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If the Hamiltonian of a quantum field theory is taken to be a timelike isometry, the vacuum state

remains empty for all time. We search for such stationary vacua in anti-de Sitter space. By considering

conjugacy classes of the Lorentz group, we find interesting one-parameter families of stationary vacua in

three-dimensional anti-de Sitter space. In particular, there exists a family of rotating Rindler vacua,

labeled by the rotation parameter �, which are related to the usual Rindler vacuum by nontrivial

Bogolubov transformations. Rotating Rindler-AdS space possesses not only an observer-dependent event

horizon but even an observer-dependent ergosphere. We also find rotating vacua in global AdS provided a

certain region of spacetime is excluded.
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I. INTRODUCTION

In a theory with diffeomorphism symmetry, the choice
of time, and therefore the choice of the time-evolution
operator, is essentially arbitrary [1]. However, if the
Hamiltonian is chosen to be a timelike isometry, then the
resulting time-evolution is special: energy is conserved and
the vacuum remains empty.

Here we consider the isometries of anti-de Sitter space
in order to find stationary vacuum states. We find that
there exists a one-parameter family of rotating stationary
vacuum states in three-dimensional anti-de Sitter space.
These exotic vacuum states, which we call �-vacua after
the rotation parameter �, are inequivalent to the familiar
vacuum states of these spacetimes, in that they are related
to them by nontrivial Bogolubov transformations.

Intuitively, the reason for the existence of rotating vac-
uum states in anti-de Sitter space is the following. The
isometry group of AdS can be regarded as the Lorentz
group of a higher-dimensional flat embedding space, albeit
with two time coordinates. The Lorentz group however has
a rich structure: besides rotations and boosts, it also con-
tains linear combinations of rotations and boosts that can-
not be reduced by Lorentz transformations to either pure
rotations or pure boosts. The main idea of this paper is to
let the Hamiltonian be one of these timelike ‘‘rota-boosts’’
in order to obtain novel stationary rotating vacua.

II. STATIONARY VACUA

To find the possible stationary vacua of a given space-
time, we require three conditions to hold.

(i) The candidate Hamiltonian should of course be a
continuous isometry.

(ii) There must exist a region of spacetime that admits a
Cauchy surface such that the Hamiltonian is future-
directed and timelike at the (possibly asymptotic)
spatial boundary of the region.

(iii) The orbits of the Hamiltonian must not exit that
region.

The motivation for these conditions is the following. The
isometry may not be globally timelike, so we may have to

restrict our quantum field theory to some region of space-
time, such as the static patch of de Sitter space or the

Rindler wedge in Minkowski space. That region of space-
time should be globally hyperbolic (i.e. admit a Cauchy

surface) so that time evolution of quantum states can be

defined. For the same reason, the orbits of the candidate
Hamiltonian should not exit the region. Finally, for the

isometry to even be considered a Hamiltonian, it better
be timelike at least at the asymptotic boundary of the

region; we do not require the stronger condition that the

Hamiltonian be timelike everywhere within our region so
as not to preclude the existence of an ergosphere.
There may be more than one Hamiltonian that satisfies

the above conditions. If the different possible Hamiltonians
are isometrically equivalent i.e. if they can be related by

isometries (so that they are both elements of the same
conjugacy class of the isometry group), then they lead to

the same vacuum state. However, if the Hamiltonians are
isometrically inequivalent (being part of different conju-

gacy classes), then, given some quantum field theory, they

could correspond to different vacuum states.
To illustrate these ideas, let us find all the stationary

vacua of Minkowski space [2]. The most general continu-

ous isometry of Minkowski space is generated by a linear
combination of translations, boosts, and rotations:
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��P� þ �iKi þ!ijJij: (1)

This must be timelike, at least in some suitable region, for
the generator to be a candidate Hamiltonian. Choosing the
Hamiltonian to be P0 yields the usual Poincaré-invariant
vacuum. Next, we note that the boost generator, Ki ¼
X0@i þ Xi@0, squares to X2

0 � X2
i , which is timelike when

restricted to the wedges X2
i > X2

0 and is future-directed

when further restricted to Xi > 0. This is of course the
right Rindler wedge. Moreover, the orbit of Ki starting
from a point in the right Rindler wedge remains in the
wedge. Hence, Ki is a candidate Hamiltonian for a sta-
tionary vacuum; indeed, choosing the Hamiltonian to beKi

yields the Rindler vacuum for the right Rindler wedge,
while choosing the Hamiltonian to be �Ki gives the
Rindler vacuum for the left Rindler wedge. It is straightfor-
ward to check that there are no other inequivalent isometric
Hamiltonians. For example, the combination P0 þ!J12,
which generates the worldlines of observers rotating in the
X1 � X2 plane with angular velocity !, becomes spacelike
outside the sphere X2

1 þ X2
2 ¼ 1=!2 [3]; restriction to the

world-volume of the inside of the sphere fails because such
a region does not admit a Cauchy surface. Another possi-
bility, the combination P0 þ �Ki, generates the worldlines
of Rindler observers in a translated Rindler wedge. Or, the
combination P0 þ �iPi is timelike for �i�i < 1 but this is
obviously isometrically equivalent to the Poincaré
Hamiltonian via a Lorentz boost. It is easy to check that
there are no other inequivalent isometries that could be
used as the Hamiltonian.

Thus, in Minkowski space, the only stationary
vacua corresponding to isometric Hamiltonians are the
Poincaré-invariant vacuum and the Rindler vacuum.

III. CONJUGACY CLASSES OF
THE LORENTZ GROUP

As we shall show, anti-de Sitter space permits a richer
set of possibilities for stationary vacua. AdS space can
be viewed as a hyperboloid embedded in a flat embedding
space; the isometry group is therefore a higher-
dimensional Lorentz group.

The Lorentz group has an interesting structure. There are
five types of Lorentz transformations; that is, group ele-
ments of SOð1; 3Þ fall into five conjugacy classes. One
conjugacy class consists of the elliptic transformations.
This is the set of Lorentz transformations conjugate to
the pure rotations i.e. the elliptic transformations consist
of all Lorentz transformations, �Ji�

�1, that can be ob-
tained from pure rotations via Lorentz transformations.
Another conjugacy class is that of the hyperbolic trans-
formations; these consist of the pure boosts and their
conjugates, �Ki�

�1. There is also the class of parabolic
transformations, whose representative elements are the so-
called null rotations, generated by Ji þ Kj for i � j. Most

interesting for our purposes is the class of loxodromic
transformations.1 These are Lorentz transformations gen-
erated by a commuting pair of a rotation and a boost, such
as Kz þ �Jz. Rota-boosts cannot be reduced to either pure
rotations or pure boosts by Lorentz transformations be-
cause obviously those lie in different conjugacy classes.
Indeed, strictly speaking, the number of conjugacy classes
is infinite, with each class labeled by a different value of
the rotation parameter �. These are all the nontrivial con-
jugacy classes of SOð1; 3Þ. (There is also the trivial con-
jugacy class containing the identity transformation).
There is an electromagnetic analogy to the rota-boosts.

The Lorentz generatorsM��, which are antisymmetric, can

be thought of as the electromagnetic field strength, F��;

the boosts are then like the electric field and the rotations
like the magnetic field. Then we know that there are
Lorentz invariants of the type F ^� F� E2 � B2 but also
of the type F ^ F� E � B. If E � B � 0, no Lorentz trans-
formation can transform the field into a configuration that
is either a pure electric field (E2 � B2 > 0), a pure
magnetic field (E2 � B2 < 0), or pure electromagnetic
‘‘radiation’’ (E2�B2¼0), since these all have E � B ¼ 0.
Correspondingly, rota-boosts are generated by generators
that have J � K � 0.
Specifically, a generator of a rota-boost takes the form

M01 � �M23 (2)

in Cartesian coordinates. The key property is that rota-
boosts are linear combinations of the usual Lorentz gen-
erators with no shared indices. In higher dimensions, there
are additional parameters. For example, in six spacetime
dimensions, there are two-parameter generators of the form

M01 � �1M23 � �2M45: (3)

The Lorentz-invariant Casimir which generalizes J � K is

�i1...id!
i1i2 . . .!id�1id ; (4)

where ! is the parameter for the most general generator
1
2!ijM

ij. For example, the invariant of the generator (2) is

2�. In odd dimensions no invariant can be formed using
the Levi-Civita tensor but it is nevertheless possible to
argue that linear combinations of Lorentz generators with
no shared indices cannot be reduced to elliptic, hyperbolic,
or parabolic transformations. We will see that taking the
Hamiltonian to be a generator of rota-boosts leads to novel
stationary vacua in three-dimensional anti-de Sitter space.

1The peculiar names of the conjugacy classes are derived from
types of curves on a sphere, as named by maritime navigators.
Because Lorentz transformations leave light cones invariant, the
celestial sphere of an observer’s night sky is mapped to itself.
The orbits of the Lorentz transformations are curves on the
sphere; a loxodrome (also known as a rhumb line) is a curve
that spirals from one pole to the other while intersecting all
longitudinal meridians at the same angle.
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IV. ANTI-DE SITTER �-VACUA

In embedding coordinates, AdSdþ1 is the hypersurface

� X2
0 þ X2

1 þ . . .þ X2
d � X2

dþ1 ¼ �L2; (5)

embedded in flat (dþ 2)-dimensional Minkowski space
with two time directions. The AdS isometry group
Oð2; dÞ is the Lorentz group of the embedding space and
contains spatial rotationsMij, two types of boosts,M0i and

Miðdþ1Þ, as well as a rotation M0ðdþ1Þ in the time-time

plane. Consider irreducible rota-boosts of the form M01 �
�1M23 þ . . . . There are two types of such boosts: those in
which X0 and Xdþ1 are paired with Xi’s, and those in which
X0 and Xdþ1 are paired with each other. In general a rota-
boost of the first type with nonzero Casimir (4) can be
written as

M01 � �1M23 � �2M45 � . . . : (6)

Its norm is

� X2
1 þ X2

0 þ �2
1ðX2

2 þ X2
3Þ þ . . .þ �2

d=2ðX2
d � X2

dþ1Þ:
(7)

Using the embedding equation (5), this is not, for d > 2,
timelike at the AdS boundary. Therefore, in higher dimen-
sions, the above rota-boost cannot be considered as a
candidate Hamiltonian. However, as we shall see, in three
spacetime dimensions (d ¼ 2) a range of the parameter �
does give a timelike isometry, yielding the vacuum for
rotating Rindler space.

A. Rotating Rindler space

Consider the isometry generated by M01 � �M23. This
generator belongs to the loxodromic conjugacy class of
rota-boosts. Technically, because we are dealing with the
AdS3 isometry group SOð2; 2Þ, it is a combination not of a
rotation and a boost but of two boosts in the embedding
space:

@

@t
¼ ðX1@0 þ X0@1Þ � �ðX3@2 þ X2@3Þ: (8)

From the flat metric of the embedding space this has norm

� ðX2
1 � X2

0Þð1� �2Þ þ �2; (9)

using the embedding equation. Restricted to the right
Rindler wedge X1, X

2
1 � X2

0 > 0. we see that our candidate
loxodromic generator is future-directed and timelike for
X2
1 � X2

0 and has orbits that stay within the wedge. By

construction, it is group-inequivalent to the usual (non-
rotating) Rindler Hamiltonian X1@0 þ X0@1, the invariant
(4) for its conjugacy class being

�0123!
01!23 ¼ 2�: (10)

The wedge admits a Cauchy surface on which one can
define quantum states.

In 2þ 1 dimensions, rotating Rindler-AdS space can be
coordinatized by

X0 ¼ � sinh

�
t

L
� �

�

L

�

X1 ¼ � cosh

�
t

L
� �

�

L

�

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ �2

q
sinh

�
�

L
� �

t

L

�

X3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ �2

q
cosh

�
�

L
� �

t

L

�
;

(11)

where � is the rotation parameter. Here�1< t, �<þ1
and � > 0. The rotating Rindler metric is given by

ds2 ¼ �ðð�=LÞ2ð1� �2Þ � �2Þdt2 � 2�dtd�

þ d�2

1þ ð�=LÞ2 þ ð1þ ð�=LÞ2ð1� �2ÞÞd�2: (12)

The event horizon is at � ¼ 0; the determinant of the

metric vanishes there. Notice also that at � ¼ �Lffiffiffiffiffiffiffiffiffi
1��2

p ,

the t-t component of the metric vanishes. This indicates
the presence of an ergosphere. Presumably this means
that there are super-radiance effects in this space.
For � ¼ 0, we recover the metric for nonrotating

Rindler-AdS space:

ds2¼�ð�=LÞ2dt2þ d�2

1þð�=LÞ2þð1þð�=LÞ2Þd�2: (13)

Note that in the limit that the AdS radius, L, goes to
infinity, so that �=L � 1, the nonrotating metric gives
ordinary (flat) Rindler space, where now 1

L is re-interpreted

as the acceleration parameter of Rindler space instead of as
the AdS scale. As a check we note that this limit is singular
for the � � 0 metric, confirming that there is no rotating
Rindler metric in flat space.
Both rotating and nonrotating Rindler-AdS space are of

course a portion of anti-de Sitter space just as ordinary
Rindler space is a piece of Minkowski space. In fact, even
globally the portion of the spacetime covered by the coor-
dinates above is identical to that covered by nonrotating
Rindler coordinates. The diffeomorphism

t ! t� �� � ! �� �t (14)

maps one spacetime to the other. In that sense, rotating
Rindler space is classically the same spacetime as non-
rotating Rindler space. However, the Hamiltonians for
nonrotating and rotating Rindler space are isometrically
inequivalent and, as we shall see shortly, the corresponding
vacuum states of scalar field theory are particle-
inequivalent.
That rotating and nonrotating Rindler space describe the

same part of spacetime may seem puzzling at first because
one of them has an ergosphere and the other does not. This
is because rotating Rindler-AdS space possesses an
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observer-dependent ergosphere, in addition to an observer-
dependent event horizon. The existence of an observer-
dependent ergosphere can be understood as follows. Recall
the origin of the ergosphere for the Kerr black hole. In the
two-dimensional subspace spanned by its time-translation
and azimuthal Killing symmetries, the Kerr metric at large
values of r along the equator (� ¼ 	=2) approaches
�dt2 þ r2d
2, because the Kerr spacetime is asymptoti-
cally flat. Therefore, for the Kerr black hole there is a
unique choice of Killing vector that is timelike at infinity,
namely ðd=dtÞa; any other linear combination of ðd=dtÞa
and ðd=d
Þa is spacelike at infinity. The Killing vector
corresponding to time translations is therefore fixed, and
hence so is the place where it becomes null i.e. the ergo-
sphere. The geometry ensures that the location of the
ergosphere is unambiguous. Contrast this with the situation
in AdS. The metric for the two-space spanned by the time-
translation and azimuthal Killing vectors in Rindler-AdS
approaches ð�=LÞ2ð�dt2 þ d�2Þ. The boundary metric is
simply a rescaled two-dimensional Minkowski metric. Any
observer moving along a timelike linear combination of
ðd=dtÞa and ðd=d�Þa can choose his or her worldline as the
time-translation direction. Each such linear combination
of Killing vectors becomes null in a different place.
Consequently, the existence and location of the ergosphere
are both observer-dependent.

For each of the different possible time choices labeled
by �, there is a corresponding stationary vacuum state
annihilated by the Hamiltonian that generates that time-
evolution. We shall call this one-parameter family of vac-
uum states ‘‘�-vacua.’’ Like the �-vacua of de Sitter space
[4], these vacuum states are particle-inequivalent. The
particle-inequivalence of the �-vacua to the usual
Rindler vacuum (and to each other) can be verified explic-
itly by a Bogolubov transformation. Consider a positive-
frequency (!> 0) mode of the Klein-Gordon equation:

uk;!ðt; �; �Þ ¼ e�i!tþik�f!;kð�Þ: (15)

Demanding normalizability with respect to the Klein-
Gordon inner product, one can show [5] that the value of
! does not constrain k. Now, under the transformation
t ! t� �� and � ! �� �t, the mode transforms as

uk;! ! e�ið!þ�kÞteiðkþ�!Þ�f!;kð�Þ: (16)

We see that for k <� !
� , the mode has negative frequency.

Hence there is a mixing between the negative and positive-
frequency modes under transformation from rotating to a
nonrotating Rindler-AdS space. This fact can be formally
demonstrated in terms of the Bogolubov coefficients.
Consider a positive-frequency mode with respect to one
of the � rota-boosts:

vl;� ¼ e�i�t0þil�0
gl;�ð�Þ: (17)

Since t ¼ t0 � ��0 and � ¼ �0 � �t0, (17) can be reex-
pressed in terms of the modes of the nonrotating vacuum:

uk0;!0 ¼ e�i!0tþik0�fk0;!0 ð�Þ; (18)

where !0 ¼ ���l
1��2 and k0 ¼ l���

1��2 . If !
0 < 0, then the beta

Bogolubov coefficient is nonzero between (15) and (17)
and can be easily calculated as [1]

�ðk;!;l;�Þ¼ i�ð��þ�lÞ�
�
!þ���l

1��2

�
�

�
kþ l���

1��2

�
;

(19)

while the Bogolubov alpha coefficient vanishes.
The expression for the beta coefficient implies that the

nonrotating Rindler observer perceives any �-vacuum as
filled with an infinite sea of particles for each positive
frequency !. Of course the global AdS vacuum appears
thermal with a different temperature for each �-vacuum
observer. Indeed, already from the metric it is clear that the
temperature depends on the rotation parameter, �:

T ¼ 1� �2

2	L
: (20)

Interestingly, the limit � ! 1 appears to correspond to an
extremal vacuum state in Rindler-AdS space, with vanish-
ing temperature.

1. Rotating Rindler space and the BTZ black hole

The existence of an ergosphere in AdS space recalls the
rotating BTZ black hole. Indeed, Rindler-AdS space is
related to the BTZ black hole [6] via

�� �þ 2	a: (21)

A change of coordinates

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

1� �2

s
(22)

puts the metric in the familiar BTZ form:

ds2¼�ðr2�1Þðr2��2Þ
r2

dt2þ r2

ðr2�1Þðr2��2Þdr
2

þr2
�
d���

r2
dt

�
2
: (23)

Rindler-AdS (13) is the universal cover for the BTZ black
hole [7–11]. The black hole solution is obtained by making
an identification in a direction perpendicular to @t at the
boundary. However, there is an important difference be-
tween Rindler-AdS space and the BTZ black hole. The
identification breaks the symmetry group down from
SLð2; RÞ � SLð2; RÞ to SLð2; RÞ �Uð1Þ. Consequently,
the freedom of picking out the time direction is lost; neither
the event horizon nor the ergosphere of the BTZ black hole
is observer-dependent. Put another way, the identification
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�� �þ 2	a gives the two-dimensional boundary
Minkowski space a cylinder topology. But special relativ-
ity on a cylinder has a preferred frame, singled out by the
identification [12,13]. Hence there is a preferred direction
of time.

B. Rotating global vacua

Another type of loxodromic generator in AdS is

@

@t
¼ ðX0@3 � X3@0Þ � �ðX1@2 � X2@1Þ: (24)

This is a combination of a temporal and a spatial rotation.
For comparison, the generator of global time, �, is just the
temporal rotation (X0@3 � X3@0).

The embedding coordinates can be parameterized by

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

1� �2

s
cosðt� ��Þ

X3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

1� �2

s
sinðt� ��Þ

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

1� �2

s
cosð�� �tÞ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

1� �2

s
sinð�� �tÞ:

(25)

Then, with the AdS scale set to unity, the line element reads

ds2 ¼ �ðr2 þ 1þ �2Þdt2 þ r2dr2

ð1þ r2Þð�2 þ r2Þ
þ r2d�2 þ 2�dtd�: (26)

Here we have 0 � �< 1, 0 � r <1, and �� �þ 2	.
Clearly when � ¼ 0 this reduces to the AdS metric in
global coordinates, as it should.

For� � 0, there is however a subtlety with this solution.
The generator of rotations @

@� in embedding coordinates is

@

@�
¼ ��ðX0@3 � X3@0Þ þ ðX1@2 � X2@1Þ: (27)

This has norm ��2 þ ðX2
1 þ X2

2Þð1� �2Þ, which, how-
ever, becomes timelike for

X2
1 þ X2

2 ¼
r2 þ �2

1� �2
� �2

1� �2
: (28)

So that region cannot be covered by this coordinate system.
To see where that region is, we note that the relation
between the radius in global coordinates, , and r is

2 ¼ r2 þ �2

1� �2
: (29)

For � � 0, r ¼ 0 no longer corresponds to the center
 ¼ 0 of the AdS cylinder but is instead a surface of

nonzero . That is, we have effectively removed a concen-
tric cylinder from within the AdS cylinder for the purposes
of this coordinate system.
At AdS infinity, however, nothing has changed and sowe

can calculate the conserved charges of this space. The mass
and angular momentum of rotating global AdS space can
be evaluated using the prescription of [14,15]. The result is

M ¼ � 1

8	G

Z 2	

0

r4

2

�
1þ �2

r4

�
d� ¼ � 1þ �2

8G
(30)

jJj ¼ 1

8	G

Z 2	

0
�d� ¼ �

4G
: (31)

Of course we cannot actually remove the inner region
because then the spacetime would be geodesically incom-
plete. However, we can still do quantum field theory in the
region outside the inner cylinder using (24) for time-
evolution. (The presence of the inner cylinder means that
the spacetime does not admit a Cauchy surface; however,
global AdS space already has this problem so, presumably,
this is not much worse). A similar problem afflicts Kerr-de
Sitter space in three dimensions [14]. We can nevertheless
circumvent the problem by defining the angular generator
to be @

@� ¼ ðX1@2 � X2@1Þ. Unlike (12), the Killing vectors

@� and @t would then not be orthogonal to each other at the
conformal boundary. The line element can be written as

�ð1þr2ð1��2ÞÞdt2þ dr2

1þr2
þr2d�2�2�r2dtd�: (32)

To show that the �-vacua corresponding to the time
choice (24) are distinct from the global AdS vacuum, we
need to again show that positive and negative frequency
modes mix. Normalizability conditions for fields in global
AdS space were investigated in [16]. Using the Ansatz
�ðr; t; �Þ ¼ e�i!teim�fðrÞ (where m 2 Z) in global coor-
dinates, Klein-Gordon normalizability implies that

! ¼ 	j2hþ þmþ 2nj; n ¼ 0; 1; 2; . . . ; (33)

where hþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
with M the mass of the scalar

field. Under the transformation � ! �� �t, which takes
the global coordinates metric into (32), the mode solutions
become

� ! e�ið!þ�mÞteim�fðrÞ: (34)

Given any value of n, we see from (33) that we can always
find sufficiently large values of negative m such that !<
j�mj. A positive-frequency mode can therefore become a
negative-frequency mode, and hence the rotating global
AdS �-vacua are different from the global AdS vacuum.
This can also be confirmed by calculating the Bogolubov
coefficients directly as we did for rotating Rindler space. In
higher dimensions, the quantization condition becomes [16]

! ¼ 	j2hþ þ lþ 2nj; l; n ¼ 0; 1; 2; . . . : (35)
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By the semi-positiveness of l, we always have !> l and
hence the positive-frequency and negative-frequency modes
cannot mix under a transformation to rotating coordinates.
�-vacua therefore do not exist in higher-dimensional global
AdS space.

The transformation between rotating and nonrotating
coordinates can also be studied from the boundary theory.
The global isometries of AdS3 become the Virasoro gen-
erators at the boundary:

l0 ¼ i@w �l0 ¼ i@ �w lþ1 ¼ ieþiw@w

�lþ1 ¼ ieþi �w@ �w l�1 ¼ ie�iw@w �l�1 ¼ ie�i �w@ �w (36)

where w ¼ tþ � and �w ¼ t� �. The transformation
to rotating global AdS implies w ! ð1� �Þw and
�w ! ð1þ �Þ �w. With this, the generators become

l00 ¼
i

1� �
@w �l00 ¼

i

1þ �
@ �w

l0þ1 ¼
i

1� �
eþið1��Þw@w �l0þ1 ¼

i

1þ �
eþið1þ�Þ �w@ �w

l0�1 ¼
i

1� �
e�ið1��Þw@w �l0�1 ¼

i

1þ �
e�ið1þ�Þ �w@ �w

(37)

These also satisfy the Virasoro algebra. However, the trans-
formation from nonrotating to rotating global AdS is not a
conformal transformation and therefore does not preserve
the conformal vacuum at the boundary.

V. DISCUSSION

By considering the conjugacy classes of an AdS isome-
try group, which is a higher-dimensional Lorentz group,

we have been led to find a class of inequivalent vacua in
three-dimensional anti-de Sitter space. The same line of
reasoning can also be applied to de Sitter space, but be-
cause de Sitter space does not have a spatial boundary, the
conditions for obtaining stationary vacua are somewhat
unclear. It would be worthwhile to pursue this further.
We have also shown that the �-vacua are obtained from
the nonrotating Rindler vacuum via a nontrivial Bogolubov
transformations of the mode functions. A related problem
would be to calculate the response of an Unruh detector
moving along orbits of @t in rotating Rindler-AdS space
[17,18]. Moreover, since the rotating Rindler-AdS vacuum
becomes extremal in the limit � ! 1, it might be that such
a vacuum is supersymmetric. Another potentially interest-
ing direction for future would might be to consider rotating
vacuum states in the context of AdS/CFT applied to
Rindler-AdS space [19–21]. Finally, the existence of an
observer-dependent ergosphere raises an amusing ques-
tion. Spacetimes with ergospheres generally allow for
super-radiance effects. For Kerr black holes, the effect of
super-radiant scattering is to ‘‘unwind’’ the black hole, by
depleting its angular momentum. Rotating Rindler space
however has infinite angular momentum. Is it possible then
to have eternal super-radiance? That would not necessarily
be problematic; indeed, Rindler space can also Hawking-
radiate eternally. It would be interesting to develop these
ideas.
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