

Þ�A�A��
2

þ 1
2ðAA

þ���2Þ@5ð�A�A��
2Þ�A�J�þ 1

2F��:

(A19)

Now from Eq. (5), we obtain all the connection coef-
ficients,

~�5��� ¼ r�A� þ J�A�;

~�5
�5� ¼ @5A� þ J5A�;

~�5
��5 ¼ J�; ~�5

�55 ¼ J5;

~����� ¼ �����;

~�
�
�55 ¼ ~�

�
��5 ¼ ~�

�
�5� ¼ 0:

(A20)

Taking i ¼ � and k ¼ � in the Ricci tensor defined by
Eq. (15), we have

~R��¼þ@�~�
���@~�

���þ~�
���~�

����~�
��~�

����
þ@�~�

5
�5��@5~�

5���þ~�5
���~�

�
�5��~�5

�5�~�
����

þ~�
��5~�

5���~�
�5~�

5���þ~�5
��5~�

5
�5��~�5

�55~�
5���: (A21)

Since ~�� is the same as �� when all the indices are four
dimensional, the first line is clearly the 4D Ricci tensor.
The terms in the subsequent lines can be reexpressed in
terms of the 4D covariant derivative operator as follows:

~R�� ¼ R�� þr�
~�5
�5� � @5~�

5��� � ~�5
�55~�

5��� þ ~�5
��5~�

5
�5�:

(A22)

Substituting for the connection ~�� from Eq. (A21), we find
after some algebra this can be simplified as

~R�� ¼ R�� þr�ð@5A� þ J5A�Þ � @5ðr�A� þ J�A�Þ
� J5ðr�A� þ J�A�Þ þ J�ð@5A� þ J5A�Þ

¼ R�� þ A�@5�
����

¼ R��: (A23)

Similarly, the other components of the Ricci tensor are
found to be

~R�5 ¼ @5~�
�� ¼ 0; (A24)

~R 5� ¼ @�~�
5
�55 � @5~�

5
��5 ¼ 0; (A25)

~R 55 ¼ 0: (A26)

Note that neither the connection nor the Ricci tensor
depends on the signature (�) of the fifth dimension.

APPENDIX B: COMPUTING THE MODIFIED
EINSTEIN TENSOR

Here we provide some intermediate steps to go from
Eqs. (24) and (25) to Eq. (26) and obtain a simplified
expression for H��. With B� � T5

��5 and H�� defined byZ
B�½g�������� � g��������� ffiffiffiffiffiffiffiffi�g

p
d5x

¼
Z

H���g
�� ffiffiffiffiffiffiffiffi�g
p

d5x; (B1)

we show that

H�� ¼ rð�B�Þ � ðr � BÞg�� þ Jð�B�Þ � ðJ � BÞg��:

(B2)

Proof.—Consider the first term in the integrand of the
l.h.s. of Eq. (B1),

2g��������¼g��g��ð@��g��þ@��g���@��g��Þ
þg��ð@�g��þ@�g���@�g��Þ�g��:

(B3)

The variations of the covariant metric in the above equation
can be reexpressed in terms of the variations of the contra-
variant metric using the identity �g�� ¼ �g��g���g

��.

We note that

g��g��@��g�� ¼ �g��@�g�ð�g�Þ
� g��@�g��ð�g��Þ � @�ð�g��Þ;

g��g��@��g�� ¼ g��g��@��g��;

�g��g��@��g�� ¼ g��@�g�ð�g�Þ þ g��@�g�ð�g�Þ
þ g��g�@�ð�g�Þ:

Taken together, we obtain

2g��������¼�2g��@�g�ð�g�Þ�2@�ð�g��Þ
þ2g��@�g�ð�g�Þþg��g�@�ð�g�Þ
�g��@�g��ð�g��Þ: (B4)

Next consider the second term in the integrand of the
l.h.s. of Eq. (B1). Since 2����� ¼ g��@�g��,

2������ ¼ ð�g��Þ@�g�� þ g��@�ð�g��Þ
¼ �ð�g��Þ@�g�� � g��@�ð�g��Þ: (B5)

Using Eqs. (B4) and (B5), we find

B�½g�������� � g��������� ffiffiffiffiffiffiffiffi�g
p

¼ B�½�@�ð�g��Þ þ g��g��@�ð�g��Þ� ffiffiffiffiffiffiffiffi�g
p

þ B�½�g��@�g�ð�g�Þ þ 3
2g

��@�g�ð�g�Þ
� 1

2g
�@�g�ð�g��Þ� ffiffiffiffiffiffiffiffi�g

p
: (B6)
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The first term in the r.h.s. of the above equation contains
terms with the derivatives of the variation. We note that
these terms are eventually going to be integrated. By
integrating them by parts and ignoring the boundary terms,
the above equation takes the form

B�½g�������� � g��������� ffiffiffiffiffiffiffiffi�g
p

¼ ½@�ðB�

ffiffiffiffiffiffiffiffi�g
p Þ�g�� � @�ðg��g��B�

ffiffiffiffiffiffiffiffi�g
p Þ�g���

þ B�½�g��@�g�ð�g�Þ þ 3
2g

��@�g�ð�g�Þ
� 1

2g
�@�g�ð�g��Þ� ffiffiffiffiffiffiffiffi�g

p
: (B7)

To simplify the r.h.s. of Eq. (B7) it is useful to note the
following identities:

@�ðg��Þ ¼ g�g�@�ðg��Þ ¼ �g�g��@�ðg�Þ; (B8)

@�ð ffiffiffiffiffiffiffiffi�g
p Þ ¼ @�g

2g

ffiffiffiffiffiffiffiffi�g
p ¼

ffiffiffiffiffiffiffiffi�g
p
2

gij@�ðgijÞ; (B9)

g ij@�ðgijÞ¼g�@�ðg�Þþg�@�ð�AA��
2Þ

þ2g5@�ð�A�
2Þþg55@�ð��2Þ

¼g�@�ðg�Þþ2J�: (B10)

Using the above identities, the r.h.s of Eq. (B7)
becomes

B�½g�������� � g��������� ffiffiffiffiffiffiffiffi�g
p

¼ ½@�ðB�Þ�g�� � @�ðB�Þg��g���g
��

þ B�g��g
�g��@�ðg�Þ�g��

� 1
2B�g

��g��g
�@�ðg�Þ�g��

� B�g
�@�ðg�Þ�g�� þ 1

2B�g
�@ðg��Þ�g��

þ B�J��g
�� � B�J�g

��g���g
��� ffiffiffiffiffiffiffiffi�g

p
: (B11)

Rewriting the derivatives of the metric in terms of the Levi-
Civita connection, we find

B�½g�������� � g��������� ffiffiffiffiffiffiffiffi�g
p

¼ ½@�ðB�Þ�g�� � @�ðB�Þg��g���g
��

� B��
����g

� þ B��
���g

�g���g
��

þ B�J��g
�� � B�J�g

��g���g
��� ffiffiffiffiffiffiffiffi�g

p

¼ ½r�B� � ðr � BÞg�� þ J�B�

� ðJ � BÞg����g�� ffiffiffiffiffiffiffiffi�g
p

: (B12)

Since the variation �g�� is symmetric in the indices �
and �, only the symmetric part of the r.h.s. of the above
equation will contribute to the equations of motion. Hence
H�� will be given by Eq. (B2).
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