
What can the observation of nonzero curvature tell us?

Alan H. Guth1 and Yasunori Nomura2

1Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA

(Received 21 April 2012; published 30 July 2012)

The eternally inflating multiverse provides a consistent framework to understand coincidences and fine-

tuning in the Universe. As such, it provides the possibility of finding another coincidence: if the amount of

slow-roll inflation in our past was only slightly more than the anthropic threshold, then spatial curvature

might be measurable. We study this issue in detail, particularly focusing on the question: ‘‘If future

observations reveal nonzero curvature, what can we conclude?’’ We find that whether an observable signal

arises or not depends crucially on three issues: the cosmic history just before the observable inflation, the

measure adopted to define probabilities in the eternally inflating spacetime, and the sign and strength of

the correlation between the tunneling and slow-roll parts of the potential. We find that if future

measurements find positive curvature at the level �k & �10�4, then the framework of the eternally

inflating multiverse, as currently understood, is excluded with high significance. If the measurements

instead reveal negative curvature at the level �k * 10�4, then we can conclude that (1) diffusive (new or

chaotic type) eternal inflation did not occur in our immediate past; (2) our pocket universe was born by a

bubble nucleation; (3) the probability measure does not reward volume increase; and (4) the origin of the

observed slow-roll inflation is an accidental feature of the potential, presumably selected by anthropic

conditions, and not due to a theoretical mechanism ensuring the flatness of the potential. Discovery of

�k * 10�4 would also give us nontrivial information about the correlation between the tunneling and

slow-roll parts of the potential; for example, a strong correlation favoring large N would be ruled out in

certain measures. We also address the question of whether the current constraint on �k is consistent with

multiverse expectations; we find the answer to be yes, except that current observations, for many choices

of measure, rule out the possibility of strong correlations in the potential which favor small values of N. In

the course of this work we were led to consider vacuum decay branching ratios, and found that it is more

likely than one might guess that the decays are dominated by a single channel. Planned future

measurements of spatial curvature provide a valuable opportunity to explore the structure of the multi-

verse as well as the cosmic history just before the observable inflation.
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I. INTRODUCTION

Evidence for cosmic inflation in the early history of our
Universe is mounting. In addition to the original motiva-
tion of explaining flatness and homogeneity of the observ-
able Universe [1], we now have precision data from the
cosmic microwave background (CMB) [2] that is in beau-
tiful agreement with the predictions of the simplest infla-
tionary models [3]. The details of this cosmic inflation,
however, remain very uncertain. We do not know its energy
scale, its duration, or the circumstances that led to its onset.

In the last decade, we have been learning that many of
the structures of our own Universe may be understood as
a result of environmental, or anthropic, selection in the
multiverse [4]. The most successful outcome of this picture
was the prediction of a nonzero cosmological constant,
made already in the 1980’s [5] and confirmed in 1998 by
the discovery of an accelerating expansion of the Universe
[6]. The picture of the multiverse is motivated theoretically
by eternal inflation [7–9] and the landscape [10] of string
theory, which together provide a consistent framework for

explaining the nonzero cosmological constant and other
examples of fine-tuning in the Universe. The onset of
cosmic inflation itself can perhaps be understood in the
same way: since excessive curvature suppresses structure
formation [11], it is possible that we are living in the
aftermath of an era of inflation because otherwise intelli-
gent observers would not have evolved.
An interesting consequence of this picture is that the

observable era of inflation—i.e., the last N � ð40–60Þ
e-folds of inflation, which are probed by the density per-

turbations in the CMB and in the matter distribution—may

have been ‘‘just so.’’ That is, the number of e-folds of the
slow-roll inflation may have been very close to the minimal

number needed to ensure the flatness required for the

evolution of life. Such a coincidence would seem unlikely

in a more conventional picture, in which the flatness of the

inflaton potential might be ensured, for example, by some

approximate symmetry. But in the context of the multi-

verse, such a coincidence is very plausible. This leads to a

number of potentially observable signatures, especially in
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structures at large scales, including nonzero curvature of

the Universe [12,13]. Studies along these lines have been

performed, e.g., in the papers cited as Ref. [14].
Whether an observable signal actually arises or not,

however, depends on at least three issues: (1) What was
the cosmic history just before the observable era of infla-
tion? (2) What probability ‘‘measure’’ is adopted to define
probabilities in the eternally inflating spacetime, where
anything that can happen will happen an infinite number
of times? (3) In tunneling transitions from one vacuum to
another, how strong are the correlations between the tun-
neling rate and the properties of any slow-roll inflation that
might follow the tunneling? In this paper, we explore these
issues, focusing on the question: ‘‘If future observations
reveal nonzero curvature, what can we conclude?’’ We take
a bottom-up approach—we consider a variety of possibil-
ities for the preinflationary history and the multiverse
measure, which we think are reasonably exhaustive, and
we consider both strong and weak tunneling rate correla-
tions. For the preinflationary history, we consider four
different classes of models, characterized by the behavior
of the inflaton field prior to the observable era of inflation.
For the multiverse measure, we consider various geometric
cutoff measures [15] as well as the recently proposed
quantum measure [16], in which the probability is given
by the quantum-mechanical Born rule applied to the multi-
verse state. We will see that the observation of curvature
beyond the level of �10�4 can either exclude the multi-
verse framework itself (if it is positive) or exclude certain
preinflationary histories and classes of probability mea-
sures (if it is negative), as well as constrain the nature and
degree of correlation between the tunneling rate for a
transition and the ensuing slow-roll inflation.

In the next section, we carefully define the framework
of our analysis. We begin by classifying possible pre-
inflationary histories, and then we discuss probability
measures. Section III provides the actual analysis. The
meaning of the probability distribution for curvature in
the context of bubble universes is also elucidated there.
We analyze all the possible scenarios for the preinflation-
ary histories as well as the probability measures. Our result
for the probability distribution for curvature (in the nega-
tive case) will be presented in Sec. IV. We finally conclude
in Sec. V, summarizing what we can learn from a future
observation of nonzero curvature of the Universe. One
appendix discusses the effect of volume increase in the
quantum measure, and a second appendix discusses the
possibility that vacuum decays might be dominated by a
single channel.

While completing this paper we received Ref. [17], by
Kleban and Schillo, which also discusses the issue of
spatial curvature and the cosmic history before the observ-
able inflation. Our conclusions about it are consistent with
theirs. In fact our treatment of scenario (iv) in Sec. II A is
based on private communication with Kleban [18].

II. FRAMEWORK

The observable era of early-Universe inflation—i.e., the
last N � ð40–60Þ e-folds of inflation—was the period
during which currently observable scales went outside
the Hubble horizon.1 Cosmic history before this era, how-
ever, can leave its imprint on the present-day curvature
contribution, �k � 1��0. The expected amount of cur-
vature depends strongly on the cosmic history just before
the observable inflation, the measure used to define prob-
abilities in the eternally inflating spacetime, and the nature
and degree of correlation between vacuum transition tun-
neling rates and the ensuing slow-roll inflation. In this
section, we consider a variety of assumptions on the first
two issues, establishing a framework for the analyses in
later sections. The issue of the correlation between tunnel-
ing and slow-roll will be discussed in Sec. III B, where it
becomes relevant.

A. History (just) before the observable inflation

Since the observable inflation occurred with energy
densities much smaller than the Planckian density, the
cosmic history just before it must be describable using
(semi)classical gravity. Here we consider four scenarios,
which we think cover most of the realistic possibilities:
(i) Eternal new inflation—By tracing history back in

time, the inflaton field’ reaches a local maximum of
the potential, with an energy density significantly
smaller than the Planck scale, i.e. V0 � M4

Pl �ð8�GNÞ�2. Denoting this point as ’ ¼ 0 (which
may be a saddle point in multidimensional field
space), the ‘‘initial conditions’’ are given by ’ �
_’ � 0. The question of how these conditions arose
need not concern us here, as the results for �k are
insensitive to how these conditions were prepared.
The dynamics beginning with these initial conditions
is described by eternal inflation at ’ � 0 [8], fol-
lowed by slow-roll inflation occurring near the
potential minimum that corresponds to our vacuum.

(ii) Eternal chaotic inflation—By tracing history back
in time, the inflaton field climbs up a hill in the
potential energy diagram to the point where the
quantum fluctuation in the field �’qu � H=2�

(averaged over a Hubble volume during a Hubble
time interval) becomes so important that the global
structure of spacetime is determined by �’qu, rather

than by classical evolution of the field. Here, H ¼
ðV=3M2

PlÞ1=2 is the Hubble parameter. The transition

point for quantum-fluctuation dominance is at a
super-Planckian field value’� � MPl; for example,

for V ¼ 1
2m

2’2 it is at ’� � M3=2
Pl =m1=2, and for

1We use the phrase ‘‘Hubble horizon’’ to denote the distance
scale H�1, where H is the Hubble parameter, although the actual
causal horizon is vastly larger.
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V ¼ 1
4!�’

4 it is at ’� � MPl=�
1=6, where m � MPl

(or � � 1) to reproduce the observed magnitude
of density perturbations. The cosmic history before
our big-bang universe is then described by eternal
chaotic inflation [9] followed by slow-roll chaotic
inflation.

(iii) Eternal old inflation—By tracing history back in
time, we hit a quantum tunneling event before
entering into an eternally inflating epoch. Our
pocket universe then arose directly from a bubble
nucleation process [19], presumably occurring in
an eternally inflating region in which the inflaton
field was in some local minimum of the potential
[7]. The bubble nucleation is followed by a brief
curvature-dominated epoch, followed by noneter-
nal slow-roll inflation [20]. Slow-roll inflation be-
gins when the vacuum energy starts to dominate
over the curvature and kinetic energies in determin-
ing the evolution of the bubble universe.

(iv) A prior episode of inflation—By tracing history
back in time, the dynamics of another scalar field
becomes important. This is the case, for example, in
double inflation [21] or in hybrid inflation [22] if
the waterfall field is fully responsible for the
observable inflation. An interesting feature of this
scenario is that the density fluctuation spectrumshows
a sharp spike at the scale corresponding to the con-
nection of the two inflationary periods [23]. The
resulting perturbation in�k can be either positive or
negative, which is determined only stochastically.

For each of the four cases above, we can estimate the
probability distribution for �k under various assumptions
about the probability measure, the a priori probability dis-
tribution for parameters in the inflaton potential, and (when
relevant) the initial conditions after the tunneling event.

B. Measures in eternal inflation

In an eternally inflating multiverse, anything that can
happen will happen infinitely many times. This implies,
among others, the following two statements. First, to define
the relative likelihood of different types of events, we need
to regularize the infinities. Second, any prediction in the
multiverse will necessarily be statistical. Here we consider
the first of these statements, leaving the second to the next
subsection.

Regularizing infinities in the multiverse has been an
extensive area of research [15]. There have been many
proposals for ‘‘measures’’ that provide required regulari-
zations, and thus prescriptions for making predictions.
Traditionally, these measures have been defined using
‘‘global’’ or ‘‘local’’ geometric cutoffs (although this divi-
sion is not always meaningful, since the same measure can
often be formulated using either a global or local descrip-
tion [24,25]). Global-cutoff measures propose that relative

probabilities can be determined by the ratio of the number
of events that occur prior to a specified ‘‘equal-time’’
hypersurface, usually in the limit as the hypersurface is
chosen at an arbitrarily late time. Depending on the choice
of hypersurfaces, different measures can be obtained.
Local-cutoff measures, on the other hand, count events
inside a finite neighborhood of a single timelike geodesic,
and probabilities are computed after certain averaging
procedures. Different measures correspond to different
choices for the neighborhood.
More recently, a framework for the eternally inflating

multiverse has been proposed which does not rely on a
geometric cutoff [16]. In this framework, the entire multi-
verse is a single quantum state as described from a single
reference frame. It is in general a superposition of many
quantum states corresponding to well-defined semiclassi-
cal geometries, each of which is defined only in and on the
apparent horizon. (This restriction on spacetime, dictated
by the principles of quantum mechanics, provides the
required regularization.) The well-defined probabilities
are then given by the simple Born rule extended to the
whole spacetime. This framework allows us to use the
same probability formula for questions regarding global
properties of the Universe and outcomes of particular
experiments, thus providing complete unification of the
eternally inflating multiverse and the many-worlds inter-
pretation of quantum mechanics.
Is there a general classification scheme that accommo-

dates all these measures and is relevant for our present
purpose of discussing the curvature contribution to the
Universe? A useful classification is obtained by consider-
ing how the measure does or does not reward the exponen-
tial increase in volume that characterizes inflationary
models. Here we discuss the following three classes, where
examples of each appear in the literature:
(I) Measures rewarding any volume increase—These

measures reward any volume increase in the evolu-
tion of the multiverse. The simplest example is
the so-called proper-time cutoff measure [26],
which defines probabilities in the global picture
using hypersurfaces of equal proper time, obtained
through the congruence of geodesics orthogonal to
some arbitrary initial hypersurface. This class of
measures, however, suffers from various difficulties.
The most serious one is probably the youngness
paradox [27]: because of the rapid expansion of
spatial volume in the eternally inflating region, the
population of pocket universes is extremely youth-
dominated. The probability of observing a universe
that is old like ours (with TCMB ’ 2:7 K) becomes
vanishingly small. Since this essentially excludes
observationally the class of measures described
here, we will not consider it further.

(II) Measures rewarding volume increase only in the
slow-roll regime—In these measures the volume
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increase during the eternally inflating regime is not
rewarded, so the youngness paradox does not arise.
To model the behavior of these measures, suppose
that the probability density for the onset of an
episode of inflation of N e-folds is given by some
function fðNÞ. That is, fðNÞdN is the probability
that the number of inflationary e-folds that will
follow a randomly selected onset of inflation will
lie betweenN andN þ dN. fðNÞwould in principle
be determined by the probability distributions for
inflaton potential parameters and for the inflaton
field in the multiverse. While we do not know
enough to compute fðNÞ, we will argue later that
we can estimate its behavior under a variety of
assumptions. Once inflation begins, the volume of
the inflated region is multiplied by e3N , so the
probability density PðNÞ of finding oneself in a
region that has undergone N e-folds of slow-roll
inflation can be written as

PðNÞ � fðNÞe3N; (1)

where e3N is the dominant factor. While the class of
measures considered here has issues that need to be
addressed [28,29], it is not clear if these measures
are excluded [30,31]. We therefore keep these mea-
sures in our consideration. An important example of
this class of measures is given by the so-called
pocket-based measure [32].

(III) Measures not rewarding volume increase—These
measures do not reward volume increase due to
any form of inflation. Naively, this may sound
rather counterintuitive: how can a larger spatial
volume avoid giving more observers, leading to a
larger weight? This picture, however, can arise
naturally in several different ways. For example,
we could count events along a geodesic randomly
chosen on an initial spacelike hypersurface, we
could measure spacetime according to its comov-
ing volume, or we could use a global time cutoff
based on the total amount of expansion (i.e., scale-
factor time). The probability distribution for find-
ing oneself in a region that has undergone N
e-folds of slow-roll inflation is then simply

PðNÞ � fðNÞ: (2)

The fact that volume increase is not rewarded in
the final probability distribution makes it rather
easy to avoid the problems encountered by
measures of type (I) and (II). Two examples of
geometric cutoff measures in this class are the
causal patch measure [25,33] and the scale-factor
cutoff measure [34]. The recently proposed
quantum-mechanical measure [16] also falls in
this class, as discussed in Appendix A.

Equations (1) and (2) can be summarized by writing

PðNÞ � fðNÞMmðNÞ; (3)

where the dependence on the measure m is described by
the factor MmðNÞ. In this paper we are assuming that the
measure is adequately described by specifying that it
belongs to class (II) or class (III) above, so

MmðNÞ �
8<
: e3N if m 2 ðIIÞ
1 if m 2 ðIIIÞ: (4)

It is, in principle, possible to consider hybrids of these
classes. For example, in the stationary measure of Ref. [35]
features of both (I) and (II) coexist. We will also comment
on these hybrid possibilities when we discuss the proba-
bility distribution of �k later.

C. Probability distributions for current
and future measurements

In order to discuss implications of a future measurement
of curvature by our civilization, we can study the multi-
verse probability distribution for �k as a conditional
probability density, given the set of observed values of
the physical parameters fQ1; Q2; . . .g that have already
been measured. These parameters fQig include cosmologi-
cal parameters such as the primordial density fluctuation
amplitude ��=�, the scalar spectral index ns, and the
vacuum energy density ��, as well as particle physics
parameters such as the electron mass me, the proton mass
mp, the fine structure constant �, etc. The conditional

probability density fcondð�kjfQi ¼ Qi;obsgÞ is proportional
to the full probability density function fð�k; fQigÞ eval-
uated at the measured values of the parameters:

fcondð�kjfQi ¼ Qi;obsgÞ / fð�k; fQi;obsgÞ; (5)

where the constant of proportionality depends on fQi;obsg,
but not on �k. Here fcond and f refer to probability
densities for the onset of inflation. This conditional proba-
bility approach does not address the question of whether
these values Qi;obs are in fact typical in the multiverse, i.e.

whether the multiverse hypothesis is fully consistent with
the current observations. To study this question, we would
need to estimate the relevant anthropic constraints on these
parameters and see if the observed values are indeed con-
sistent with possible underlying multiverse distributions.
The two approaches are complementary, addressing differ-
ent questions. For �k, we will take both approaches—we
will study the implications of a multiverse distribution on
future measurements assuming our current knowledge, and
we will also ask if the predicted distribution is consistent
with our current knowledge.
The present-day curvature contribution �k is related to

the number of e-folds of deterministic (nondiffusive)
slow-roll inflation N. We can thus study the probability
distribution for �k by analyzing that for N. The relation
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between the two depends on the details of how the deter-
ministic slow-roll era begins, but to a good approximation
we can write

�k / 1

e2N
; (6)

provided that�k is in the relevant parameter region, where
�k is smaller than 1 but larger than the contribution
induced by density fluctuations, �k * ��=� � 10�5.
The probability of observing N in the interval between N
and N þ dN in future measurements, given our current
knowledge, can then be written as

PobsðNÞdN / fðN; fQi;obsgÞMmðNÞCðNÞnðNÞdN: (7)

Here fðN; fQigÞ is the multiversal joint probability density
for N and the set of Qi, analogous to fð�k; fQigÞ.
[fðN; fQigÞ and fð�k; fQigÞ are of course different func-
tions with different arguments, but we use the same symbol
f because they have the same verbal description, as the
joint probability density for a randomly chosen onset of
inflation in the multiverse to be characterized by the argu-
ments of f.] fðN; fQigÞ is in principle determined by the
statistical properties of the inflaton field and its potential in
the multiverse. CðNÞ encodes our current knowledge about
N, and nðNÞ is the anthropic weighting factor. If any
quantity Qi is subject to a non-negligible observational
error, then we need to integrate that parameter over the
observationally allowed range.

For CðNÞ, we know from cosmological observations
that N must be larger than a certain value Nobs;min, corre-

sponding to the maximum curvature allowed observatio-
nally, �k;max ’ 0:01 [2]. Thus, we can take CðNÞ �
�ðN � Nobs;minÞ. The value ofNobs;min depends on the history

of our pocket universe, especially on the reheating tempera-
tureTR, but is generically around 40–60.Any extra e-folds of
inflation suppress�k further as described by Eq. (6), so

�k � �k;max

e2ðN�Nobs;minÞ þOð10�5Þ: (8)

The anthropic factor nðNÞ can be chosen to be the expected
number of observers per unit volume, summed over all time
within the life of the pocket universe. For fixed values of the
parameters Qi, we expect that nðNÞ approaches some con-
stant n1 at large N, since the evolution of life will not be
affected by very small spatial curvature. As smaller values of
N are considered, at some point j�kj will suddenly become
large, growing by a factor of about e2 � 7:4 each time N
decreases by 1. The probability for observers to evolve
presumably decreases quickly as j�kj becomes large, so
we will also approximate this function by a step function:
nðNÞ � n1�ðN � NanthropicÞ. Since obviously Nobs;min >

Nanthropic, we find

PobsðNÞ / fðN; fQi;obsgÞMmðNÞ�ðN � Nobs;minÞ: (9)

To discuss the consistency of our current measurements
of�k with the predictions of the multiverse hypothesis, we

need to consider the predicted probability distribution
P
obs;�k

ðNÞ, defined as the conditional probability density

given all of our current knowledge except for our measure-
ments of�k. When expressed in terms of N instead of�k,
this probability distribution is obtained from Eq. (7) by
omitting the factor CðNÞ. Given our approximation for
nðNÞ, we find
P
obs;�k

ðNÞ / fðN; fQi;obsgÞMmðNÞ�ðN � NanthropicÞ: (10)

Using this probability distribution, we can check whether
the probability of obtaining N >Nobs;min is indeed reason-

able or not.

III. STATISTICAL DISTRIBUTIONS FOR THE
NUMBER OF e-FOLDS

To use Eq. (9) to estimate the probability distribution for
future measurements of N, we need to know fðN; fQi;obsgÞ,
the underlying multiversal joint probability density for the
onset of N e-folds of inflation with the measured values
Qi;obs of physical parameters. This quantity depends

crucially on the history of our pocket universe just before
the observable inflation. In this section we discuss
fðN; fQi;obsgÞ for each of the four scenarios, (i)–(iv),

described in Sec. II A.

A. fðN;f Qi; obsgÞ for scenarios (i) or (ii):
New or chaotic eternal inflation

Suppose that the past history of our pocket universe was
either scenario (i) or (ii); i.e., suppose that the observable
era of deterministic slow-roll inflation was smoothly con-
nected to a prior era of new or chaotic eternal inflation. In
this case we find that fðN; fQi;obsgÞ is strongly peaked at

very large N, so that the residual curvature contribution in
the present universe is completely negligible.
The qualitative reason for this result is very simple. At

the transition point between eternal and noneternal infla-
tion, ’ � ’�, the amplitude for the scalar perturbations
exiting the Hubble horizon is of order unity:Qðkð’�ÞÞ � 1.
On the other hand, when the current horizon scale exits the
Hubble horizon at ’ � ’0, the perturbation amplitude is
very small: Qðkð’0ÞÞ � 10�5. Since the perturbation am-
plitude changes rather slowly with k, this large change inQ
implies that there must have been a large number �N of
e-folds of slow-roll inflation between the end of eternal
inflation and the time when the current horizon scale exited
the Hubble horizon. We will first show this in two simple
examples, and then present a general argument.
We first consider an example of scenario (i), using the

following inflaton potential:

V ¼ V0 � 1

2
�2’2 þ �Vð’Þ ðV0; �

2 > 0Þ; (11)

where �2 & H2
I � V0=3M

2
Pl to have a flat potential at

small ’. We also assume, for simplicity, that before the
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current horizon scale exits the Hubble horizon we can take
V � V0 and V 0 � ��2’. �Vð’Þ is assumed to be negli-
gible during this period, although later it controls the
ending of inflation.

With the initial conditions ’ � _’ � 0, the potential of
Eq. (11) leads to eternal inflation for 0< j’j<’�, where
’� is determined by the condition that �’qu is comparable

to the classical motion of ’ during a Hubble time, or

�’qu � H

2�
� j _’classicaljH�1 � jV0j

3H2
: (12)

For the potential of Eq. (11), this gives

’� � 3

2�

H3
I

�2
: (13)

For j’j>’�, the evolution of ’ is described by the
classical equation of motion, which in this approximation

gives ’ðtÞ / expf�2

3HI
tg. The scalar perturbation amplitude

for single-field slow-roll inflation is given by [36]

QðkÞ � 2

5
�RðkÞ � 1ffiffiffiffiffiffi

75
p

�M3
Pl

V3=2

jV 0j ; (14)

where Vð’Þ is evaluated at the value of ’ when the scale k
exits the Hubble horizon. For the present case, one finds
QðkÞ � ð3=5�ÞðH3

I =�
2’Þ. Observationally, the perturba-

tion amplitude at the current horizon scaleQ0�Qðk¼H0Þ’
2�10�5 [2], so

’0 � 3

5�

H3
I

�2Q0

’ 9:5� 103
H3

I

�2
: (15)

Note that our approximation V � V0 requires that
1
2�

2’2
0 � V0, which leads to the parameter restriction

�2 � H4
I =ðQ2

0M
2
PlÞ. This is consistent with the upper bound

on �2 provided that HI � Q0MPl � 5� 1013 GeV. The
scalar spectral index ns (defined by Q2 / kns�1) is given
by [37]

1� ns ¼ 6	� 2
; (16)

where the slow-roll parameters 	 and 
 are defined by

	 � M2
Pl

2

�
V 0

V

�
2
; (17)


 � M2
Pl

V00

V
: (18)

For the current system, one finds 1� ns ¼ 2�2=3H2
I . Since

observation gives ð1� nsÞobs ’ 0:04	 0:01 [2], we have

�2

H2
I

’ 0:06	 0:01: (19)

Thus, in this model the number of e-folds of slow-roll
inflation before the exit of the current horizon scale is
given by

�N � Nð’�Þ � Nð’0Þ ¼ 3H2
I

�2
ln
’0

’�
� 500: (20)

Note that �N is a fixed, and large, number. This implies that,
in the present scenario, we would not have any possibility of
observing a residual curvature contribution in the current
Universe.
A similar analysis can also be performed for

scenario (ii), for which we choose the sample potential

V ¼ 1

2
m2’2 ðm2 > 0Þ: (21)

The field values corresponding to Eqs. (13) and (15) are
now

’� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

ffiffiffi
6

p M3
Pl

m

s
(22)

and

’0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�

ffiffiffi
6

p
Q0

M3
Pl

m

s
: (23)

The parameters are then determined uniquely by the
value of ns, since for this potential 	 ¼ 
 ¼ 2M2

Pl=’
2 and

therefore 1� ns;0 ¼ 8M2
Pl=’

2
0. Using the observed values

of ns;0 and Q0, one has ’0 � 14MPl ’ 3:4� 1019 GeV,
m � 7:7 � 10�6MPl ’ 1:9 � 1013 GeV, and ’� �
2:0� 103MPl ’ 4:9� 1021 GeV. As in the previous case,
the large difference between ’� and ’0 implies that there
must have been a large number �N of e-folds of inflation
between the end of eternal inflation and the Hubble horizon
exit of the current horizon scale. To find �N we note that,
in slow-roll approximation, this potential energy function
gives

d’2

dN
¼ � 1

H

d’2

dt
� 2’

H

V0

3H
� 4M2

Pl; (24)

so

�N � 1

4M2
Pl

ð’2� � ’2
0Þ � 1:0� 106: (25)

For this case, the number of e-folds of inflation is even
much larger than the previous case, so again there is no
possibility that curvature could be observed.
Having seen that �N is very large for two special

cases, we can now give a general argument that �N is
always very large for scenarios (i) and (ii). By comparing
Eqs. (12) and (14), one sees that the condition for the onset
of eternal inflation, ’ � ’�, is equivalent to Qðkð’�ÞÞ �
2=5. IfQðkÞ varies slowly, then there must be many e-folds
of inflation between the point whereQ � 2=5 and the point
where Q ¼ Q0 ’ 2� 10�5. And QðkÞ does vary slowly,
since Q2ðkÞ / kns�1, and observationally ns ’ 0:96, which
is near to the scale-invariant value of ns ¼ 1. To quantita-
tively relate a change in Q to the number of e-folds over
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which it occurs, we recall that k / e�N , where N is the
number of e-folds of inflation that have not yet occurred
when the wave number k exits the Hubble horizon. Thus

Q2 / eð1�nsÞN , so

dN � 2

1� ns
d lnQ: (26)

Thus for ’ � ’0 we have

dN � 50d lnQ: (27)

This implies that even a fractional change in Q of Oð1Þ
around ’ ¼ ’0 leads to a large number of e-folds. Since
lnQ changes by about 10 as ’ varies from ’� to ’0, the
resulting �N is very large.

The argument described above shows that in scenario (i)
or (ii), �N must be very large; i.e. the probability density
fðN; fQi;obsgÞ is peaked at values of N much larger than

Nð’0Þ. Note that this conclusion does not depend on the
measure adopted. Therefore, if our past history is either
scenario (i) or (ii), the probability of observing curvature in
future measurements is completely negligible. To turn the
argument around, if future measurements find a curvature
contribution (beyond the 10�5 level), then we would learn
that diffusive (new or chaotic type) eternal inflation did not
occur in our ‘‘immediate’’ past.

B. fðN; fQi;obsgÞ for scenario (iii): Quantum
tunneling after eternal old inflation

We now start discussion of scenario (iii): eternal old
inflation. While the previous cases could be understood
solely in terms of the dynamics of density perturbations,
for this case we will need to consider the description of
probabilities in the multiverse. Consider a diagram show-
ing the local neighborhood of our own vacuum in the
landscape, as depicted schematically in Fig. 1. The dia-
gram shows a single scalar field, but it symbolically rep-
resents a field moving in a space with many dimensions.

We are interested in the situation where our pocket
universe was born by a quantum tunneling event [19], in
which the scalar field ’ tunneled out from a local mini-
mum, which we call our parent vacuum. The pocket uni-
verse then experienced a period of slow-roll inflation
which ended with the scalar field rolling into the local
minimum of our vacuum, which in this context we call a
child vacuum.
We note that the transition from one vacuum to another

does not always occur through a quantum tunneling event;
if the potential barrier separating the two is very broad,
then the field ’ climbs up the barrier [38], rather than
tunnels through it. If the transition from our parent vacuum
to our vacuum occurred in this way, however, the field
’ started rolling into our vacuum from the top of the
very broad barrier. Therefore, in this case the situation is
reduced to the one already discussed in the previous sub-
section [39].

1. The meaning of the statistical distribution for N

In the setup considered here, what exactly do we mean
by fðN; fQi;obsgÞ, which we recall was described as the

multiversal joint probability density for N and Qi? In
fact, if we focus our attention on a particular region of
the landscape containing only one pair of parent-child
vacua, as in Fig. 1, then the number of e-folds N of
slow-roll inflation is just a fixed number, determined by
the shape of the potential. Since the point where fields
appear after the tunneling is determined uniquely (at least
in the semiclassical limit), there is no ‘‘statistical distribu-
tion’’ for N.2 Nonetheless, we of course do not know the
value of N, so we will describe it in terms of an estimated
probability distribution, which includes uncertainties aris-
ing from at least two sources.
First, it is possible that the landscape includes many

parent-child pairs that could be our pocket universe and
its parent. We would in fact expect that the landscape
contains a large number of vacua in which the low-energy
physical laws, including the values of the parameters, are
consistent with what we know about our own Universe.
Any one of these vacua would be a candidate for our local
vacuum, and we would have no way of knowing in which
one we live. There would be perhaps an even larger set of
vacua which tunnel to one of the local vacuum candidates,
and we would have no way of knowing which of these was
the parent of our pocket universe. Since any one of these
parent-child transitions could have been the transition that
produced our pocket universe, the value of N can acquire a
statistical distribution.
Even if there are many parent-child pairs that could be

ours, however, it will not lead to an actual spread in values

FIG. 1. A local neighborhood of our own vacuum in the
landscape.

2If the potential contains a (quasi)flat direction around this
point, quantum fluctuation can give a distribution for N. We
ignore this effect below since it is not generic.
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of N unless more than one of them occurs with significant
probability. Whether or not that is the case depends on
branching ratios in the landscape, which is a topic about
which little is known. We discuss these branching ratios in
Appendix B. We do not reach a definite conclusion, but we
find that it is not implausible that the decay rates in the
landscape are so diverse that the decay of any given
vacuum, especially a long-lived one, is overwhelmingly
dominated by a single channel.

The fastest decays are most likely the least diverse, so
one plausible scenario is that a significant fraction of the
multiverse evolves through one or more short-lived Planck-
scale vacua, which decay into a large number of ‘‘second
generation’’ vacua with non-negligible branching ratios.
Then, even if the subsequent decays are each dominated
by a single channel, the large number of second generation
vacua could lead to many vacua which are compatible with
ours, all occurring with comparable probabilities. This
situation is illustrated in Fig. 2. It leads to a probability
distribution in N because pocket universes entirely consis-
tent with what we know about ours are produced by many
different parent-to-child transitions, each with its own
value of N.

On the other hand, we can also imagine that estimates of
the spread of decay rates in the landscape, like the ones in
our preliminary discussion in Appendix B, will show that
absolutely every decay in the landscape is almost certainly
dominated by a single channel. In that case, of all the vacua
that are compatible with ours, we would expect one to
completely dominate the probability. Furthermore, the ap-
pearance of this vacuum would be completely dominated
by the decay of a single type of parent vacuum. In this
situation N would have a unique value, so the previous
discussion of a probability distribution does not apply. This
brings us to the second source of uncertainty, which is
ignorance. Even if we conclude that single paths dominate
the evolution of the multiverse, we will still not be capable
of identifying the vacuum and parent that dominate the
probability. We would therefore parametrize our igno-
rance about the most likely path in the form of a probabil-
ity distribution for N. This situation is illustrated in Fig. 3.

Note that this is a different concept from the probability
distribution of the physical realization of different values
ofN in the multiverse—in fact, it is closer to the concept of
probability used in conventional arguments for naturalness
in a single vacuum theory. If we have no precise knowledge
about the vacuum population mechanism, we are limited to
making plausible assumptions about the probability distri-
bution for N.
In either of the cases discussed above, the implications

for future measurements of �k are encoded in the proba-
bility distribution fðN; fQi;obsgÞ, as in Eq. (9). This distri-

bution corresponds to the multiversal joint probability
distribution for the onset ofN e-folds of slow-roll inflation,
and the measured parameters Qi ¼ Qi;obs, introduced in

Sec. II B. We will estimate it in the next two subsections.
Our estimate does not depend much on the origin of this
probability, whether it represents physical realizations in
the multiverse or the parametrization of our ignorance. We
therefore conclude that even if nonzero curvature is some-
day measured, this measurement will not tell us whether
different values of N are actually realized with non-
negligible probabilities in the multiverse.

2. Probability distribution for the inflaton potential and
the starting point of slow-roll inflation

Our goal is to evaluate fðN; fQi;obsgÞ for scenario (iii),

where slow-roll inflation follows a quantum tunneling
event. We have in mind a potential of the form of Fig. 1,
the form of which leads immediately to an important issue.
The tunneling rate for a given transition depends on the
properties of the potential function in the region of the
barrier, while the numberN of e-folds of slow-roll inflation
depends on the properties of the potential in the slow-roll
part of the potential energy curve. We do not know to what
extent these two parts of the potential are correlated, but it
is conceivable that the statistics of the slow-roll part of the
potential could be strongly affected by the fact that some
shapes are more likely to occur with a barrier that gives
faster tunneling. If the correlation is strong, then it is
potentially a large effect, since the tunneling rate depends
exponentially on the parameters.

FIG. 2. A schematic picture for a landscape leading to probability distributions for inflaton potentials and initial values.
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Since we do not know how to calculate the correlations,
we consider two extreme possibilities. If these regions
are only weakly correlated, then the tunneling rate will
have no significant effect on fðN; fQi;obsgÞ. If, however, the
correlation is strong, then it could have a large effect, the
nature of which we will discuss in the following section.

For now we write fðN; fQi;obsgÞ as the product of two

factors,

fðN; fQi;obsgÞ ¼ f0ðN; fQi;obsgÞBðN; fQi;obsgÞ; (28)

where f0ðN; fQi;obsgÞ is the answer that we would expect in
the absence of correlations, and BðN; fQi;obsgÞ is the cor-

rection factor caused by the bias toward slow-roll poten-
tials that correspond to faster decay rates. f0ðN; fQi;obsgÞ
can be called the vacuum statistics probability distribution,
and it can be defined more precisely by imagining that we
first make a list of all the parent vacua P� that occur in the
multiverse. To weight each vacuum according to its rele-
vance to the evolution of the multiverse, we imagine
assigning each vacuum P� a weight W�, which we take
to be proportional to the relative number of nucleation
events in which bubbles of P� are produced (as determined
according to the measure of choice). The precise choice of
this weighting will not affect our estimates, since we will
assume that the decay properties of P� are not correlated
with the properties of its production, but we will see in the
next section that this specification for W� is particularly
useful. We further imagine that we can determine all the
possible transitions by which each parent vacuum P� can
decay to each child vacuum Cj. These transitions will

presumably have a huge range of decay rates, but
f0ðN; fQigÞ is defined as the joint probability density for
N and fQig computed with all these transitions counted
equally, weighted only by W�:

f0ðN; fQigÞ /
X
�;j

W��ðN � Nð�; jÞÞY
i

�ðQi �Qið�; jÞÞ;

(29)

where � and j are summed over all parent-child pairs, and
Nð�; jÞ and Qið�; jÞ are the values of the number N of
slow-roll e-folds and the value of measurable quantity Qi

associated with this parent-child combination. The
constant of proportionality is determined by requiring
f0ðN; fQigÞ to be normalized, and fðN; fQi;obsgÞ is obtained
by setting each Qi to its observed value Qi;obs.

In this section we will estimate f0ðN; fQi;obsgÞ, leaving
the discussion of BðN; fQi;obsgÞ until the next section.
Following the approach of Freivogel, Kleban, Rodriguez

Martı́nez, and Susskind [13] (hereafter called FKRS), we
develop a toy model for the slow-roll part of the potential
energy curve and for the value of the inflaton field at
the start of the slow-roll period.3 While FKRS used the
observed value of the density perturbation amplitude
Q0 as a condition, we will use both it and the observed
value of the scalar spectral index ns. We seek only a crude
approximation—which is the best we can do—so we make
the simplest possible assumptions. We assume therefore
that the inflaton potential, during the era of slow-roll
inflation, is approximated by

V ¼ V0 þ A’þ 1

2
�2’2: (30)

We further assume that slow-roll inflation starts at ’ ¼
�ð>0Þ and ends at ’ ¼ 0 (so we take @V=@’ > 0 for 0 

’ 
 �, which implies A > 0). In this section we will
pursue the hypothesis that the parameters V0, A, �

2, and
� ‘‘scan’’ in the landscape, in the sense that they can be
assumed to vary in the multiverse according to some
smooth probability distribution function h0ðV0; A;�

2;�Þ.
Here h0ðV0; A;�

2;�Þ is defined, like f0ðN; fQi;obsgÞ, as a
vacuum statistics probability density. That is, it is defined
by weighting transitions by the weight W� of the parent

FIG. 3. A schematic picture for a landscape in which various vacuum decay chains have enormously different probabilities.

3FKRS did not discuss the possibility of correlations between
the tunneling and slow-roll parts of the potential, so their PðNÞ
corresponds to our f0ðN; fQi;obsgÞ.
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vacuum, but not by the decay rate, so that correlations with
the tunneling part of the potential play no role. We then
study the resulting probability distribution for N, the num-
ber of e-folds of slow-roll inflation. When we consider a
specific example, we will choose an h0 that is flat.

Keeping in mind that we seek only a crude approxima-
tion, we assume that the parameters of the potential satisfy

V0 � A�; V0 � j�2j�2; and A � j�2j�:
(31)

The total number of e-folds is then given by

N ¼
Z �

0

V

M2
PlV

0 d’ � V0�

AM2
Pl

: (32)

Under these approximations the density perturbation
amplitude Q0 and the spectral index ns are constant
through the slow-roll period, given by

Q0;obs ¼ 1ffiffiffiffiffiffi
75

p
�M3

Pl

V3=2

jV0j �
V3=2
0ffiffiffiffiffiffi

75
p

�AM3
Pl

(33)

and

1� ns;obs ¼ ð6	� 2
Þ � M2
Pl

�
3A2

V2
0

� 2�2

V0

�
: (34)

The joint probability density f0 for N, Q0;obs, and ns;obs is
then given by

f0ðN;Q0;obs; ns;obsÞ ¼
ZZZZ

dV0dAd�
2d��

�
N � V0�

AM2
Pl

�
�

�
Q0;obs � V3=2

0ffiffiffiffiffiffi
75

p
�AM3

Pl

�

� �

�
ð1� ns;obsÞ �M2

Pl

�
3A2

V2
0

� 2�2

V0

��
h0ðV0; A;�

2;�Þ (35)

¼ ð75�2Þ3M2
PlQ

5
0;obs

N8

Z
d��7h0

�
75�2Q2

0;obs�
2M2

Pl

N2
;
75�2Q2

0;obs�
3

N3
;
75�2Q2

0;obs�
2

2N2

�
3�2

N2M2
Pl

� ð1� ns;obsÞ
�
;�

�
: (36)

As a simple example, we assume that the distribution h0ðV0; A;�
2;�Þ is constant in the range 0<V0 < V0;max,

0<A< Amax, �
2
min <�2 <�2

max, and 0< �< �max, where �2
min < 0. The approximations described by Eq. (31) are

not really valid throughout this range, but in the spirit of our crude approximation we will ignore this problem. Then the
integral in Eq. (36) depends onN only through the limit of integration: that is, ifN is sufficiently small, then one of the first
three arguments of h0 can reach its upper limit before � reaches �max. In this case the upper limit of integration becomes
proportional to N, resulting in a factor of N8, canceling the prefactor. Thus

f0ðN;Q0;obs; ns;obsÞ /
(

1
N8 if N >Nmin;

const if N <Nmin;
(37)

where

Nmin ¼ max

8>>><
>>>:

ffiffiffiffiffiffi
75

p
�MPlQ0;obs�maxffiffiffiffiffiffiffiffiffiffiffiffiffi

V0;max

p ;

�
75�2Q2

0;obs

Amax

�
1=3

�max;

0
B@ 6

ffiffiffiffiffiffi
75

p
�Q0;obs�

2
max

MPl½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ ffiffiffiffiffiffi

75
p

�MPlQ0;obsð1� nsÞ�2 þ 24�2
max

q
þ ffiffiffiffiffiffi

75
p

�MPlQ0;obsð1� nsÞ�

1
CA

1=2

9>>>=
>>>;: (38)

The arguments of the max function in the above expression
are the values of N for which each of the first three argu-
ments of h0, in Eq. (36), will reach its maximum value
before � reaches �max.

4

Equation (38) is very complicated, but fortunately all we
really need to know is that Nmin is generically small. For
sample values we can take all the integration limits to be at
the Planck scale: i.e., V0;max ¼ M4

Pl, Amax ¼ M3
Pl, �

2
max ¼

��2
min ¼ M2

Pl, and �max ¼ MPl. Then with the measured

values of Q0;obs and ns;obs, the three arguments in

Eq. (38) become 0.000 54, 0.0067, and 0.026, respectively.
Thus, for all interesting values of N, this example gives
f0ðN;Q0;obs; ns;obsÞ / 1=N8.

There are many variants of this analysis, however, so we
do not claim that there is any particular significance to the
power 8. If we had not conditioned on ns;obs, whether or not
we included the �2 term in the potential, we would have

4To be complete, there is one further complication that could
occur, but which we assume does not occur. For small �, the �2

argument (i.e, the 3rd argument) of h in Eq. (36) can be negative,
so the integration can be limited by �2

min, the smallest allowed
value of �2. We will assume, however, that �2

min is chosen to be
sufficiently negative to prevent this from happening. The mini-
mum possible value for this argument is �75�2M2

Plð1�
ns;obsÞ2Q2

0;obs=24, which is small because Q0;obs ’ 2� 10�5, so
one can easily choose �2

min to avoid this complication.
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found f0ðN;Q0;obsÞ / 1=N6. (In this case Nmin would be

larger than before, based on the first two arguments of h0,
but it would still be less than 1 for the Planck-scale sample
values.) We might also consider omitting the�2 term from
the potential, but conditioning on ns;obs nonetheless. In that
case the power counting gives a probability density that is
flat, but one also finds that the arguments of h0 become
crucial. The value of � will be forced outside the allowed
range unless N <Nmax, where

Nmax ¼
ffiffiffi
3

p
�max

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ns;obs

p : (39)

For the Planck-scale sample values this gives Nmax ¼ 8:7,
although it can be moved up to the interesting range if we
allow �max to be a few times larger than MPl.

FKRS used a different parametrization of the potential,

Vð’Þ ¼ V0ð1� x’=�Þ: (40)

Assuming a flat probability distribution for V0, x, and �,
and by conditioning on Q0;obs but not ns;obs, they found

that f0ðN;Q0;obsÞ / 1=N4. They did not specify a range

of validity for this result, but we find that it is valid for
N >Nmin, where

Nmin ¼ max

� ffiffiffiffiffiffi
75

p
�MPlQ0;obs�maxffiffiffiffiffiffiffiffiffiffiffiffiffi

V0;max

p ;
�2

max

M2
Plxmax

�
: (41)

For Planck-scale sample values, with xmax ¼ 1 as used by
FKRS, this gives Nmin ¼ 1, coming from the second argu-
ment of the max function. While these estimates give
Nmin � 40, for the FKRS parametrization it is not unrea-
sonable to consider values of�max and xmax for which Nmin

might be larger than 60. In that case f0ðN;Q0;obsÞ would
fall as 1=N3=2 in the range of interest.

If one conditions on both Q0;obs and ns;obs, using

Eq. (40) and a flat probability density for V0, x, and �,
one finds f0ðN;Q0;obs; ns;obsÞ / N for N <Nmax, but

f0ðN;Q0;obs; ns;obsÞ ¼ 0 for N >Nmax, where

Nmax ¼ min

�
3xmax

1� ns;obs
;

ffiffiffi
3

p
�max

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ns;obs

p �
: (42)

As with Eq. (39), for Planck-scale sample values this gives
Nmax ¼ 8:7, from the second argument of the min function.
Again it can be increased if we allow �max to be larger
than MPl.

One can also consider adding a 1
2�

2’2 term to the

potential of Eq. (40), assigning a flat probability density
to �2 along with the other parameters. If one does not
condition on ns;obs, then with our approximations the addi-

tion of the �2 term has no effect on f0ðN;Q0;obsÞ. If one
does condition on ns;obs, then f0ðN;Q0;obs; ns;obsÞ / 1=N6,

provided that N >Nmin, where Nmin is the max of both
arguments in Eq. (41) and the last argument of Eq. (38).

The details of these results are of course not to be
trusted, since they are based on ad hoc assumptions about
the probability distribution for potential functions in the
multiverse. Nonetheless, we believe that we can reasonably
infer that the function f0ðN; fQi;obsgÞ, as defined byEq. (29),
can be taken as

f0ðN; fQi;obsgÞ / 1

Np (43)

for some (small) power p > 0. Here, the positivity of p
represents the improbability of finding an inflaton potential
that supportsmany e-folds of evolutionwith a value ofQ0 as
small as 2� 10�5. This result is mostly in agreement with
FKRS, who find fðN;Q0;obsÞ / 1=N4, except that we allow

for the possibility that theremight be a significant correction
factor BðN; fQi;obsgÞ, as in Eq. (28), caused by correlations

with the tunneling rate.
Equation (43) is the generic behavior, but there is a

plausible exception. Suppose there is a mechanism which
ensures the flatness of the inflaton potential in the vicinity
of our (child) vacua; for example, a (softly broken) shift
symmetry acting on the inflaton field ’. In terms of the
model potential of Eq. (30), such a mechanismwould ensure
that A is very small. By combining Eqs. (32) and (33), the
number of e-folds of inflation can be written as

NðA;�Þ ¼
�
75�2Q2

0;obs

A

�
1=3

�; (44)

which shows how large values of N result from small values
of A. In most situations the probability of finding large
values of N is suppressed by the need to find unusually
small values ofA, but a mechanism such as a shift symmetry
can avoid that problem. If the mechanism makes it probable
to find values of A so small that NðA;�Þ * 60 for
�< �max, then we would expect the suppression of large
N would be removed. The results we obtained in
Eqs. (37) and (38) verify these expectations, if we describe
the mechanism as one that enforces a very small value of
Amax. By comparing Eq. (44) with the second argument of
Eq. (38), we see that if Amax is small enough to allow 60
e-folds of inflation, then Nmin � 60, and then Eq. (37)
implies that we are on the flat part of the probability density
curve. Thus, a mechanism to ensure the flatness of the
potential can lead to

f0ðN; fQi;obsgÞ � const (45)

for the relevant range of N, so the preference to shorter
inflation in Eq. (43) does not arise. In fact, the consideration
here can be used to discriminate if the observable inflation
arose ‘‘accidentally,’’ which leads to Eq. (43), or due to
some mechanism: if nonzero curvature is measured, this
would be strong evidence against a mechanism that ensures
a flat potential.
Finally, although it is not needed for the main arguments

presented in this paper, it is interesting to use the proba-
bility distributions that have been modeled in this section
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to ask what is the absolute probability of finding instances
of inflation like the one that apparently began our pocket
universe. Specifically, we can use the models discussed
in this section to calculate the probability �P1 that a
given instance of inflation will satisfy N > �N, Q0 < �Q0,
and j1� nsj<� �ns. Here we set the bias correction factor
BðN; fQi;obsgÞ ¼ 1; in the following section we will see that
B can decrease �P1, but for most choices of measure it
cannot increase it. For the model used in Eq. (36), we
can assume that �N >Nmin, and then the integration extends
to � ¼ �max, giving a factor �8

max=8. Using a normalized
flat probability density for h0ðV0; A;�

2;�Þ, the probability
described above is given by

�P 1 ¼
Z 1

�N
dN

Z �Q0

0
dQ0

Z 1þ� �ns

1�� �ns

dnsf0ðN;Q0; nsÞ

¼ ð75�2Þ3M2
Pl�

8
max

8V0;maxAmax�maxð�2
max ��2

minÞ

�
Z 1

�N
dN

Z �Q0

0
dQ0

Z 1þ� �ns

1�� �ns

dns
Q5

0

N8

¼ ð75�2Þ3M2
Pl�

7
max

�Q6
0� �ns

168V0;maxAmaxð�2
max ��2

minÞ �N7
: (46)

If we take �N ¼ 60, �Q0 ¼ Q0;obs ¼ 2� 10�5, � �ns ¼ 0:04,
and Planck-scale parameters for the probability distribu-
tion, we find �P1 ¼ 1:1� 10�36. If instead we ask for the
probability that N > �N and Q0 < �Q0, without specifying
ns, then we find

�P 2 ¼ ð75�2Þ2M2
Pl�

5
max

�Q4
0

60V0;maxAmax
�N5

; (47)

which is valid whether or not the 1
2�

2’2 term is included in

the potential. For the parameters specified above, this gives
�P2 ¼ 1:9� 10�24.
For comparison, the same questions can be answered

using the FKRS parametrization, and the associated flat
probability distribution in V0, x, �, and possibly �2. If
we include the 1

2�
2’2 term and ask for the probability �P0

1

that a given instance will satisfy N > �N, Q0 < �Q0, and
j1� nsj<� �ns, we find

�P 0
1 ¼

ð75�2Þ2�6
max

�Q4
0� �ns

70V0;maxxmaxð�2
max ��2

minÞ �N5
: (48)

For the numbers used above, this evaluates to �P0
1 ¼ 3:2�

10�26. If instead we exclude the 1
2�

2’2 term and ask for

the probability �P0
2 that N > �N and Q0 < �Q0, without spec-

ifying ns, then we find

�P 0
2 ¼

75�2 �Q2
0�

4
max

15V0;maxxmax
�N3

; (49)

which, for the numbers used here, is equal to �P0
2 ¼

9:1� 10�14.

The detailed answers here depend very much on the
ad hoc assumptions, and are not to be trusted, but the thrust
of the answers is clear. First, in this picture the probability
of seeing an episode of inflation that is suitable to begin our
pocket universe is very small. The key point is that 60
e-folds is large compared to one e-fold, and Q0;obs ’ 2�
10�5 is small compared to one. But we have assumed
probability distributions that in noway favor large numbers
of e-folds or small Q0;obs, so the required values are found

only in a small corner of the probability space. This feature
could be changed dramatically if the underlying theory
incorporated some mechanism to favor the right kind of
potential, as we discussed at Eq. (45). Nonetheless, it is
certainly not clear that any such probability enhancement
is needed for the picture to be viable, because with 10500 or
more vacua estimated to exist in the landscape, probabil-
ities like 10�36 are very large. We would expect the land-
scape to contain a colossal number of possibilities for
inflation to occur in exactly the right way to produce our
pocket universe. One then argues that there are selection
effects that explain why we would expect to find ourselves
living in such a pocket universe. FKRS argue that at least
59.5 e-folds of inflation are necessary to explain the evo-
lution of structure even at only the level of dwarf galaxies,
and that with this condition the probability of having at
least 62 e-folds, which is enough to explain the observed
homogeneity and flatness, is high: about 88%. We will
examine this question in Sec. IV, finding similar results.

3. The role of nucleation rates in the statistical
distribution of N

In Eq. (28) we expressed fðN; fQi;obsgÞ—the joint proba-

bility density for the number N of e-folds of slow-roll
inflation and the measured parameters fQig for a bubble
universe consistent with our observations and arising from
a randomly selected quantum tunneling event—as the
product of two factors, f0ðN; fQi;obsgÞ and BðN; fQi;obsgÞ.
f0ðN; fQi;obsgÞ is the vacuum statistics probability density,

given by Eq. (29), defined so that correlations between N
and the tunneling rate are irrelevant. BðN; fQi;obsgÞ is the
factor that corrects for any bias caused by the correlations
with the tunneling rate, and it is the purpose of this section
to estimate this factor.
As described at the beginning of the previous section, we

are not aware of any way of estimating the strength of the
correlations between the tunneling region of the potential
and the slow-roll region, so we are allowing for the two
extreme possibilities. If these correlations are very weak,
then B ¼ 1. The rest of this section will be concerned with
estimating B when the correlations are strong.
A transition can be described by specifying the parent

P� and the child Cj. For each such transition there is a

nucleation rate �j�, the number of tunneling events per

physical spacetime volume. To understand the bias factor
B, we need to understand the relation between �j� and the
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probability pj� that a randomly chosen quantum tunneling

event is of the type P� ! Cj.

Whether pj� indeed depends on the nucleation rate �j�

is a measure-dependent question. Here we argue that for
the measures in classes (II) and (III), which are the ones
that we consider most plausible, the probability pj� is

unchanged by any overall change in the decay rates from
P�, but is proportional to the branching ratio of the decay
of P� to Cj. We first explain this result, and then discuss its

consequences.
We begin with the measure of Ref. [32], an example of

measures in class (II). This measure adopts the method of
comoving horizon cutoff, where the probabilities are
defined by the ratios of the number of bubbles whose comov-
ing sizes are greater than some small number 	ð! 0Þ. The
relative probability pj� is then

pj� / Hq
��j�s�; (50)

whereH� is the Hubble parameter in the parent vacuum P�,
�j� � ð4�=3Þ�j�H

�4
� is the dimensionless nucleation rate,

and q and s� are given by the asymptotic behavior of the
fraction of comoving volume occupied by a (nonterminal)
vacuum X at time t:

fXðtÞ ! sXe
�qt: (51)

In the above equations, we have adopted the expressions that
apply when we take t to be the scale-factor time, although the
final result does not depend on the choice of the time
variable. The asymptotic behavior of Eq. (51) is obtained
by solving the rate equation

dfX
dt

¼ X
Y

MXYfY; MXY ¼ �XY � �XY

X
Z

�ZX; (52)

where �XY ¼ ð4�=3Þ�XYH
�4
Y , and X, Y, and Z run over all

the vacua in the landscape. All nonzero eigenvalues of MXY

have negative real parts, and the eigenvalue with the smallest
(by magnitude) real part is pure real, and is denoted by �q.
This eigenvalue controls the asymptotic behavior of fX and
appears in Eq. (51). The vector sX is proportional to the
eigenvector ofMXY corresponding to the eigenvalue�q, and
is determined by�X

Y

�YX � q

�
sX ¼ X

Z

�XZsZ: (53)

Equation (50) shows formally that pj� / �j�, but we

need to be careful, because s� is itself determined by the
nucleation rates. We will use Eq. (53) to understand the
dependence of s� on the �j�. We first note that the pos-

itivity of sX implies that q is smaller than the decay rate of
the slowest decaying vacuum, called the dominant vacuum
D: q 
 minXð

P
Y�YXÞ � �D. In fact, assuming that up-

ward transitions have very small rates, q � �D to a very
good approximation (and sX � �XD at the leading order)
[40]. (Reference [41] points out that the dominant vacuum

could in fact be replaced by a closely spaced system of
vacuum states, but that does not affect the conclusions
here.) Since bubble nucleation rates are exponentially sen-
sitive to the parameters of the potential, we expect that the
�q term in Eq. (53) is negligible except for X ¼ D:X

Y

�YXsX ¼ X
Z

�XZsZ for X � D: (54)

Note that we can regard �YXsX as a ‘‘probability current’’
associated with the transition X ! Y, and then this equa-
tion is simply a statement of current conservation, where
X ¼ D acts as a source and terminal vacua T, defined byP

Y�YT ¼ 0, as sinks.
To determine the dependence of s� on the �i�, we can

rewrite Eq. (54) with a relabeling of the indices:

��s� ¼ X
Z

��ZsZ; (55)

where �� ¼ P
j�j�. In both situations discussed in

Sec. III B 1, Figs. 2 and 3, it is reasonable to expect that
the history leading to various parent vacua � is statistically
independent with that afterwards, e.g. how fast those vacua
decay: ��. Under this assumption, the right-hand side of
Eq. (55) can be taken to be independent of �� [at least in
the sense that there is no statistical correlation between the
right-hand side of Eq. (55) and ��], leading to s� / ��1

� .
Inserting this result into Eq. (50), we see that

pj� / �j�

��

; (56)

which says simply that the probability of observing a
transition from parent P� to child Cj is proportional to the

branching ratio for this transition, but is unaffected by
the absolute decay rate of the parent P�. [Note that the
right-hand side of Eq. (55) is proportional toW� as defined
above Eq. (29), so we have found that pj� / W� �
branching ratio, motivating theweighting used in Eq. (29).]
The dependence of pj� on branching ratios, but not on

absolute decay rates, can also be shown for other measures.
For the scale-factor cutoff measure, an example of mea-
sures in class (III), a calculation of pj� has been performed

in Ref. [41], giving pj�/��j�s� where s� again satisfies

Eq. (53). Equation (56) follows immediately by the same
argument. Scale-factor measure can also be analyzed by
recasting it as a local ‘‘fat geodesic’’ measure, as described
in Ref. [24], and then the relative numbers of different
transitions are clearly determined only by branching ratios
that are encountered as the fat geodesic is followed into the
future. The same result can be seen for the causal patch
measure, also in class (III), using a local formulation
analogous to the fat geodesic formulation. Specifically,
Bousso [33] has shown that the probabilities pj� in the

causal patch measure can be computed by following a
single geodesic, so they are determined directly from the
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branching ratios. The quantum measure of Ref. [16] also
gives Eq. (56) (see Appendix A).

Thus, for a wide class of measures, the probabilities pj�

depend on the branching ratios of decays, but not on the
decay rates themselves, which depend exponentially on the
parameters of the potential energy function. What does this
tell us about the dependence of fðN; fQi;obsgÞ on N?

As we said at the start of this section, if the correlation
between the tunneling region and the slow-role region
of the potential is very weak, then B ¼ 1. But if the
correlation is strong, there are two possibilities: faster
tunneling rates can correlate with smaller values of N, or
larger values.

Consider first the case in which faster tunneling rates
correlate with smaller values of N, thereby exerting pres-
sure toward smallerN. We do not know how to estimate the
strength of the correlation, but we can bound the effect by
considering the most extreme possibility. Suppose, there-
fore, that for any given parent P� we identify the nearest
neighbors in the landscape, and assume that the decay rates
to any other states are negligible. We let K be the number
of such neighbors, and for simplicity we will assume thatK
is the same for all vacua, with a value of perhaps several
hundred. For the strongest possible correlations, we can
assume that the fastest decay will correspond to the small-
est value of N, the second fastest decay will correspond to
the second smallest value of N, etc., through the list of all
K decay modes. To maximize the magnitude of the effect,
we will further assume that the decays are dominated by
the fastest, so that all other decay rates are negligible. (In
Appendix B we find that this situation is actually quite
plausible.) Since the fastest decay is also the one with
smallest N, we find that, for any parent P�, the branching
ratio is 1 for the decay with the smallest value of N, and all
other branching ratios can be approximated as zero.

If we now look at the transitions P� ! Cj that contrib-

ute to f0ðN; fQi;obsgÞ, as described by Eq. (29), we see that

the final distribution fðN; fQi;obsgÞ is obtained by examin-

ing each pair ð�; jÞ and applying a test: if the transition
gives the smallest value ofN of all K decays of P�, then its
branching ratio is 1, and it is kept. If, however, the value of
N for the transition is not the smallest of all decays of P�,
the branching ratio is zero, and it is dropped. Thus, we can
obtain an equation for fðN; fQi;obsgÞ by multiplying each

term in Eq. (29) by the probability that the term corre-
sponds to the lowest value of N out of K choices, and then
renormalizing. But the new factor is just the probability
that the other K � 1 values of N are larger, so for this case

BðN; fQi;obsgÞ ¼ B1ðN; fQi;obsgÞ

/
�Z 1

N
dNf0ðN; fQi;obsgÞ

�
K�1

: (57)

If f0ðN;fQi;obsgÞ/1=Np, thenBðN;fQi;obsgÞ/1=NðK�1Þðp�1Þ,
which is a huge suppression for large N. This was of course

calculated as the maximum possible effect. Since we do not
know how to assess the degree of correlation between
tunneling rates and N, we could imagine suppression by
any power of N from zero up to (K � 1) (p� 1).
Now consider the alternative extreme, in which faster

tunneling rates correlate with larger values of N, thereby
exerting pressure toward larger N. The logic is all the
same, but the result is very different. Equation (57) is
replaced by

BðN; fQi;obsgÞ ¼ B2ðN; fQi;obsgÞ

/
�Z N

0
dNf0ðN; fQi;obsgÞ

�
K�1

: (58)

Only the limits integration are different, but because of the
fact that f0ðN; fQi;obsgÞ strongly favors small N, the quan-

tity in square brackets now has a value very close to 1 for
interesting values of N. Raising it to a large power does not
produce a big effect. In fact, if we use Eq. (37) as an
example, and choose N ¼ 60 and K ¼ 300, we find
BðN; fQi;obsgÞ ¼ 1 to better than 20 decimal places! For

those measures for which only the branching ratios are
relevant, correlations between tunneling rates and N can-
not drive N to larger values. The reason is simply that if N
is near 60, it is almost certainly the largest N among all
the decays of the parent, so requiring it to be the largest has
no effect.
While it is plausible that a given vacuum can have

significant decay rates to only a few hundred nearest
neighbors, we would like to also allow for the possibility
that this is wrong, and that maybe a significant fraction of
the landscape is available as a potentially significant decay
channel. In that case we should takeK to be 10 to the power
of several hundred, and the whole picture changes. Then
the powers in Eqs. (57) and (58) become enormous, and the
factors in square brackets become completely controlling.
As we will see in Appendix B, if we choose the largest or
smallest element out of �10500 tries, from a normal distri-
bution, the result is expected to be 48 standard deviations
away from the mean. If there is a perfect correlation
between N and the tunneling rate, as we assumed in the
extreme example above, then N would be driven effec-
tively to 0 or infinity, and the situation would have already
been ruled out (if N is driven to 0), or else N would be
essentially infinite. More realistically, however, we only
know that choosing the fastest decay out of something like
10500 possibilities will result in a decay rate with an
action that is of order 50 standard deviations smaller than
the mean, but the strength of the correlation with N is
unknown. The probability distribution for N could, there-
fore, be biased in either direction, and the bias might be
weak or strong.
While measures of classes (II) and (III) generically

lead to probabilities that depend only on branching ratios,
as in Eq. (56), not quite all measures of interest fit this
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description. In particular, the stationary measure of
Ref. [35] does not really fit into our classifications; it has
many properties of class (I), while at the same time avoid-
ing the youngness paradox. For measures in classes (II) and
(III) we have seen that the factor of �j� appearing in

Eq. (50) is accompanied by s� / ��1
� , but that happens

only when the abundances of the potential parent vacua P�

are determined primarily by their decay rates. In measures
of class (I) it is the production rate of a given vacuum that
primarily determines its abundance, while the decay rate of
P� has almost no effect on its abundance. Then there is no
factor of ��1

� accompanying �j�, and the probability of

observing a transition from any parent P� to any child Ci is
proportional to �j�. Since decay rates behave exponen-

tially in the parameters of the potential function, for the
stationary measure we expect that BðN; fQi;obsgÞ can be

written as

BðN; fQi;obsgÞ ¼ e�ðN;fQi;obsgÞ; (59)

where �ðN; fQi;obsgÞ is a mild, nonexponential function of

N. Thus, fðN; fQi;obsgÞ can have an exponential sensitivity

to N. As in the class (II) and (III) cases, however, we could
conjecture that the tunneling rates are only very weakly
correlated with the slow-roll part of the potential, in which
case we have B ¼ 1, or equivalently � ¼ 0, as before. In
any case, the final probability PðNÞ for stationary measure
certainly has the slow-roll volume increase factor e3N , i.e.
Eq. (1). We are not aware of any measure in which fðNÞ
takes the form of Eq. (59) while PðNÞ does not depend on
the slow-roll volume increase factor, e3N .

4. fðN ;fQi;obsg Þ for scenario (iii), quantum tunneling:
Summary of results

We now summarize what we have learned about the
probability distribution of N in a bubble universe.
According to the discussions in the previous two subsec-
tions, the probability density fðN; fQi;obsgÞ for the onset of
an episode of slow-roll inflation that is compatible with our
observations fQi;obsg can be written generically as

fðN; fQi;obsgÞ / 1

Np e
�ðNÞ: (60)

If the slow-roll part of the potential is correlated with the
part controlling the tunneling, and if the correlation favors
small values of N, then we might generically expect

p � 1: (61)

The effects of correlations between the slow-roll and tun-
neling parts of the potential for some measures depend
crucially on how many significant decay channels compete
in the decay of a given vacuum. Perhaps only a few
hundred nearest neighbors in the landscape are relevant
(small K option), or perhaps a substantial fraction of the
landscape is relevant (large K option). If there is only weak
correlation between the slow-roll part of the potential and
the part controlling the tunneling, or if the correlation
favors large values of N and we are considering the small
K option, then the power p is determined purely by the
statistics for the slow-roll part of the potential; then the
analysis of Sec. III B 2 gives

p

8<
:>0

¼ 0
if the observable inflation occurs

8<
: accidentally

due to some mechanism:
(62)

With the large K option, correlations in the potential that
favor large N can be very significant; they need not have a
power-law behavior.

The exponent �ðNÞ has the possibility of being nonzero
only for measures, such as the stationary measure, which
have the property that the probability of observing a tran-
sition from P� to Cj depends on the tunneling rate for the

transition, and not just the branching ratio. For measures of
this type, �ðNÞ can arise due to correlations between the
slow-roll part of the potential and the part controlling the
tunneling; if those correlations are weak, then �ðNÞ � 0.
But if the correlations are strong, then �ðNÞ can be very
significant. Since we know very little about �ðNÞ, we can
use the fact that we are interested in only a small range
of N about Nobs;min to expand �ðNÞ in a Taylor series:

�ðNÞ � �ðNobs;minÞ þ f@�=@NðNobs;minÞgðN � Nobs;minÞ þ
OðN � Nobs;minÞ2. The constant term does not affect the

dependence on N, so we can drop it and replace �ðNÞ in
Eq. (60) by

�ðNÞ ! �0N; (63)

where �0 � @�=@NðNobs;minÞ is a constant that does not

depend on N, which can take either sign depending on
details of the landscape potential. The magnitude of �0 can
be as small as zero, but to estimate how large it might be,
we recall that it arises from the correlation between N and
the tunneling rate �� e�S of the parent-to-child vacuum
decay, where S is the bounce action associated with the
decay. Suppose the potential barrier separating the parent
from child vacuum is characterized by a field distance �’,
a barrier height �Vh, and an energy density difference
�Vdiff . Then, the bounce action generically scales as the

thin wall limit expression S � 27�2

2 �’4�V2
h=�V

3
diff [42].

If the amount of slow-roll inflation N is strongly
correlated with the part of the potential energy function
relevant for the tunneling, then we might estimate j�0j �
OðS=Nobs;minÞ:
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j�0j �O

�
27�2

2

�’4�V2
h

Nobs;min�V
3
diff

�
; (64)

which can easily be much larger than 1, depending on
parameters. In our estimation j�0j can lie anywhere from
zero up to a number of the order shown above, and it can
have either sign.

The probability density PobsðNÞ of finding ourselves in a
region that has undergoneN e-folds of slow-roll inflation is
then given by Eq. (9), where MmðNÞ [defined by Eq. (4)]
depends on whether the measure rewards volume increase
by slow-roll inflation [class (II)] or not [class (III)]. We
therefore obtain

PobsðNÞ / 1

Np e
qN�ðN � Nobs;minÞ; (65)

where p is given by Eq. (61) or (62), and q ¼ 3þ �0 for
class (II) measures while q ¼ �0 for class (III) measures;
these values for p and q are summarized in Table I. This is
the expression wewill use in our phenomenological analysis
in Sec. IV.

C. fðN; fQi;obsgÞ for scenario (iv): Inflation preceded by
a prior episode of inflation

We finally consider scenario (iv), the case where there is
another episode of inflation just before our last cosmic in-
flation. In this case, the power spectrum of density fluctua-
tions, P ðkÞ, can show a sharp spike as a function of the
momentum scale k. One might, therefore, think that this
can provide a nonzero curvature over the visible universe,
either positive or negative, by having large fluctuations at a
length scale beyond the current horizon. This is, however, not
the case. Since low multipoles of CMB temperature fluctua-
tions are sensitive to density fluctuations at scales larger than

the horizon (Grishchuk-Zel’dovich effect [43]), the observed
size of these low multipoles � 10�5 does not allow the
curvature to extend much beyond j�kj � Oð10�5Þ [18].
Therefore, even if the past history of our pocket universe

is complicated so that P ðkÞ has a nontrivial structure, we
do not expect to see curvature coming from density fluc-
tuations at a level, e.g., beyond j�kj � 10�4.5 Since we
know of no other way that positive curvature can be
generated in a multiverse model, we conclude that a
future measurement of positive curvature at a level of
�k & �10�4 would exclude the entire framework consid-
ered here. Any observation of negative curvature at
�k * 10�4 would have to be attributed to Coleman–
De Luccia tunneling.

IV. EXPECTATIONS FOR THE NUMBER OF
e-FOLDS AND CURVATURE

We now discuss implications of the probability distribu-
tion in Eq. (65) for current and future measurements of
curvature. Recall that Nobs;min denotes the minimum

amount of slow-roll inflation required to satisfy the current
observational constraint, �k & 0:01. (In this section we
consider only �k > 0.) Its value depends on the detailed
history of our own pocket universe, especially on the
reheating temperature, but is in the range Nobs;min �
ð40–60Þ. Following FKRS, we assume that the requirement
of structure formation provides an anthropic lower bound
on the amount of slow-roll inflation:

TABLE I. Expected values of p and q in Eq. (65) for class (II) and (III) measures. They depend on whether the slow-roll and
tunneling parts of the potential are weakly or strongly correlated, and on whether the correlation is positive (favoring large values of N)
or negative (favoring small values of N). They also depend on whether the measure predicts that the probability of observing a
particular transition depends only on its branching ratio (middle column), or depends on the decay rate (right column). The table is
constructed for the small K option (see the text). The large K option would change the behavior of strong positive correlations for
measures not depending on decay rates, giving a strong push toward large N which is not necessarily a power law.

Class (II) measures: Rewarding slow-roll volume increase

Measures not depending

on decay rates

Measures depending

on decay rates

Weak correlation between slow-roll and tunneling p � 0; q ¼ 3 p � 0; q ’ 3
Strong positive correlation between slow-roll and tunneling p � 0; q ¼ 3 p � 0; q ¼ 3þ �0; �0 * Oð1Þ
Strong negative correlation between slow-roll and tunneling p � 1; q ¼ 3 p � 1; q ¼ 3þ �0; ��0 * Oð1Þ

Class (III) measures: Not rewarding volume increase

Measures not depending

on decay rates

Measures depending

on decay rates

Weak correlation between slow-roll and tunneling p � 0; q ¼ 0 p � 0; jqj � 1
Strong positive correlation between slow-roll and tunneling p � 0; q ¼ 0 p � 0; q ¼ �0; �0 * Oð1Þ
Strong negative correlation between slow-roll and tunneling p � 1; q ¼ 0 p � 1; q ¼ �0; ��0 * Oð1Þ

5While completing this paper, Ref. [17] has appeared which
quantitatively analyzes this issue, finding that the probability of
obtaining j�kj> 10�4 from superhorizon density fluctuations in
a model consistent with the CMB is less than � 10�6.
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Nanthropic ’ Nobs;min � 3:0: (66)

(Here, we have assumed only the weak requirement that
dwarf galaxies form. If we require that typical galaxies
form, then 3.0 is replaced by 1.9.) To test the consistency of
the current constraint on �k with multiverse probabilities,
we use Eqs. (10) with fðN; fQi;obsgÞMmðNÞ ¼ eqN=Np [see

Eq. (65)] to express the probability Pcurrent that a pocket
universe which has undergoneNanthropic e-folds of slow-roll

inflation will go on to undergo at least Nobs;min e-folds of
inflation:

Pcurrent ¼
Z 1

Nobs;min

dNP
obs;�k

ðNÞ

¼
Z 1

Nobs;min

dN
eqN

Np

�Z 1

Nanthropic

dN
eqN

Np : (67)

Figure 4(a) shows which regions of the p-q plane are
excluded by yielding low values of Pcurrent, at various levels
of confidence, using Nobs;min ¼ 60.

Figure 4(a) shows that q > 0 is always allowed, but we
should keep in mind that this is based on an idealization
that is not reliable. It arises from the fact that the proba-
bility distribution PðNÞ / eqN=Np diverges at large N for
any q > 0, for any value of p. But if q is positive and small,
and p is positive and large, then the divergent behavior will
not occur until N is very large, at which point the linear
approximation that we introduced in Eq. (63) will no
longer be valid. Thus, for small positive q and large posi-
tive p, a more sophisticated analysis would be needed.

If we assume that there is only a weak correlation
between the tunneling and slow-roll parts of the potential
function, then measures of class (II), which reward slow-
roll volume increases, are clearly allowed by Fig. 4(a). As
shown in Table I, these measures give q ¼ 3 or at least
q ’ 3. Measures of class (III), which do not reward slow-
roll volume increases, are also consistent with Pcurrent.
These measures give q either equal to zero or very small,
so the graph shows that the hypothesis is excluded at the 1
level only if p * 23. By contrast, in Sec. III B 2 we found
that values in the range ofp ¼ 0 top ¼ 8 seemed plausible.

If there is a strong, positive correlation (i.e., favoring
large N) between the tunneling and slow-roll parts of the
potential function, then all the measures shown in Table I
are again consistent with Pcurrent. For measures that do not
depend on decay rates, for the smallK option (as defined in
Sec. III B 4), the situation is identical to that described in
the previous paragraph; for the large K option, the pressure
toward large N improves the consistency. For those mea-
sures that depend on decay rates, q is given a positive
contribution�0 of order 1, which pushes an already accept-
able ðp; qÞ combination further from the excluded regions.

If, however, there is a strong negative correlation
(i.e., favoring small N) between the tunneling and slow-
roll parts of the potential function, then measures of
class (III) (not rewarding volume increases) are very likely

FIG. 4 (color online). Diagram (a) shows the consistency of the
current bound�k & 0:01 with multiverse probabilities. Assuming a
probability distribution for the number N of e-folds of slow-roll
inflation given by PðNÞ / eqN=Np, we calculate the probability that
a pocket universe which has undergone Nanthropic ¼ 57 e-folds of

inflation will experience at leastNobs;min ¼ 60 e-folds. The hypothe-
sis that our pocket universe was drawn from such a probability
distribution would be excluded at the 1, 2, 3, or 4 level if this
probability is less than 31.7%, 4.6%, 0.27%, or 0.0063%, respec-
tively. The diagram shows the excluded regions in the p-q plane.
Under the same assumptions, diagram (b) shows the probability that
our pocket universe has �k > 10�4. More precisely, it shows the
probability that a pocket universe which has undergone 60 e-folds of
slow-roll inflation will not inflate by more than another factor of 10
(thereby suppressing �k by no more than another factor of 100).
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excluded, depending on exactly how strong the correla-
tions are. The correlations cause p to become large and, for
measures depending on decay rates, q to become negative
as well. Only the mildest range of ‘‘strong’’ negative
correlations would be consistent. Measures of class (II),
which reward slow-roll volume increase, would still be
allowed if they do not depend on decay rates, since they
would have q ¼ 3. But for those that do depend on decay
rates, q ¼ 3þ �0, where �0 < 0, so it could be allowed or
not, depending on the magnitude of �0.

To discuss future measurements, we note that our pocket
universe will have a curvature beyond �k if the amount of
slow-roll inflation satisfies

N <Nobs;min þ 1

2
ln
�k;max

�k

� Nð�kÞ; (68)

where�k;max ’ 0:01 is the maximum curvature allowed by

the current observation. Recalling Eq. (65) for the proba-
bility density for the number N of e-folds of slow-roll
inflation experienced by our pocket universe, the probabil-
ity that N <Nð�kÞ is given by

Pfutureð�kÞ ¼
Z Nð�kÞ

0
dNPobsðNÞ

¼
Z Nð�kÞ

Nobs;min

dN
eqN

Np

�Z 1

Nobs;min

dN
eqN

Np : (69)

In Fig. 4(b), we show contours in the p-q plane for
Pfutureð10�4Þ, using Nobs;min ¼ 60. In Fig. 5, we plot the

probability for future measurements to find �k > 10�3

(dashed) and 10�4 (solid) as a function of p, with q ¼ 0,
for Nobs;min ¼ 60 and 40. We find that for relatively large

p * a few, there is a reasonable chance that we can observe
nonzero curvature larger than �k * 10�4. For p ’ 10, the
probability can be as high as � 40% for Nobs;min ¼ 40,
which corresponds to the case of a (very) low reheating
temperature.

In the future, the PLANCK satellite and Sloan Digital
Sky Survey will be able to probe�k to the level of� 0:005
[44]. The planned Subaru surveys also have the potential to
reach a 0.3% level precision: ð�kÞ � 0:003 [45]. In the
longer run, a hypothetical cosmic variance-limited CMB
experiment together with a measurement of the baryonic
acoustic oscillations at the precision expected from the
Square Kilometer Array will constrain curvature with
a precision of about 5� 10�4, which can give weak
evidence for nonzero curvature down to the level of
�k � 10�3 [46]. Furthermore, a future square kilometer
array optimized for 21 cm tomography could improve the
sensitivity to about ð�kÞ � 2� 10�4 [47], approaching
the fundamental limit with which one can probe the ge-
ometry of the Universe given Q � 10�5 [46]. Therefore, if
our own pocket universe was indeed created by bubble
nucleation in eternally inflating spacetime, then there is a

reasonable chance [of Oð10%Þ] that we can see nonzero
negative curvature in future measurements.

V. CONCLUSIONS

The eternally inflating multiverse provides a consistent
framework for explaining coincidences and fine-tuning in
our Universe. In particular, it provides the leading expla-
nation for the observed accelerating expansion of the
Universe: �� ��matter. Along similar lines, the frame-
work also provides the possibility that the present-day
curvature contribution,�k, is not too far below the leading
contributions to the total energy budget. Although �k is
suppressed exponentially by the deterministic, slow-roll
inflation that has occurred in our past, �k � e�2N , there
is still a reasonable possibility that �k is larger than
�10�4, the level we could reach in future observations.
We have studied this possibility, particularly focusing on

the question: ‘‘If future observations reveal nonzero curva-
ture, what can we conclude?’’ We have found that whether
an observable signal arises or not depends crucially on
three issues: the cosmic history just before the observable
inflation, the measure adopted to define probabilities in the
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FIG. 5 (color online). The probabilities of finding nonzero
curvature in future measurements at the level of �k ¼ 10�3

(dashed) and 10�4 (solid) for the multiverse distribution PðNÞ /
1=Np. The probabilities depend on the amount of slow-roll
inflation Nobs;min corresponding to the maximum curvature

allowed by the current observation, �k;max ’ 0:01.
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eternally inflating spacetime, and the properties of the
correlation between the tunneling and slow-roll parts of
the potential. These strong dependencies would allow us to
draw some definite conclusions about these issues, if non-
zero �k is found in future experiments.

Our conclusions are as follows. If future measurements
reveal positive curvature at the level�k & �10�4, then . . .

(i) The framework of the eternally inflating multiverse,
as currently understood, is excluded with high sig-
nificance. If no (currently unknown) mechanism can
be found to explain a positively curved pocket uni-
verse in an eternally inflating multiverse, then we
would have to conclude that our Universe arose
in a different way, e.g. directly by creation from
‘‘nothing’’ [48].

If future measurements instead reveal negative curvature
�k * 10�4, then . . .

(i) Diffusive (new or chaotic type) eternal inflation is
excluded as a phenomenon in our immediate past.
In particular, within the context of the eternally
inflating multiverse (as currently understood), our
pocket universe must have been born by a bubble
nucleation. In this paper we justified this conclu-
sion by examining the evolution of Q, the density
perturbation amplitude, from the end of diffusive
eternal inflation to the time at which the wave
numbers visible in the CMB exited the Hubble
horizon. We argued that this evolution required
more than enough e-folds to suppress any trace of
curvature. This conclusion is strengthened further
by the fact that if the density perturbation amplitude
was large (��=�� 1) on the horizon scale at the
onset of inflation, then the Grishchuk-Zel’dovich
effect requires the amount of inflation to be large,
N � Nobs;min * 6, completely diluting observable

curvature effects [43,49]. The bubble nucleation
process avoids this situation by producing, without
violating causality, a highly homogeneous space
that is curvature dominated.

(ii) Barring the unlikely possibility of a conspiracy
between the slow-roll volume increase and tunnel-
ing rate (�0 ’ �3; see Table I), the probability
measure must not reward the slow-roll volume in-
crease e3N . Examples of such measures include the
causal patch measure [33], the scale-factor cutoff
measure [34], and the quantum measure [16].

(iii) The origin of the observed slow-roll inflation—the
last N � ð40–60Þ e-folds of inflation—must be an
accidental feature of the potential, selected by an-
thropic conditions. In particular, it could not be due
to a theoretical mechanism that ensures the flatness
of the potential in the vicinity of our vacuum.

(iv) We do not know how to predict the strength or
even the sign of possible correlations between the

tunneling and slow-roll parts of the inflaton poten-
tial, so we considered all possibilities. We found
that a strong negative correlation, one that corre-
lates small N with rapid transitions, could have
very strong effects which are already excluded by
the fact that �k is smaller than is required by
anthropic considerations. If curvature is observed,
then the possibility of strong positive correlations
(those which favor large N) would be ruled out for
those measures, such as the stationary measure,
for which the probability of observing a transition
depends on the decay rate, and not just the branch-
ing ratio. For other measures, the consequence of
strongpositive correlations depends onour estimate
of the number of decay channels of our parent
vacuum that can potentially have a significant
branching ratio. If the significant decays are limited
to a fewhundred nearest neighbors in the landscape,
then strong positive correlations are allowed, and
have no perceptible effects on curvature or anything
else. On the other hand, if a substantial fraction of
the landscape is accessible with potentially signifi-
cant rates, then a strong positive correlation would
drive a significant increase in N, which would be
ruled out if curvature were observed.

If future measurements do not find curvature, j�kj & 10�4,
then we would not learn much about the structure of the
multiverse; in particular, it does not support or disfavor the
framework.
We also addressed the question of whether the current

constraint on �k & 0:01 is consistent with the predictions
of the multiverse picture. We found that the present con-
straint is consistent, except that for measures that do not
reward volume increase, strong negative (favoring small
N) correlations between the slow-roll and tunneling part of
the potential are ruled out.
In the course of these studies, we were led to consider

the characteristics of vacuum decay branching ratios,
focusing on the question of whether decays are typically
dominated by a single channel. We found that for vacua
that are sufficiently long-lived (S * 103 if significant de-
cays are limited to several hundred, or S * 106 if decays
can access the landscape, where the decay rate �� e�S), it
is plausible that a single channel can dominate the decay.
In the next decade or two, we expect to have new data

from measurements of the CMB, baryonic acoustic oscil-
lations, 21 cm absorption, and so on, which will allow us to
probe the curvature of the Universe down to the level of
�k � 10�4. If nonzero�k is found in these measurements,
it would reveal another coincidence in our Universe: slow-
roll inflation in our past did not last much longer than
needed to cross the anthropic threshold. This would pro-
vide further evidence for the framework of the multiverse.
Moreover, it would give us important information about
the probability measure, the cosmic history just before the
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observable inflation, and the correlations in the inflaton
potential function. In particular, it would strongly suggest
that the probability measure does not reward volume
increase, and that we are living in a bubble universe formed
in an eternally inflating spacetime.
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APPENDIX A: VOLUME INCREASE IN THE
QUANTUM MEASURE

In the framework of Ref. [16], the state of the multiverse
is described in a fixed reference (local Lorentz) frame
associated with a fixed spatial point p. The Hilbert space
corresponding to a fixed semiclassical geometry M takes
the form

H M ¼ HM;bulk HM;horizon; (A1)

where HM;bulk and HM;horizon represent Hilbert space

factors associated with the degrees of freedom inside and
on the stretched apparent horizon @M. The entire Hilbert
space for dynamical spacetime is then given by the direct
sum of the Hilbert spaces for different M’s:

H ¼ M
M

HM: (A2)

The full Hilbert space for quantum gravity, H QG, also

contains the states associated with spacetime singularities,
H QG ¼ H �H sing, but the states in H sing do not play

an important role in our discussion here.
The multiverse state j�ðtÞi is in general a superposition

of elements in Hilbert space H QG, and evolves determin-

istically and unitarily in this Hilbert space. (We take the
Schrödinger picture throughout.) The probabilities for any
physical questions can then be given by the (extended)
Born rule [16]. For example, one can specify a certain
‘‘premeasurement’’ situation Apre (e.g. the configuration

of an experimental apparatus before measurement) as
well as a ‘‘postmeasurement’’ situation Apost (e.g. those

after the measurement but without specifying outcome) as
A ¼ fApre; Apostg, and then ask the probability of a particu-

lar result B (specified, e.g., by a physical configuration of
the pointer of the apparatus in Apost) to be obtained. The

relevant probability PðBjAÞ is then

PðBjAÞ ¼
RR

dt1dt2h�ð0ÞjUð0; t1ÞOApre
Uðt1; t2ÞOApost\BUðt2; t1ÞOApre

Uðt1; 0Þj�ð0ÞiRR
dt1dt2h�ð0ÞjUð0; t1ÞOApre

Uðt1; t2ÞOApost
Uðt2; t1ÞOApre

Uðt1; 0Þj�ð0Þi : (A3)

Here, Uðt1; t2Þ ¼ e�iHðt1�t2Þ is the time evolution operator
(for a fixed time parametrization t), and OX is the operator
projecting onto states consistent with condition X. This
formula can be used to answer questions both regarding
global properties of the Universe and outcomes of particu-
lar experiments, providing complete unification of the
eternally inflating multiverse and the many-worlds inter-
pretation of quantum mechanics.

Now, suppose that the probability density for the onset
of slow-roll inflation is given by fðNÞ. To figure out to
which class the quantum measure belongs, we want to
know if the probability density of finding an observer at
a fixed location with respect to p has an extra factor e3N or
not (see e.g. [50] for relevant discussions). Since each
component of j�ðtÞi describes the system within the hori-
zon as viewed from p, however, it is obvious that this extra
factor does not exist—i.e., how long a state stays in the
slow-roll inflation phase does not affect the probability
defined by Eq. (A3)—as long as the reheating temperature
is fixed. This is because states corresponding to different N
look identical after the reheating, except for quantities that

depend on initial conditions at the onset of the slow-roll
inflation. And since we are made out of baryons which are
synthesized after the reheating (i.e. whose density does not
depend on the history before the reheating), the probability
density of us finding a universe with N e-folds of slow-roll
inflation is simply fðNÞ in a region where the anthropic
factor is unity, N >Nanthropic (see Sec. II C). This implies

that the measure belongs to class (III), according to the
classification in Sec. II B.6

A similar argument implies that the probability does not
depend on the decay rate of a parent vacuum either. The
quantum measure, therefore, gives q ¼ 0 in Eq. (65); see
Table I in Sec. III B 4.

6Incidentally, if we were made out of relics left over from the
era before the inflation, such as the grand unified theory mono-
pole, then the probability of us finding a universe with N e-folds
of slow-roll inflation would be fðNÞe�3N (without taking into
account the dynamics for clustering, etc.), since the density of
such relics is diluted by the inflation.
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APPENDIX B: POSSIBILITY OF
SINGLE-CHANNEL DOMINANCE IN

MULTIVERSE EVOLUTION

When a metastable vacuum P� decays, there are generi-
cally a very large number of decay modes. One might
assume that the decay products are dominated by vacua
that are nearest neighbors to P� in the landscape, and that
the other vacua in the landscape can be neglected. In that
case, we would expect perhaps several hundred possible
decay modes. On the other hand, it is conceivable that a
substantial fraction of the vacua in the landscape have the
possibility of being significant decay channels for P�, and
then the number of relevant channels would be something
like 10 to the power of several hundred. We will call the
number of relevant decay channels K, allowing K to be
anywhere from several hundred to 10 to the power of
several hundred. In this appendix we will explore the
possibility that this large number of decays is dominated
by a single channel, finding it much more plausible than
one might naively guess, especially for long-lived vacua
(i.e., vacua with decay rates �� e�S, where S * 106 for
large K, or S * 103 for small K). This issue is relevant for
Sec. III B 1, in discussing the possibilities for a multiverse
described by Fig. 2 or Fig. 3, and also in Sec. III B 3, in
estimating the influence of nucleation rates on the proba-
bility distribution for N.

We have no real knowledge of the nucleation rates in the
landscape, so we will pursue the simple hypothesis that
they follow (approximately) the normal distribution:

fðSÞ � 1ffiffiffiffiffiffiffi
2�

p

e�ððS� �SÞ2=22Þ; (B1)

where �S and  are, respectively, the mean and the standard
deviation. We will assume that �S � , so that we can
ignore the statistically small possibility that the distribution
gives a negative value for S. Later we will briefly discuss
the case where  and �S are comparable.

We now ask: for a given P�, what is the typical ratio of
the fastest decay rate to the next fastest? Since the number
of possible decay modes is very large, one might naively
think that this ratio is close to unity; namely, whatever the
fastest rate is, there would likely be many other possible
decay modes that would have very similar rates. This is,
however, not obvious because, although the density of the
values for the decay rates is indeed huge near the peak in
the distribution, we are interested in the maximum transi-
tion rate and the rates that are very near the maximum.
These are in the tails of the distribution, so there is no
guarantee that the naive thinking applies.

To estimate the minimum value of S, which we call S1,
we define the cumulative probability distribution function

�ðxÞ �
Z x

�1
fðtÞdt; (B2)

which is the probability that a randomly chosen value of S
is less than x. We estimate the value of S1 by requiring

�ðS1Þ ¼ 1

K
; (B3)

that is, we imagine drawing K random values

fSð1Þ; . . . ; SðKÞg from the probability distribution fðSÞ, and
insist that the expectation value for the number of SðiÞ ’s less
than S1 is equal to one.
In the region of interest, ð �S� S1Þ= � 1, the left-hand

side of Eq. (B3) can be replaced by its asymptotic
expansion [51]

1ffiffiffiffiffiffiffi
2�

p e�ðð �S�S1Þ2=22Þ
�


�S� S1

� 3

ð �S� S1Þ3
þ � � �

�
¼ 1

K
;

(B4)

giving

S1 ¼ �S� ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p
þO

�
lnð ffiffiffiffiffiffiffiffi

lnK
p Þffiffiffiffiffiffiffiffi
lnK

p 

�
; (B5)

and

fðS1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p
K

þO

�
lnð ffiffiffiffiffiffiffiffi

lnK
p Þ

K
ffiffiffiffiffiffiffiffi
lnK

p


�
: (B6)

Note that KfðS1Þ is the density of sample points at S1, so
we can estimate a typical difference �S � S2 � S1, where
S2 is the second smallest action, as

�S � ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p : (B7)

The density grows arbitrarily large with K, but only as
the square root of the logarithm! As we will now see, for
reasonable examples this is not nearly enough to allow the
second fastest decay mode to compete with the fastest one.
As an alternative estimate of �S, one could estimate S2

directly by setting �ðS2Þ ¼ 2
K , which has the effect of

replacing K by 1
2K in Eq. (B5). The result for �S is then

equal to the result in Eq. (B7) multiplied by ln2.
It is hard to know what a typical tunneling action is,

because various calculations have given values over a huge
range. Some of these calculations are summarized in
Ref. [41]. For example, a calculation of the decay of an
uplifted anti–de Sitter vacuum in Ref. [52] gives an action

S� 8�2M2
Pl

m2
3=2

; (B8)

which the authors estimate as S & 1034 using m3=2 *
102 GeV. Freivogel and Lippert [53] concluded that any
vacuum capable of supporting life must decay with an
action

S & 1040	20 (B9)

to avoid overproducing Boltzmann brains, and then
showed that KKLT [54] vacua decay with actions less
than 1022. In Ref. [55], however, the authors argue that
the vast majority of flux vacua with small cosmological
constant undergo rapid decay, with tunneling actions of
order one.
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As sample numbers to use here, we consider a transition
for which the field excursion �’ is of orderMPl, while the
barrier height �Vh and the energy density difference
�Vdiff are each of OðM4

unifÞ, where Munif�1016GeV is the

(supersymmetric) unification scale. A small hierarchy be-
tweenMunif andMPl ensures that metastable minima of the
potential are long-lived, since the natural size for the action

is given by S � 27�2

2 �’4�V2
h=�V

3
diff [42]. This estimate

gives S�Oð1010Þ, and we choose a relatively small ,
�Oð108Þ. (Such a narrow distribution of S might arise
from a structure of the landscape [56].) We begin by
considering K �Oð10500Þ, a number appropriate for con-
sidering decays to a substantial fraction of the landscape.
For actions near the peak of the probability distribution, the
density of sample points per unit of S would then be of
order K=�Oð10492Þ, so for every decay channel there
would typically be many more that would have the same
action to hundreds of decimal places. Nonetheless, at the
tail of the distribution where the fastest two decays are to

be found the density of sample points is only
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p
=,

and
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p
is only ’ 48. Thus, for our toy numbers the

density of sample points in the tail is only � 5� 10�7.
This means that the two smallest points for S are likely to be
separated by �S � 2� 106, which means that the leading
nucleation rate dominates over the second place nucleation

rate by a factor of e�S � e2�106 . Of course if we used K of

order a few hundred, the situation would become evenmore

extreme. For K ’ 200, for example,
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p � 3:3, so the
density of sample points in the tail is only� 3� 10�8, and
the leading nucleation rate will dominate over the second

place rate by a factor of about e�S � e3�107 .
An important caveat of this analysis is the arbitrariness

of choosing a normal distribution for the values of S.
Something resembling a normal distribution is plausible,
but the actual distribution could be very different.
Furthermore, the normal distribution clearly has to be
modified for cases where it predicts a negative value for
S. For K �Oð10500Þ, Eq. (B5) implies that the dominating
value of S is about 48 standard deviations below the
mean, so clearly the whole approach would break down if
�S� 48 were not positive. Thus the approach is viable only
if �S * 50. To obtain strong dominance of the leading decay
we need =50 * 102, so the argument presented here can
lead to the conclusion of single-channel dominance only if
�S * 106. For K ’ Oð200Þ this is less of a problem, because
we need only insist that �S� 3:3 is positive, so a similar
argument shows that we need only require that �S * 103.

If one is interested in parameters for which the normal
distribution gives negative values of S, one could explore

the possibility of using a probability distribution which is
positive by construction. A probability distribution that is
often used as a model for positive-definite quantities is the
gamma distribution,

f�ðSÞ ¼ �pþ1

�ðpþ 1ÞS
pe��S�ðSÞ; (B10)

where p > 0 and � > 0 are parameters to be chosen. Since
we are interested only in the low-S tail, we can explore a
simpler distribution

fsimpleðSÞ ¼ ðpþ 1ÞSp
Spþ1
max

�ðSÞ�ðSmax � SÞ; (B11)

where p > 0 and Smax > 0 are to be chosen. Applying the
same analysis as above, we find that the density of sample
points at S1, the lowest value of S out of K samples, is
given by

KfsimpleðS1Þ � pþ 1

Smax

K1=pþ1: (B12)

If we insist that KfsimpleðS1Þ & 10�2 to lead to single-

channel domination, then with K ’ Oð200Þ we find that
p ¼ 2 allows Smax � 1800, p ¼ 3 allows Smax � 1500,
while p ¼ 4 allows Smax � 1450. Thus, the new probability
distribution does not allow us to extend the argument below
�S� 103, soweconclude that single-channel dominance is not
likely to occur for actions this small. If K �Oð10500Þ, then
this distribution will never give single-channel dominance.
In summary, these considerations suggest that decays

of vacua for which the typical action is * 106 if K �
Oð10500Þ, or* 103 ifK ’ Oð200Þ, are plausibly dominated
by a single channel. This allows for the possibility that the
entire multiverse is dominated by a single channel. For
example, in the scale-factor cutoff measure, the spacetime
volume is typically dominated by a very slowly decaying,
presumably very low energy density vacuum, called the
dominant vacuum. An upward tunneling is required to
access the high-energy part of the multiverse. In deciding
whether the upward tunneling is dominated by a single
channel, one should keep in mind that most of the action
appearing in this calculation is associated with the initial
state, and will apply to all final states, so only a small part
of the action is relevant for estimating the spread of the
values for the action. Nonetheless, it is conceivable that
this upward tunneling is dominated by a single channel,
and that a single pathway of subsequent tunnelings domi-
nates the multiverse, as depicted in Fig. 3. It is also pos-
sible, however, that this is not the case, and that Fig. 2 is a
more accurate description of the multiverse.
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