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Cosmological magnetic fields in open Friedmann universes can experience superadiabatic amplification

within the realm of conventional electromagnetism. This is possible mathematically, despite the confor-

mal invariance of Maxwell’s equations, because Friedmann spacetimes with non-Euclidean spatial

geometry are not globally conformal to Minkowski space. Physically, this means that even universes

that are marginally open today can sustain large-scale magnetic fields that are substantially stronger than

previously anticipated. In the present paper, we investigate this purely geometric amplification mechanism

in greater detail, focusing on the early evolution of the electromagnetic modes in inflationary Friedmann

models with hyperbolic spatial geometry. This also allows us to refine the earlier numerical estimates and

provide the current spectrum of the residual, superadiabatically amplified magnetic field.
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I. INTRODUCTION

Large-scale magnetic (B) fields have been observed
throughout the universe: from galaxies and galaxy clusters
to remote protogalactic structures [1]. Nevertheless, the
origin of these fields is still an open question. The galactic
dynamo can explain the galactic and (possibly) the cluster
B-fields, but the mechanism faces difficulties with those
seen in high-redshift protogalaxies [2]. The problem deep-
ens when one takes into account recent claims for the
detection of magnetic fields in empty intergalactic space
[3], where the dynamo amplification presumably cannot
operate. Cosmology could provide the answer, but gener-
ating sustainable B-fields in the early universe has been
proven very challenging [4]. The main obstacle is that
conventional magnetic fields in spatially flat Friedmann-
Robertson-Walker (FRW) universes, which provide the
standard cosmological models, are drastically diluted by
the universal expansion, especially during inflation. This
leads to residual B-fields that are far too weak to seed and
sustain the galactic dynamo. For decades, the solution has
been usually sought outside Maxwellian electromagne-
tism, general relativity or standard cosmology. We can do
this in many ways, which explains the number and the
variety of the proposed scenarios (see [5] for relatively
recent work and [4] for more references). Nevertheless,
one could still produce appreciable magnetic seeds of
cosmological origin within the standard model by appeal-
ing to a purely general relativistic (geometrical) amplifica-
tion mechanism that operates when the FRW background
universe has negatively curved spatial sections [6].

Electromagnetic fields are, so far, the only known energy
sources of vector nature. This guarantees a purely geomet-
rical coupling between the Maxwell field and the geometry

of the host spacetime, ensuring a special status for
electromagnetism in Einstein’s theory. The gravito-
electromagnetic interaction is monitored by the Ricci
identities and adds to the standard interplay between matter
and geometry of the field equations. Technically, it ensures
the presence of curvature-related terms in the electromag-
netic wave equations [7]. Physically, this implies a very
different evolution for the Maxwell field in curved space-
times. Thus, electromagnetic fields in Friedmann models
with nonzero spatial curvature evolve differently than in
their spatially flat counterpart. More specifically, in FRW
universes with negative 3-curvature the adiabatic magnetic
decay slows down and the field is superadiabatically
amplified [6]. This is possible, despite the conformal in-
variance of standard electromagnetism and the conformal
flatness of the FRW spacetimes, because Friedmann mod-
els with non-Euclidean spatial geometry are only locally
conformal to Minkowski space (e.g. see [8]). Thus, the
aforementioned amplification occurs on relatively large
scales, where the curvature effects are prominent and
the conformal mapping between the Friedmann and the
Minkowski spacetimes breaks down. The mechanism
seems to work in all negatively curved FRW models,
irrespective of their matter content and, in principle, can
lead to residual magnetic fields strong enough to seed the
galactic dynamo. As yet, this is the only scenario where
superadiabatic magnetic amplification is achieved at the
classical level and without introducing any new physics.
The purely geometrical mechanism of magnetic amplifi-

cation outlined above has been discussed and developed
within the framework of the Friedmann models in [6]. It
applies tomore general spacetimes, however, since analogous
exact results have also been obtained in Bianchi class B
models that contain electromagnetic fields [9]. Overall, the
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amplification effect appears to be a generic feature of
cosmological models with negative spatial curvature. As a
result, the latter can sustain large-scale magnetic fields much
stronger than generally expected. More specifically, the final
strength of the amplified B-field can reach magnitudes close
to 10�15 G today, depending on the precisemodel of inflation
[6]. These numerical estimates correspond to magnetic
modes with sizes close to the curvature scale of an open
FRW universe. In particular the aforementioned studies fol-
lowed the evolution of the mode from the moment it crossed
outside the Hubble radius, during a period of slow-roll in-
flation, throughout the subsequent radiation and dust epochs,
all the way to the present. Here, we will turn our attention to
the early stages of themagnetic evolution prior and during the
slow-rolling phase. Our aim will be to examine whether the
superadiabatically amplifiedmagnetic modes can be causally
connected at the onset of inflation and the time they crossed
the Hubble horizon during the inflationary expansion.
Causality will ensure the physical existence of these modes,
at least in classical (purely general relativistic) terms. The
time of first horizon crossing, on the other hand, will essen-
tially determine the modes’ subsequent amplification and
eventually their residual strength today. We then provide the
spectrum of the present amplitude of the superadiabatically
amplifiedmagneticmodes, both analytically andnumerically.
According to our results, for reasonable values of the cosmo-
logical parameters, the final B-field lies between 10�20 and
10�12 Gauss, which means that it falls fairly comfortably
within the typical galactic-dynamo requirements.

II. MAGNETIC FIELDS ON OPEN
FRW BACKGROUNDS

Cosmological magnetic fields are thought to decay adia-
batically in all FRW backgrounds at all times. The reason
is believed to be the conformal invariance of classical
electromagnetism, combined with the conformal flatness
of the Friedmann models. Nevertheless, this is not the case
when the FRW host has hyperbolic spatial geometry.

A. The gravito-electromagnetic interaction

Electromagnetic fields are, as yet, the only known energy
source of vector nature. This means that the Maxwell and
the gravitational fields have a twofold interaction. The first
is the familiar interplay between matter and geometry
introduced by Einstein’s equations. The second is a purely
geometrical coupling, which holds even outside the realm of
general relativity and is monitored by the Ricci identities.
When applied to the magnetic vector (Ba), the latter read

2r½arb�Bc ¼ RabcdB
d (1a)

and

2D½aDb�Bc ¼ RabcdB
d; (1b)

where the former applies to the whole spacetime and the
latter holds on the observer’s 3-dimensional (irrotational)

rest-space. Note thatra andDa are the 4D and 3D covariant
derivative operators respectively; Rabcd and Rabcd are the
corresponding Riemann tensors.
This interaction between gravity and electromagnetism

implies that the evolution of large-scale cosmological
magnetic fields is affected by the geometry of their host
spacetime. More specifically, the use of the Ricci identities
adds curvature-related terms to the wave equation of the
electromagnetic field [7]. In particular, on an FRW back-
ground, the magnetic component of a source-free electro-
magnetic field is monitored by

€Ba � D2Ba ¼ �5H _Ba � 2ð _H þ 3H2 þ a�2KÞBa; (2)

to linear order. Here, H ¼ _a=a is the background Hubble
parameter [a ¼ aðtÞ is the associated metric expansion
scale factor], K ¼ 0;�1 is the 3-curvature index of the
underlying FRW model, D2 ¼ DaDa is the covariant
Laplacian operator of the spatial hypersurfaces, and over-
dots denote comoving proper-time derivatives. Note the
gravito-magnetic term on the right-hand side of Eq. (2). It
results from the magneto-geometrical interactions mani-
fested in the Ricci identities [particularly in (1b)] and will
play the key role in the analysis that follows.
We can simplify expression (2) by introducing the re-

scaled magnetic field vector Ba ¼ a2Ba and by using
conformal, instead of proper, time (i.e. �, with _� ¼ 1=a).
Then, Eq. (2), written for the nth magnetic mode, reduces to

B 00
ðnÞ þ ðn2 þ 2KÞBðnÞ ¼ 0; (3)

where n is the eigenvalue of the Laplacian that represents the
comoving wave number of the mode and primes denote
conformal-time derivatives [6]. On FRW backgrounds with
Euclidean spatial geometry (i.e., when K ¼ 0), one can
easily show that the rescaledmagnetic field remains constant
in terms of conformal time. This ensures an adiabatic decay
for all magnetic modes (i.e., BðnÞ / a�2, with n � 0) at all
times. Following (3), for modes with n2 � 2, the adiabatic
decay-rate persists in Friedmann models with nonzero
3-curvature as well. This is to be expected, since the afore-
mentioned modes correspond to small scales where the
curvature effects are unimportant. On large enough lengths,
however, the adiabatic decay law is no longer guaranteed due
to the magneto-geometrical term on the right-hand side
of (3).1 As mentioned earlier, the latter reflects the purely

1The Minkowski-like evolution of the rescaled B-field on flat
Friedmannmodels can also be seen as the direct consequence of the
conformal invariance of standard electromagnetism and of the fact
that the spatially flat FRW spacetime is globally conformal to the
Minkowski space. The latter does not apply to Friedmann models
with nonzero 3-curvature, which are only locally conformal to the
Minkowski space [8]. Inparticular, the conformalmappingbetween
the two spacetimes breaks down on large enough scales where the
curvature effects become prominent. It is on thesewavelengths that
the magneto-geometrical term in Eq. (3) takes over and the adia-
batic magnetic decay law is no longer guaranteed, despite the
conformal invariance of standard electromagnetism.
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general relativistic interaction between magnetism and
spacetime curvature monitored by the Ricci identities.

B. Superadiabatic magnetic amplification

During a period of inflationary expansion, the universe is
believed to behave like a very poor electrical conductor.
After inflation and reheating, the conductivity is high and
the resulting electric currents will freeze any large-scale
magnetic field that may be present into the primordial
plasma. In highly conductive environments the B-field
drops adiabatically at all times (i.e., Ba / a�2) and irre-
spective of the background geometry. On scales lying
beyond the Hubble radius, however, causality ensures the
absence of currents. There, the conductivity remains low
and the ideal magnetohydrodynamic approximation does
not hold. In such an environment, the magnetic field vector
is still monitored by Eqs. (2) and (3).

According to (3), the adiabatic magnetic decay persists on
closed FRW backgrounds (where K ¼ þ1). There, the
magneto-curvature term simply modifies the frequency of
the field’s oscillation. On open FRW backgrounds, however,
the same term can change the nature of the magnetic wave
equation. In particular, settingK ¼ �1 in (3), the latter reads

B 00
ðnÞ þ ðn2 � 2ÞBðnÞ ¼ 0; (4)

with n2 � 0. Therefore, on large enough scales (those
with �2 � n2 � 2< 0), the solution of Eq. (4) no longer
leads to conventional wave solutions, but to ‘‘exponential
waves’’ of the form

BðnÞ ¼ C1 cosh
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n2

p �
þ C2 sinh

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n2

p �
; (5)

where now 0 � n2 < 2. When our open FRW background
contains a single perfect fluid of barotropic index w ¼
p=� � �1=3, the associated scale factor evolves as a� /
sinhð��Þ, where � ¼ ð1þ 3wÞ=2. Then, expression (5)
recasts into the evolution law

BðnÞ ¼ C1

�
a

a0

� ffiffiffiffiffiffiffiffiffi
2�n2

p
�2 þ C2

�
a

a0

�� ffiffiffiffiffiffiffiffiffi
2�n2

p
�2
; (6)

for the actual magnetic field. The above implies superadia-
batic amplification, namely a decay rate slower than the
adiabatic one, for all modes with 0 � n2 < 2. Also, given
that n2 ¼ 1 corresponds to the curvature scale of the FRW
background (see Sec. III A below), we deduce that the am-
plification applies to all supercurvaturemodes (i.e. thosewith
0 � n2 < 1), as well as to the largest subcurvature modes
(i.e., the ones with 1 � n2 < 2). More specifically, on the
curvature scale themagnetic field drops asB / a�1, while at
the homogeneous limit (i.e., as n2 ! 0) its decay rate slows

down further to B / a
ffiffi
2

p �2.
So far, we have established that magnetic fields on

spatially open FRW backgrounds can be superadiabatically
amplified by curvature effects within the realm of classical
electromagnetic theory. We have also identified the scales

spanned by the affected magnetic modes and found that the
amplification effect is essentially independent of the type
of matter that fills the universe. This means that large-scale
B-fields can be superadiabatically amplified during slow-
roll inflation, reheating, and throughout the subsequent
radiation and dust eras. On physical grounds, we would
also like to know whether the scales of interest can be
causally connected at the onset of the inflationary expan-
sion, as well as the time they cross outside the Hubble
horizon. To a large extent, the latter will decide the residual
strength of the associated superadiabatically amplified
B-fields. It will therefore help to investigate how the hyper-
bolic spatial geometry of the open FRW models affects
causality and modifies the standard slow-roll scenario.

III. CAUSALITYAND INFLATION
IN OPEN FRW MODELS

When applied to spatially flat Friedmann universes,
typical slow-roll inflation leads immediately to the familiar
de Sitter phase of exponential expansion. This standard
picture changes, however, in models with non-Euclidean
spatial geometry, especially during their early stages. In
what follows, we will discuss certain aspects of FRW
cosmologies with negative 3-curvature.

A. Causal horizons

Consider a Friedmann universe with hyperbolic spatial
hypersurfaces, that contains a single barotropic medium of
energy density � and isotropic pressure p. The evolution of
this model is determined by the set of equations

_�¼�3H�ð1þwÞ; _H¼�H2�1

6
��ð1þ3wÞ (7)

and

H2 ¼ 1

3
��þ 1

a2
; (8)

where w ¼ p=� is the barotropic index and � ¼ 8�G is
the rescaled gravitational constant (with c ¼ 1). Recalling
that �H ¼ 1=H is the Hubble horizon,� ¼ ��=3H2 is the
density parameter and defining �K ¼ a as the curvature
scale of the universe, we see that Eq. (8) is recast as

�K ¼ �Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p (9)

with 0<�< 1 for all open FRW models (e.g. see [10]).
The latter means that the curvature radius of an open
FRW cosmology lies always outside the Hubble radius,
with the two scales getting close in the low density limit
(i.e., �K ! �þ

H as � ! 0þ).
Let us now go back to the magnetic case discussed in

Sec. II B and consider a mode with physical wavelength
�n ¼ a=n. We saw that large-scale B-fields are super-
adiabatically amplified during inflation, reheating, and
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throughout the subsequent evolution of the universe. Given
the large wavelengths of these modes, it is of interest to
establish whether or not they can be causally connected at
the onset of inflation. Recalling that �K ¼ a, and using (9),
we arrive at

�n ¼ �H

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ; (10)

which relates the scale of the magnetic perturbation to that
of the Hubble horizon. The above ensures that the scale of
the mode in question will lie inside the Hubble radius, and
therefore it will be in causal contact, as long as

�< 1� 1

n2
: (11)

This condition is readily satisfied by all subcurvature
lengths, namely by those with n2 > 1. In other words,
scales smaller than the curvature radius of an open FRW
spacetime can reside inside the Hubble horizon, provided
the universe is sufficiently open. These include the largest
subcurvature magnetic modes (i.e., those with 2> n2 > 1),
which are superadiabatically amplified (see Sec. II B). For
example, subcurvature magnetic modes with n ¼ 1:01 and
n ¼ 1:1 will be within the Hubble radius if �< 0:02 and
�< 0:17, respectively, at the beginning of the inflationary
phase. Supercurvature modes can never satisfy condition
(11). This reflects the fact that the corresponding lengths
are always outside the Hubble radius. Nevertheless, in
principle, even supercurvature lengths can be causally
connected in open FRW models.

When dealing with spatially flat FRW cosmologies
containing conventional matter, namely with w>�1=3,
the Hubble length essentially coincides with the particle
horizon of the comoving observers and therefore it effec-
tively defines their observable universe. In those models,
super-Hubble (and consequently supercurvature) scales are
always causally disconnected. This is not the case, how-
ever, in open Friedmann models. There, the Hubble and the
particle horizons do not coincide, but the latter is generally
larger than the former. For instance, at any given time, the
particle horizons of a radiation and a dust-dominated open
FRW universe are

�P ¼ 1

2H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ln

 
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
!

(12a)

and

�P ¼ 1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ln

 
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
!
; (12b)

respectively (see also [11]). Then, a simple Taylor expan-
sion shows that both particle horizons diverge as the energy
density of the universe becomes progressively lower (i.e.,
�P ! þ1 as� ! 0þ in agreement with the Milne limit).
Close to the Euclidean threshold, on the other hand, one
recovers the familiar �P ¼ 1=H and �P ¼ 2=H expres-
sions of the radiation and the dust eras, respectively.

The conclusion is that super-Hubble, as well as supercur-
vature, scales can be causally connected in FRW universes
with sufficiently low density.2 It is therefore of physical
interest to explore their phenomenological consequences.

B. The inflationary dynamics

Introducing conformal time (�) and assuming a period
of de Sitter-type inflation (when p ¼ ��) the system of (7)
and (8) has the parametric solution

a ¼ a0

�
e�ð1� e2�0Þ
e�0ð1� e2�Þ

�
(13)

and

t ¼ t0 þ a0ð1� e2�0Þ
2e�0

ln

�ð1þ e�Þð1� e�0Þ
ð1� e�Þð1þ e�0Þ

�
; (14)

where �< 0 and the zero suffix denotes a given time
during inflation. Thus, at the beginning of the inflationary
phase, when � � 0 and e� � 1, the scale factor evolves
as a / t. Toward the end of inflation, on the other hand, we
have � ! 0� and e� ! 1�, which ensure that a / et. Put
another way, the slow-rolling regime in an open FRW
model starts with coasting expansion and the exponential
phase only occurs at the end, when the effects of curvature
have faded away. If we are interested in modes close to the
curvature scale, it is important to quantify the effect of the
coasting phase.
Further insight can be obtained by evaluating the

principal kinematic and dynamic variables. In particular,
using primes to denote conformal time derivatives, the
Hubble and the deceleration parameters are H ¼ a0=a2
and q ¼ �ð1þH0=aH2Þ, respectively. Then, on using
expressions (13) and (14), we obtain

H ¼ e�0ð1þ e2�Þ
a0e

�ð1� e2�0Þ (15a)

and

q ¼ � 4e2�

ð1þ e2�Þ2 : (15b)

2Our approach is purely general relativistic and causality is the
criterion that decides whether physical processes can operate, or
not, within a given region. It has been argued that, quantum
mechanically, the superadiabatically amplified modes may not
be normalizable [12]. The argument was based on a study
adopting open inflation, instead of the standard slow-roll sce-
nario used here. The authors found that the modes were normal-
izable on small scales, where the 3-curvature effects are
negligible, but encountered the usual infinities when they
reached lengths where the curvature is strong. Leaving aside
the question of open inflation, the aforementioned normalizabil-
ity issues are not surprising, given the absence of a theory
unifying general relativity and quantum mechanics. After all,
these are exactly the problems that any future theory of quantum
gravity is expected to solve.
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The former combines with Eqs. (8) and (13) to give

1

3
�� ¼ 4e2�0

a20ð1� e2�0Þ2 ; (16)

which guarantees that � ¼ �0 ¼ constant, as expected.
Finally, substituting this result in the right-hand side of
(15a) and keeping in mind that� ¼ ��=3H2, we arrive at

H ¼ 1

2

ffiffiffiffiffiffiffiffiffi
��0

3

r ð1þ e2�Þ
e�

and q ¼ ��: (17)

Accordingly, at the onset of inflation (i.e. when � ! �1)
we have H ! þ1, q ! 0�, and � ! 0þ. On the other
hand, toward the end of the inflationary expansion (i.e.,

as � ! 0�), we find that H ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0=3

p
, � ! 1�, and

q ! �1þ. As before, we see that the model enters its
accelerating, de Sitter-type, phase only asymptotically at
the end of the inflationary regime.

C. Hubble horizon crossing

During the coasting phase of the expansion, we have
H / t�1, which means that the Hubble horizon scales like
�H / a. Given that all wavelengths also scale in the same
way, modes that were originally inside the Hubble radius
will remain so and cross outside only toward the end of
inflation, when the curvature effects have faded away and
the expansion starts to accelerate. As we will see next, the
time of horizon crossing is decided solely by the comoving
wavelength of the mode in question.

Let us consider a mode with physical scale �n ¼ a=n,
where n is the associated comoving eigenvalue. On using
expressions (13) and (15a), we obtain

�n

�H

¼ aH

n
¼ 1þ e2�

nð1� e2�Þ ; (18)

with �< 0. Thus, a mode will lie inside the Hubble radius
(i.e., �n=�H < 1) as long as

n >
1þ e2�

1� e2�
: (19)

Given that �< 0, the latter guarantees that n > 1 always.
In particular, the right-hand side of the above approaches
unity at the beginning of the inflationary phase (when
� ! �1) and starts to diverge as we approach the end
of inflation (i.e., as � ! 0�). In other words, supercurva-
ture scales (those with 0< n2 < 1) are always outside the
Hubble horizon.

Taking the conformal time derivative of (18), we find
that ð�n=�HÞ0 ¼ 4e2�=nð1� e2�Þ2 > 0 at all times, which
ensures that during the inflationary regime any given wave-
length grows faster than the Hubble horizon. This in turn
implies that, given enough time, essentially all sub-Hubble
scales will eventually cross outside. Following (19), at the
time of horizon crossing, namely when �n=�H ¼ 1 and
� ¼ �HC, we find that

�HC ¼ 1

2
ln

�
n� 1

nþ 1

�
< 0; (20)

since n > 1 [see Eq. (19) above]. Consequently, all finite
wavelengths can exit the Hubble scale before the end of
inflation. However, for modes that are initially well inside
the Hubble radius (i.e., with n � 1), horizon crossing
occurs only at the end of inflation (i.e., �HC ! 0�).
Further information can be obtained by recasting the
Friedmann equation into the form

�n

�H

¼ 1

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ; (21)

with 0<�< 1 in our case. Therefore, at the time when a
given wavelength passes through the Hubble threshold, the
density parameter of the universe is

�HC ¼ 1� 1

n2
; (22)

where n2 > 1.3 Again, we see that most subhorizon modes
do not cross the Hubble scale before the value of the
density parameter has approached substantially close
to unity. Wavelengths spanning scales just inside the cur-
vature radius, with n ¼ 1:01 and n ¼ 1:1 for example,
cross outside the Hubble horizon at �HC ¼ 0:02 and
�HC ¼ 0:17, respectively. For smaller lengths, say with
n ¼ 2 and n ¼ 10, horizon crossing occurs later, when
�HC ¼ 0:75 and �HC ¼ 0:99, respectively. Finally, it is
worth pointing out that a given mode reenters the Hubble
horizon (during the subsequent radiation or matter domi-
nated eras) when � is again equal to �HC. For the current
Hubble scale, whatever n it possesses, this means that
�HC ¼ �0, a result that will prove useful later.

D. The number of e-folds

In a FRW universe, the Hubble scale is related to
the density parameter by means of the expression

�H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�=��

p
. Therefore, during inflation, a perturbation

that crosses the Hubble horizon has wavelength

�n ¼ �H ’ MPl�
1=2
HC

M2
; (23)

with n2 > 1. Note that � ’ M�2
Pl and � ’ M4 ¼ constant,

where MPl represents the Planck mass and M the energy
scale of inflation in natural units. After horizon crossing,
the aforementioned wavelength grows by a factor of eN,
whereN is the number of e-folds between horizon crossing
and the end of the inflationary regime, so then we have

3According to expression (22), modes with 0 � n2 � 1 have
�HC � 0. This result simply reflects the fact that the corre-
sponding scales lie outside the Hubble length at all times. Recall
that n2 ¼ 1 corresponds to the curvature radius, which in open
FRW models is always larger than the Hubble horizon (see
Sec. III A earlier).
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ð�nÞINF ’ eN
MPl�

1=2
HC

M2
: (24)

Throughout the reheating era, the energy density of the
matter decreases as � / a�3. Consequently, by the end of
that period, the scale in question has grown further by

aRH
aINF

¼
�
�INF

�RH

�
1=3 ’

�
M

TRH

�
4=3

; (25)

since �RH ’ T4
RH (in natural units). Putting (23) and (24)

together, we deduce that at the beginning of the radiation
era, the original wavelength is

ð�nÞRH ’ eN
MPl�

1=2
HC

M2=3T4=3
RH

; (26)

with the quantities in the right-hand side given in natural
units.

Expression (26) provides the scale spanned at the end
of reheating by a wavelength that crossed the horizon N
e-folds before inflation was over. We may also estimate the
aforementioned number of e-folds using thermodynamic
arguments. More specifically, following [13], we assume
that the expansion of the universe proceeds adiabatically
(with the exception of the reheating era). Then, the entropy
contained within the current Hubble scale, which is esti-
mated close to 1088, has remained unchanged since reheat-
ing. At that time, the entropy inside a region that crossed
the horizon N e-folds before inflation ended was

SRH ’ �3
RHT

3
RH ’ e3N

M3
Pl�

3=2
HC

M2TRH

; (27)

where the last equality derives from Eq. (26). Putting
SRH equal to 1088 in the above and recalling that MPl ’
1019 GeV, we find that a scale of the size of the current
observable universe, crossed the Hubble horizon

N� ’ 24þ 2

3
lnMþ 1

3
lnTRH � 1

2
ln��

HC; (28)

e-folds before the end of inflation, where the � denotes
quantities associated with the current Hubble scale.

In general, a wavelength of size �n today crossed the
Hubble horizon N e-folds before the end of inflation when
� ¼ �HC, with the latter given in Eq. (20). Obviously,
wavelengths smaller than the present Hubble scale crossed
later and larger scales crossed earlier. Then, using (13),
we have

eN�N� ¼ a�HC

aHC

¼ e�
�
HC

��HC
1� e2�HC

1� e2�
�
HC

: (29)

Finally, substituting (28) into the above, while employing
(20) and (22), yields

N ’ 53þ 2

3
ln

�
M

1014

�
þ 1

3
ln

�
TRH

1010

�

� 1

2
lnð1��0Þ � 1

2
lnðn2 � 1Þ; (30)

given that ��
HC ¼ �0 [see Eq. (22) in Sec. III C]. In the

above, which generalizes Eq. (8.45) of [13] for FRW
models with �< 1, the quantities M and TRH are mea-
sured in GeV. Also, n is related to the physical wavelength

at present by n ¼ ð1��0Þ�1=2ð�H=�nÞ0 [see also (21)].4

Looking at expression (30), one can see that the number
of e-folds does not scale asN / ln�n, in contrast to the flat-
FRW case (compare to Eq. (8.45) in [13]). The difference
reflects the fact that, in an open FRW model, the Hubble
radius is not constant during inflation (see Sec. III B ear-
lier). Also, following (30), the e-folding number diverges
as the wavelength approaches the curvature scale (i.e., for
n2 ! 1). However, the singularity is apparent and can be
explained by recalling that the supercurvature scales,
namely those with 0 � n2 � 1, are always outside the
Hubble length. Hence, for the corresponding modes, there
is no horizon exit and Eq. (30) does not apply. In their case,
the key parameter is the total number of e-folds. Estimating
the amplification of supercurvature B-modes is not essen-
tial for our purposes and goes beyond the scope of the
present article. Therefore, from now on, we will focus on
magnetic fields spanning the largest subcurvature scales
(i.e., modes with 1< n2 < 2).

IV. THE RESIDUAL MAGNETIC FIELD

The number of e-folds between the time a certain mag-
netic mode crossed outside the Hubble radius and the end
of inflation is crucial for the current strength of the residual
B-field. There are additional factors, however, that can also
play a key role.

A. The overall amplification

In line with the Gibbons-Hawking temperature, the
energy density (�B) stored inside a magnetic mode at
horizon crossing is determined by the dimensionless ratio

�
�B

�

�
HC

	
�
M

MPl

�
4
; (31)

where �B 	 B2 is the energy density of the B-field.
Magnetic fields coherent on the largest subcurvature
scales (and beyond) are superadiabatically amplified as

B / a��ðnÞ, with �ðnÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n2

p
. Then, given the

constant background density throughout inflation, we have

4Substituting the relation n ¼ ð1��0Þ�1=2ð�H=�nÞ0 to the
right-hand side of Eq. (30) and then setting �0 ¼ 1, one can
easily recover expression (8.45) in [13].
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�
�B

�

�
INF

	 e�2N�ðnÞ
�
M

MPl

�
4

(32)

at the end of the slow-rolling regime.
During reheating, the effective equation of state of

the matter is that of pressure-free dust. This means that
�RH ¼ �INFðaINF=aRHÞ3 by the end of that period. At the
same time, the large scale magnetic fields are still super-
adiabatically amplified. Therefore, near the curvature

scale, where B / a��ðnÞ, we have ð�BÞRH ¼ ð�BÞINF 

ðaINF=aRHÞ2�ðnÞ. As a result, since �INF ’ M4 and
�RH ’ T4

RH, the relative strength of the associated mag-
netic field at the end of reheating is�

�B

��

�
RH

	 e�2N�ðnÞ
�
M

TRH

�½12�8�ðnÞ�=3� M

MPl

�
4
: (33)

Recall that �RH ’ �� at that time, with �� representing

the energy density of the radiative component. The mag-
netic amplification continues throughout the subsequent
radiation and dust eras. Therefore, for B-fields spanning
lengths close to the present curvature scale, we have

ð�B=��Þ0 ¼ ð�B=��ÞRHðTRH=T0Þ2½2��ðnÞ� today. Also, to

obtain the last result, we have taken into account that
�� / a�4 and T / 1=a. Combining these with (30) and

setting T0 	 10�13 GeV gives

�
�B

��

�
0
	 10�117þ102

ffiffiffiffiffiffiffiffiffi
2�n2

p �
M

1014

�
4
ffiffiffiffiffiffiffiffiffi
2�n2

p


 ½ð1��0Þðn2 � 1Þ�2�
ffiffiffiffiffiffiffiffiffi
2�n2

p
; (34)

since �ðnÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n2

p
and ��

HC ¼ �0 [see Eq. (22)

in Sec. III C]. Finally, recalling that ð��Þ0 	 10�51 GeV4,

we arrive at an expression for the present-day magnetic
field

B0 	 10�65þ51
ffiffiffiffiffiffiffiffiffi
2�n2

p �
M

1014

�
2
ffiffiffiffiffiffiffiffiffi
2�n2

p


 ½ð1��0Þðn2 � 1Þ�ð2�
ffiffiffiffiffiffiffiffiffi
2�n2

p
Þ=2; (35)

for the largest subcurvature modes (i.e., those with
1< n2 < 2). This formula provides, in Gauss units, the
present magnitude of a superadiabatically magnetic mode
that spans scales close to the curvature radius of an open
FRW universe.

B. The final magnetic spectrum

According to expression (35), the final strength of the
superadiabatically magnetic field depends on the energy
scale of the adopted inflationary scenario (M), on the
current density of the universe (�0) and on the mode’s
scale (n). The WMAP-normalized data constrain the cur-
rent density parameter of the universe, so that approxi-
mately 1��0 � 10�2. Also, typical inflationary models
have energy scales between 1014 GeV and 1017 GeV.

Thus, setting 1��0 	 10�2 and M	 1014 GeV, the
current magnitude of a (subcurvature) magnetic mode
with n ¼ 1:01 is

B0 	 10�16 Gauss: (36)

Stronger B-fields can be obtained by increasing the scale of
inflation. For instance, keeping the wavelength of the mode
and the current density parameter unchanged and assuming
that M	 1016 GeV, we arrive at B0 	 10�12 G. Magnetic
seeds of such strengths are still too weak to affect the
outcome of primordial nucleosynthesis [14], or leave an
observable signature in the CMB [15]. They can readily
sustain the galactic dynamo, however, which typically re-
quires an initialB-seed withmagnitude in the range between
10�20 G and 10�12 G [2]. In addition, intriguingly, mag-
netic fields close to 10�16 G are very close in strength to
those recently reported in empty intergalactic space [3].5

The numerical estimates quoted above will drop if the
current density parameter gets closer to unity. However,
the dependence of the residual magnetic strength on the
present density of the universe is relatively weak, and
certainly weaker than that on the energy scale of the
adopted inflationary model. This means that we can obtain
astrophysically relevant B-seeds even in very marginally
open universes. For example, setting n ¼ 1:01, M	
1014 GeV, and 1��0	10�10, we find B0	10�20 G.
For M	1016 GeV, the same strength can be obtained
even when 1��0 	 10�18. These results correspond to
B-modes coherent on lengths just inside the curvature
radius of an open FRW universe, which experience strong
superadiabatic amplification. In particular, a mode with
n ¼ 1:01 decays as B / a�1:01 [see solution (6) in
Sec. II B]. As we move down to smaller scales, however,
the magnetic decay-rate increases and at the n ¼ 2 thresh-
old the adiabatic decay law is reestablished (see Fig. 1).
We also remind the reader that supercurvature lengths,
although causally connected, are not included in our
analysis (see Sec. III D).
It should be emphasized that the above quoted magnetic

strengths do not include the amplification of the field
during the nonlinear phase of galaxy formation. In the
case of spherically symmetric protogalactic collapse, for
example, the magnitude of the magnetic seed typically

5When all the magnetic amplification takes place during
inflation and the B-field decays adiabatically ever since,
strengths around 10�16 G today can lead to the so-called back-
reaction problems [16]. These occur because the required infla-
tionary amplification is so strong that the magnetic energy
density catches up with that of the driving inflaton. In our
scenario there is no backreaction issue. The energy density of
the B-field is much lower than that of the dominant matter
component at all times, namely during inflation, reheating and
later during the radiation and the dust epochs. Residual strengths
close to 10�16 G are achieved because the superadiabatic am-
plification of the field persists throughout its evolution and it is
not confined to the inflationary era only.
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increases by two or three orders of magnitude. In the more
realistic case of anisotropic collapse, shearing effects could
add one or two extra orders of magnitude to the B-seed
[17]. Then, the galactic dynamo is expected to take over
[2]. Also, our numerical results refer to B-fields spanning
scales comparable to the curvature radius of the universe.
Once galaxy formation begins, however, these fields
should start breaking up and reconnecting on scales com-
parable to that of the collapsing protogalaxy. Note that, on
sufficiently small scales, damping effects will process the
magnetic spectrum and determine its small-scale structure
and polarization [18].

V. DISCUSSION

The problem of cosmic magnetism—its origin, evolu-
tion, and implications—persists. The continual detection
of magnetic fields in the Universe, makes the search for its
solution increasingly pressing. For cosmologists, the big-
gest challenge is obtaining sustainable primordial B-fields
that could successfully seed galactic dynamos. There have
been many attempts to solve this problem. With very few
exceptions, however, the solution has been sought outside
standard electromagnetism, standard cosmology, or gen-
eral relativity. Nevertheless, the resources of Einstein’s
theory may not have been exhausted yet and it could still
provide the answer. The reason is the geometrical inter-
pretation of general relativity, which gives a special status

to the electromagnetic field, due to its vector nature. In
practice, this means that, in addition to the Einstein equa-
tions, the Maxwell field interacts with the geometry of the
host spacetime through the Ricci identities as well. Although
this particular coupling between gravity and electromagne-
tism has been known for some time, it remains underinves-
tigated. Here, we have explored the implications of the
aforementioned interaction for the evolution and the survival
of large-scale cosmological magnetic fields in greater detail.
We have studied how the generation of seed magnetic

fields during standard slow-roll inflation in a marginally
open universe can lead to significant superamplification of
those seed fields to levels that can provide the initial fields
needed for dynamos to produce easily the B-fields with
magnitudes now observed in galaxies, clusters, and interga-
lactic space. This process of magnetic superamplification
relies crucially on the existence of negative spatial curvature
so that the primordial magnetic fields do not decay away
rapidly at the adiabatic, B / a�2, rate. Our mechanism
appeals to the aforementioned magneto-curvature coupling,
which in open universes can significantly slow the decay of
the magnetic field by breaking the global conformal invari-
ance that has often wrongly been assumed to dominate
its evolution. The resulting superadiabatic magnetic ampli-
fication applies to B-fields coherent near and beyond the
curvature radius of the universe. Here, we have looked at the
largest subcurvature scales, calculated the fields expected
for likely parameter choices and displayed the predicted
magnetic spectrum (see Fig. 1). In all cases, the amplifica-
tion peaks just inside the curvature scale, which implies a
typical correlation length of the order of 104 Mpc for the
maximally amplified B-field. The latter, however, should
break up and reconnect on much smaller (cluster or galactic-
size) scales once the nonlinear phase of galaxy formation
begins. The residual magnetic strength depends on the
energy scale of the adopted inflationary model and on the
current curvature radius of the universe. More specifically,
setting the energy scale of inflation at M	 1014 GeV4 and
assuming that 1��0 	 10�2, the maximum magnetic
strength is approximately 10�16 G.
These numerical results can be tuned further when the

data from the Planck mission narrow down the range of�0

and that of the inflation energy scale. Until then, we should
underline that in our scenario the earlier inflation starts, the
stronger the magnetic amplification. On the other hand,
the closer the density parameter gets to unity, the weaker
the final B-field. Nevertheless, the �-dependence is rela-
tively weak, which means that even in (very) marginally
open universes the residual magnetic seeds are comfort-
ably within the standard dynamo requirements. Finally,
before closing, we should also point out that B-fields
around 10�16 G are intriguingly close to those recently
reported in empty intergalactic space. Overall, our analysis
shows that spacetime curvature can act as an effective
dynamo mechanism of purely geometrical nature.
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FIG. 1 (color online). The current spectrum of the superadia-
batically amplified magnetic field, as a function of the mode
wavelength, for different energy scales of inflation, and values of
the current density parameter (on a logarithmic scale). Small
wavelengths experience weak (or no) amplification, while the
maximum enhancement occurs very close to the curvature scale.
The cutoff seen at the curvature radius of the universe simply
reflects the fact that supercurvature modes are not included in
our analysis. Note that, as �0 approaches unity, the curvature
scale is pushed further away from the Hubble horizon, which is
assumed to be at approximately 103 Mpc. The numerical depen-
dence on �0, however, is considerably weaker than that on M.
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