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It has recently been pointed out that a substantial amount of e-folds can occur during the waterfall regime
of hybrid inflation. Moreover, Kodama et al. have derived analytic approximations for the trajectories of the
inflaton and of the waterfall fields. Based on these, we derive here the consequences for F- and D-term
supersymmetric hybrid inflation: a substantial amount of e-folds may occur in the waterfall regime, provided
K << M?*/ Mfz,, where « is the superpotential coupling, M the scale of symmetry breaking and Mp the reduced
Planck mass. When this condition is amply fulfilled, a number of e-folds much larger than N, = 60 can
occur in the waterfall regime and the scalar spectral index is then given by the expression found by Kodama
etal. ng =1 — 4/N,. This value may be increased up to unity, if only about N, e-folds occur during the
waterfall regime, such that the largest observable scale leaves the horizon close to the critical point of hybrid
inflation, what can be achieved for k = 107'3 and M = 5 X 10'?> GeV in F-term inflation. Imposing the
normalization of the power spectrum leads to a lower bound on the scale of symmetry breaking.
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L. INTRODUCTION

Among the large variety of inflation models (for a recent
review, see e.g. [1]), the hybrid class [2,3] is particularly
promising. In hybrid models, inflation is realized in a false
vacuum, along a nearly flat valley of the scalar field
potential. It ends with a waterfall phase, triggered when
the inflaton field reaches a critical value, from which the
potential in the transverse direction develops a tachyonic
instability, forcing the fields to reach one of the global
minima of the potential. The facts that inflation can be
realized at sub-Planckian field values and that it is based on
renormalizable operators only are two attractive features of
hybrid models. Moreover, compared to most small field
models [4], the initial conditions for the fields do not
require any extreme fine-tuning because the inflationary
valley is an attractor that can be reached from initial values
located outside the valley [5-8].

In the usual description of hybrid models [2,3,9-15],
inflation is assumed to stop nearly instantaneously with the
onset of the waterfall phase, and the dynamics is restricted
to an effective one-field slow-roll model. Under these
assumptions, the original version of hybrid inflation exhib-
its a slightly blue power spectrum and is therefore usually
considered as ruled out by observations. Moreover, when
the Z, symmetry of the potential is broken at the end of
inflation, domain walls are formed with catastrophic con-
sequences for cosmology. This problem can be solved by
considering a complex auxiliary field, so that the broken
symmetry is U(1), leading to the formation of cosmic
strings. In this case, the power spectrum can be in agree-
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ment with the CMB data [12,16]. The fast waterfall phase
itself has been the object of recent attention, especially to
determine the contribution of isocurvature perturbations
[17-22] as well as the level of non-Gaussianities [23-28].

However, it has been pointed out recently that inflation
can continue during the waterfall stage for much more than
60 e-folds [29], so that the observable perturbation scales
exit the Hubble radius during the waterfall. In such a case,
the power spectrum of scalar perturbations is red, possibly
in agreement with CMB observations [29-33], and any
topological defect formed at the critical point of instability
is conveniently stretched outside the observable Universe.

Hybrid inflation can be embedded in various high
energy frameworks, like grand unified theories [34-36],
string cosmology [37-42], extra dimensions [43], as well
as supersymmetry (SUSY) [3,44-48] and supergravity
[49,50]. Supersymmetric models are additionally attractive
because they offer an explanation for the protection of the
flatness of the inflationary valley against radiative correc-
tions. F-term [3,44] and D-term [45,49] hybrid models are
the most well-known realization of hybrid inflation in
supersymmetry. In these models, radiative corrections lift
up the flat directions of the potential, giving rise to a red
power spectrum of scalar perturbations. In the absence of
additional nonrenormalizable corrections, the classic pre-
diction for the scalar spectral index [44] is ny = 0.98.
These models have been studied intensively in the effective
one-field slow-roll approach. When the contribution of
cosmic strings formed at the end of inflation is taken
into account, the primordial power spectrum has been
shown to be in agreement (even if in tension because of
large values of the spectral index) with CMB observations
[9,10] in some regions of the model parameter space. The
predictions for the spectral index can be lowered when
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nonrenormalizable operators are added to the potential
[9,10,14,48,51], but the additional parameters limit the
predictivity of the models. Moreover, the resulting models
correspond to hilltop scenarios along the waterfall trajec-
tory, and the initial conditions for the scalar fields that lead
to phenomenologically viable inflation are less general
than for the original models.

However, the possibility that inflation can continue dur-
ing the waterfall and affect the observable predictions has
not yet been explored for the F-term and D-term models.
This is the main goal of this paper. We use the method of
Kodama et al. [30] to integrate the two-field slow-roll
dynamics during the waterfall phase and identify that for
the small coupling regime satisfying k << M?/M3, where
k is the superpotential coupling, M the scale of symmetry
breaking and Mp the reduced Planck mass, inflation con-
tinues for more than 60 e-folds along waterfall trajectories.

In this case, the standard effective one-field approach is
not valid and the observable predictions are modified. We
evaluate the amplitude of the power spectrum of adiabatic
perturbations, as well as its spectral index. When the
number of e-folds realized classically during the waterfall
is much larger than N, the number of e-folds between the
time when observable modes leave the Hubble radius
and the end of inflation, the spectral index is given by
ng=1—4/N,. We also calculate the amplitude of the
power spectrum, and derive a new constraint on the scale
of symmetry breaking. In the limit when the observable
scales leave the Hubble radius near the critical instability
point, the spectral index tends to unity, so thatitis in principle
to find model parameters that accommodate with any value
of the spectral index in the rage 1 — 4/N. <n, < 1.

In Sec. II, the F- and D-term hybrid models are
reviewed. A common parametrization of their potential
that is convenient in order to deal with their dynamics
near the critical instability point is introduced. The slow-
roll parameters are derived and the slow-roll equations of
motion are given. In Sec. III, we give a coarse picture of the
waterfall dynamics that applies when the number of e-folds
in the waterfall regime is much larger than 60 and calculate
the amplitude and the spectral index of the power spectrum
of adiabatic perturbations. Section 1V is dedicated to a more
precise analysis of the dynamics, and we show, that a spectral
index close to unity can arise, provided the largest scales, that
are observable today, left the horizon during inflation at the
beginning of the waterfall phase. In Sec. V, we present
estimates for the initial condition for the classical evolution
of the waterfall field, that is induced by quantum diffusion.
Section VI contains a summary and conclusions.

II. SUSY HYBRID INFLATION CLOSE
TO THE CRITICAL POINT

A. F-term inflation

The superpotential for F-term inflation is given
by [3,44]
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W = «S(H A —M?), (1)

where S is a gauge singlet superfield and A (I:_I ) are super-
fields in the (anti-)fundamental representation of SU(N).
This gives rise to tree-level scalar potential

Vo = «*(IHH — M| + |SHI> + |SHI*), (2

where now S, H and H are complex scalar fields. When S
acquires a vacuum expectation value (VEV), while (H) =
(H) = 0 (angle brackets denote the VEV), as it is the case
along the trajectory that supports hybrid inflation, there are
N Dirac fermions of mass xS, N complex scalar fields
H, = 713(H + H) of mass square m% = «?(|S|> — M?)
and N complex scalar fields H_ = ﬁ(H — H) of mass

square m> = k*(|S|?> + M?). The canonically normalized

real scalar field o = +/2|S| is the inflaton field, while

= \/EH + is the waterfall field. Note that the D term forces

|H| = |H|, implying that the VEV of H_ is vanishing.
When (H_) = 0, the tree potential is

Voo, ) = K2M4[(1 - %)2 * %]
X (3)

el 5 7]
4 "¢ 202 ot

The degrees of freedom enumerated above give rise to the
one-loop corrections

4 2 2
| = KN (o> — 02)*log( «? g "9\ 4 (0% + o2)?
12877 207
2 4 g2 2
X 10g<f<2 UTQ;T‘) - 20* 10g<f<2 %)} 4)

where o, = V2M is the critical value and Q is an ultra-
violet cutoff. SUSY F-term hybrid inflation takes place in
the potential V = V;, + V,. For o < o, the scalar fields
are in the waterfall regime, which is the concern of the
present paper.

For the dynamics near the critical point o, the first
derivative of the radiatively induced potential,

4
V(o) N S og, )

2
do  lo=0, 8w

is of importance. The second derivatives are of order
k*M?/(167%) X O(1). These induce 7 parameters
n = k2(Mp/c.)?*/(167%) X O(1), with Mp the reduced
Planck mass. An 7 parameter larger than 1 violates the
slow-roll conditions. Therefore, inflation is terminated due
to the radiative corrections close to the critical point pro-
vided « > (47o,)/Mp X O(1). We show below that a
substantial amount of e-folds occurs after crossing the criti-
cal point provided the stronger constraint x < o2/M3
holds. Hence, neglecting the second derivatives is a self-
consistent approximation in that regime. In the form of the
effective potential (4), the O(1) factor would actually
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encompass a term that logarithmically diverges at the
critical point, due to the correction from the massless
waterfall field. Moreover, when o < o, the potential (4)
is ill defined, because of the negative mass-square insta-
bility of the waterfall field. This is due to the limitations of
the method of calculating the effective potential and does
not indicate a singular behavior in the time evolution of o.
One should expect that the IR divergence exhibited by the
logarithm is regulated by the time evolution of sigma or
perhaps the horizon size H~!. However, even when the
logarithm is large, in the regime x << M?/M3, its coeffi-
cient is small enough such that we can neglect this effect
that would be intricate to deal with theoretically. The
corrections that lead to the first derivative (5) of the effec-
tive potential originate from fields with positive mass
square around the critical point. Therefore Eq. (5) repro-
duces the slope of the potential at the critical point in a
reliable manner.

B. D-term inflation

For this model, the superpotential is [45,49]
= kSHH, 6)
and the D term is

= S(HP AP + ). )
The superfields A and H are in the one-dimensional rep-
resentation of a U(1) gauge group, and my; is the Fayet-
lliopoulos term. The canonically normalized inflaton field
is o =+2|S| and the waterfall field = +/2|H|. For
(i) = 0, there are two real scalar fields of mass square
k20?2 + g*m%;/4 and two of mass square «k’c?/2 —
g*m; /4. When the field o evolves below its critical value

T = = g, ®)
the mass square of the waterfall field becomes negative In
addition, there is a Dirac fermion of mass square x*>o?/2.

This leads to the tree-level potential

_ _ 1
Vo = K2(|HH|* + |SH|? + |SH|?) + 5D2

2 2 \2 2 2.2

=g—m§1[(1 —Lz) +257 f ] )
8 2mg & Mg
g

_ Kt 4 g %
2¢* O-CI:(1 4k*o? ) " 2k%0? a7 B :I

When eliminating mg in favor of o, the one-loop poten-
tial takes the same form as for the F-term case, Eq. (4).
The 7 term at the critical point may be estimated as
n=_g*(Mp/0o,.)?/(87*) X O(1). Therefore we must require
that g < 2+/20./Mp, or, equivalently k < 2mg;/Mp, for
inflation not to terminate at the critical point. The comments
on the IR divergence of the second derivative and its rele-
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vance made above for the F-term model apply to the present
case as well.

C. Common parametrization

Since the F- and D-term models share common features,
it is convenient to use the parametrization

V= A[(l - af_—j)z +2a "U‘Z’Z] + Bola.  (10)

The values of the particular parameters can be inferred
from the expressions [Egs. (3), (4), and (9)], and they are
summarized as well in Table 1.

We then follow Ref. [30] in
parametrization

introducing the

(11a)
(11b)

o= o.ef,

= Poet.

Throughout the slow-roll regime and after the crossing of
the critical point, £ < 0 and |£| < 1, which is consistently
verified by the explicit solutions. It is useful to note the
derivatives

v 4 2
A “"‘l’ + B (12a)
oo 4
2.1,3 2 _ 2
ﬂ: A(4a 1/ +4alp o O'C)
oY ot o? o?
4 2,03
~ A( L S“ff), (12b)
fop o;
9’V 4ayp?
s (120)
0%V (12a y?  da o? — a‘%)
= A -
Iyp? ol ol o7
12 2.2
~ A( ¥ +8a2§), (12d)
O-C o-C
2
9V =A8a0'1,b’ (12¢)
dody o

and the slow-roll parameters

TABLE I. Parameters to be substituted into the potential (10)
in order to obtain the F- and D-term models close to the critical
point.

F term D term
A KM 2’;—42 ot = %mé
o, V2M ﬁ ! FI
@ % 4K
B o 67 - log2
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1 daoip?\2 1 B*o’
=_-M; +-Mj—~, 13
8”21’(0;*)21%/5 (132)
1 402y  day o® — o\2
%ZEMI%( P )
1 4a® 3 Bap 2
SPC
4aip?
Now = Mp 02// : (13c)
12a%y*  4a o? — o2
Ny _M%< 4 R )
12a%4% 8
~ Mg( ’:‘Tf + :f), (13d)
8ao
Moy = Mp (13¢)

where ey =1M3[(0V/0X)/VF and mxy = M[0*V/
(0X0Y)]/V. The first derivatives enter the slow-roll equa-
tions of motion,

X 9V
H =20 (14)
ot 9X
, Vv

=—. 1
3M3 (15)

III. DYNAMICS OF THE WATERFALL:
COARSE PICTURE

In this section, we determine the field trajectories for the
last N, e-folds of inflation that are relevant for CMB
observations and calculate the scalar power spectrum
amplitude and spectral index, in the generic case where
inflation along the waterfall trajectories lasts for much
more than N, e-folds. This regime corresponds to

ay?/o? < €] (16)
and
4Aap® > Boo. a7

It is referred to as phase 2(a) in Ref. [30]. Equations (12a)
and (12b) and the slow-roll equations of motion (14) yield

d 1 2 A2x
a¢ = l//_g e_. (18)
dy 20 x
This relation can be integrated,
1 2 2
52—_ﬂe2)(:_"b (19)

2 o2 202"
A sufficient condition for inflation to terminate is the
violation of the slow-roll condition |n¢,¢| < 1 that occurs
for

o
5
8aMp

§ = fend = (20)
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At this point, 7,, = v/2, while 7, = (02)/(8aM}) < 1.
Qualitatively, one may therefore explain the end of infla-
tion as a consequence of the classical backreaction via the
dimensionless couplings of both evolving fields, o — o,
and ¢, cf. also the discussion in Ref. [20]. Note that the 5
conditions imply that up to this point, no exponential
tachyonic growth of modes of ¢ and o has yet occurred,
such that it is justified to neglect quantum backreaction.

As a consistency check, we notice that the condition (16)
is met for £ = &4, provided o./Mp < 2, such that the
VEV of the inflaton during inflation is sub-Planckian and
the effects of (super-)gravity are perturbatively small. At
this point, we also find 7, = 1 and n,, = 02/(8aM}).
This latter term is much smaller than one in the F-term
model, provided M << Mp and in the D-term model pro-
vided mp; << Mp. These conditions coincide with those
one would impose from demanding (super-)gravity to be
in the perturbative regime during inflation. The initial
conditions chosen for the particular solution (19) corre-
spond to a trajectory that trespasses the critical point where
¢£=0 and ¢ = 0. At the critical point however, the
assumptions (16) and (17) are not valid. Nevertheless, if
there are values of ¢ such that ¢ <« £&.,4 and the assump-
tions (16) and (17) hold on the trajectory (19), then Eq. (19)
corresponds to a trajectory evolving from somewhere close
to the critical point to &.q.

Using the relation dN = Hdt, where N parametrizes the
number of e-folds, and substituting the trajectory (19) into
Eq. (12a) leads to the equation

d SM3a
- _Tre @

which can be integrated to

o

€= 8aME(Nowg — N + 1) 22)

How many e-folds can occur in this regime? The trajectory
(19) violates the condition (17), when & = — ﬁ,/ﬂ\f log2,
where we set N = 1 for the D-term case.

Therefore, in order to achieve more than N, e-folds on
the trajectory (19), the condition

mo?
K <

< c
2aMafN log2(N, + 1)

must be satisfied. This is one of our main results for
supersymmetric hybrid inflation in the waterfall regime.
It turns out, as described in Sec. IV, that a substantial
amount of e-folds may also occur before the violation of
condition (17). In Ref. [30], this is referred to as phase 1.
The condition for this to happen has the same parametric
dependence on «, o, and Mp as for the relation (23), but a
different coefficient. Before moving to that analysis, we
derive the predictions for the power spectrum, provided

(23)

023525-4



SLOW ROLL DURING THE WATERFALL REGIME: THE ...

that inflation in the last N, e-folds is described by the
trajectory (19); i.e. relation (23) is satisfied.

The instantaneous direction of the evolution of the fields
can be parametrized by

o

R
where the dot denotes a derivative with respect to t.
We refer to the linear combination of fields in that direction
by s, which leads to the subscripts that we use in the
following. On the trajectory (19), cos® = 1/ V3. The n
parameter in the s direction is

cos = 24)

Nys = MeeCos?Y + 27, cosIsind + n,,,sin’9.  (25)

The parameter 71, is suppressed by a factor of M?/M3 or
m; /M3, respectively. The other parameters are evaluated
for No,g — N = N,, using Egs. (19) and (21). For the scalar
spectral index, one then finds [30]

4

ns=1+277”:1_ﬁ6’
This result is generic for hybrid inflation in a wide para-
metric range [30], not only for the SUSY variants. The
number of e-folds N, is to be evaluated at the fiducial
WMAP scale k = 0.002 Mpc~!. In order to obtain the
value for N,, we may approximate the energy scale of
inflation that is dominated by A. We then obtain [52]

4 =31+ Wwe) . A

(26)

N, =59.1 — I
¢ 9 12(1 + Wreh) OgQreh
1 A
+—10g———c——7, 27
4 %5106 GeV)* @7)

where 0., < A denotes the energy density, below which
the Universe is radiation dominated, and where W,y
denotes the mean equation of state parameter during the
reheating phase (i.e. the end of inflation and the point, after
which the Universe is radiation dominated). Its value
depends on the details of the tachyonic preheating phase.
If the tachyonic preheating process is not efficient, w;, = 0
and the Universe is matter dominated due to coherent
oscillations of inflaton and waterfall field.

Provided that isocurvature perturbations do not contrib-
ute significantly to the power spectrum, the value for ng
therefore lies somewhat below its most recently reported
central observational value [53,54]. In order to maximize
the value of ng, one should therefore assume Q. = A,
corresponding to instantaneous reheating. This can be
achieved provided the fields H and H have large couplings
to the standard model sector. Nonetheless, as it stands, the
model is disfavored at more than 20 even if N, = 60 by
CMB observations. However, note that provided less than
N, folds lie on the trajectory (19), one may expect larger
values for ng, because the horizon exit then occurs for
VEVs at which the curvature of the potential is smaller
than in the present case. We investigate this in Sec. IV.
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Finally, we derive the additional constraint from the
amplitude of the power spectrum. The & parameter in s
direction is &, = &, + &,,. For the amplitude, we obtain

A 22 AMAN?

Pop=—""" , (28
R 2477'2M?,8S Nepa—N=N, 97209 (28)
i.e.

2M2N4
Pr = W for F-term inflation, (29a)

4M2N4
Pr = % for D-term inflation.  (29b)

9mr° g myy

In conjunction with the constraint (23), this leads to lower
bounds on the symmetry-breaking scales,

M?> 9N log2
> —

ﬁ% N Pgr for F-term inflation, (30a)
6 9g%log?2

m—F()I > % Px for D-term inflation. (30b)

Mp T

These relations together with Eq. (29) constitute another
main result for SUSY-hybrid inflation in the waterfall
regime.

In Fig. 1, we plot the relation between « and M for the
F-term model with 2N = 1 (notice that the influence of the
parameter N is not very significant), that is imposed by
the normalization of the amplitude of the power spectrum
(29a). Moreover, we mark the region in which « is too large
(or M is too small) in order to lead to a large enough

0.001 F _al ]
1076
x
107
10—12
10—15 N
107° 1073 1074 0.001 0.01 0.1 1
M/Mp

FIG. 1 (color online). Relation between « and M for the
F-term model with N =1 (solid black line) that follows
from the amplitude of the power spectrum (29a) and the number
of e-folds (27). The light red (shaded) region corresponds to the
regime of a nearly instantaneous waterfall transition, determined
with Eq. (23), for which no more than a few number of e-folds
are realized along classical waterfall trajectories. Dashed black
lines are the isocontours of constant energy scale for inflation
(VI respectively 10°, 108, 10'°, 10'> and 10'* GeV from left
to right. Blue dotted lines are the isocontours of constant spectral
index from Eq. (26), respectively 0.89, 0.90, 0.91, 0.92, 0.93 from
left to right.
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Log,gk -3

FIG. 2 (color online). Constraints on the 3D parameter space
of D-term model from the normalization of the power spectrum
(29b) (blue plane area). The top red region corresponds to the
regime of nearly instantaneous waterfall, determined with
Eq. (23).

number of e-folds (27). Lower bounds on the mass parame-
ter M = 107 °Mp and on the coupling « = 1072 are
deducted. Finally, we have plotted the corresponding en-
ergy scale of inflation at the critical point of instability. It is
found to vary from 10° to 10! GeV.

CMB constraints on the three-dimensional parameter
space of the D-term model are plotted in Fig. 2. The region
allowed by the normalization of the power spectrum (29b)
corresponds to a thin slice of this parameter space. We

1 T T T T T

0.001 F

107

107 F

102 —

10715 > NG N
10°® 10°5 1074 0.001 0.01 0.1 1

mgy/Mp

FIG. 3 (color online). Relation between « and myp; for various
values of g (from top to bottom: 1, 1073, 1076, 107°, 10712,
10~ 1%) in the D-term model from the normalization of the power
spectrum (29b) (blue lines). In the light red (shaded) region, that
is determined by Eq. (23), the waterfall transition proceeds
nearly instantaneously. Black dashed and blue dotted lines are
isocontours of constant energy density and spectral index values,
as in Fig. 1.
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restrict k < 44r, in order to keep the perturbation theory
expansion valid. A corresponding two-dimensional dia-
gram for various values of g is provided in Fig. 3. For
0.1Mp =< mg; = Mp, the spectral index can be in agree-
ment (but in strong tension) with the WMAP constraints,
provided a coupling to fermions of the order of unity and
K=~ 1074

Let us notice also that the energy scale of inflation for
the D-term model can be as low as a few TeV and the
number of e-folds during the waterfall about N, provided
g =~ 1072 k = 107'% and mp =~ 10~ 8Mp. This extreme
case is of particular interest since the D-term model can
then provide a mechanism for the recent acceleration of the
Universe expansion [55].

IV. DYNAMICS OF THE WATERFALL.:
REFINED PICTURE

We apply now some more of the details that are derived
in Ref. [30] to SUSY hybrid inflation. In particular, we
consider initial conditions that satisfy relation (16) but that
turn around the bound (17), such that

4Aay? < Bob. 31)

In Ref. [30], this is referred to as phase 1(a). Use of the
slow-roll equations of motion (14) and Eqs. (12a) and (12b)
lead to the differential relation

d¢ _ Bot
= 2
dy 8aAf&’ (32)
which can be integrated to
4
2 _ Bo: _ + £
& 4aA(X x1) + &1 (33)

Here, ¢, and y,; should be determined by appropriate
boundary conditions. The point on this trajectory, where
the condition (31) is violated, is denoted by &, and y.».
When &, > &, and x, > x;, one may approximate
¢, =0, x; = 0, which is what we assume in the following.
Using these approximations, we obtain

1 Bo?
=—1 , 34
X2 =5 0g4aA¢IO (34a)
4
2 _ Bo:.
& AaA X (34b)
The number of e-folds before reaching (&,, x») is
1 |A
Ny = 5z 422, (352)
Mg\ apB
M2 2
Ny = =2 X2 for F-term inflation,  (35b)
kM5 log2
2
N, = mFIZ 21T X2 for D-term inflation. (35¢)
kM5 log2
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Therefore, also in the regime where relation (31) is
valid, a substantial amount of e-folds may occur in the
waterfall regime provided k << M?/Mj or k << m¥ /M3,
respectively.

Substituting the trajectory (33) into Egs. (12a) and (14)
and making use of the relation (31), one finds

2
EN) = ~N P B, 36)

such that the fields are close to the critical point for N = 0.

We check whether before reaching &5, the condition (16)
may be violated. The inequality (16) holds for all points on
the trajectory (33) before reaching (&5, x,), provided that

4
Yo > “i"ﬁ (37a)
>
X2 > ———log2 for F-term inflation, (37b)
1287
4
X2 > ﬁ log2 for D-term inflation. (37¢)

Since y, is given the by logarithm in Eq. (34a) and
Kk <X 1, it is immediately clear that above condition holds
for the F-term case (barring the choice of large values for
o). For D-term inflation, Eq. (35c) and relation (37c)
combine to

K Mg

8 > VSN My’
which is satisfied because we already observe the stronger
constraint o, < Mp < k/g > my/(v/2Mp). In conclu-
sion, the condition (16) is fulfilled for both F- and
D-term inflation at all times during phase 1(a), and when
combining this with the results of Sec. III, it is fulfilled at
all times during the slow-roll regime as well.

After the transition from phase 1 to phase 2 [the point
(&5, x2)1, condition (31) no longer holds and is replaced by
(17). The fields £ and y satisfy the differential relation (18).

Compared to the trajectory (19), a solution can be
determined that takes accurate account of the boundary
conditions that arise at the end of phase 1 [30],

—(c" =) f(N)+ ' +c¢

(38)

W =i ore B

FIN) = el6MEfFEN—Ns) (39b)

¢ =4x2/2 (3%¢)

o=y (39d)
o 02 i

& c 001/2621\' (39)

A typical field trajectory is plotted in Fig. 4. At late
times, the solution (39a) approaches the approximate form
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o.000  ————+—7T—m—F+—FT————————7—— 71—

-0.0002 -
—-0.0004 |-
—0.0006 -

-0.0008 -

-0.0010 ————
0

FIG. 4 (color online). Field trajectory in the (y, &) space for
F-term inflation, with « = 0.001 and M = 0.1Mp. The solid
blue curve is obtained from Egs. (19) and (22). It is in agreement
with the red dashed curve, obtained by integrating numerically
the exact classical dynamics.

(21). Notice that the initial conditions (£5, x,) depend on
the initial condition for phase 1 through ¢, while the late-
time behavior (21) is independent of these.

We can substitute &.,4, Eq. (20), in the solution (39a),
invert it and obtain the number of e-folds in phase 2 [30],

~16mz\ep

gend + 512 c—c

1 A —& e+
Nend _ N2 lo (é:end §2 c c

)<m>

which corresponds to an improved version of the
estimate (23).

It would be straightforward now to derive a general
expression for the power spectrum in a situation where
Neng — Ny < N, such that the horizon exit of the largest
observable scales occurs in phase 1(a). The result is how-
ever somewhat complicated and shows no advantage over
a numerical evaluation, while having the disadvantage of
incurring an inaccuracy due to the matching of phases 1(a)
and 2(a). There is however an interesting limiting case,
where simple estimates can be obtained: while in Sec. III,
we have discussed the situation where the number of
e-folds during the waterfall regime is much larger than
N., i.e. Nopq > N,, we now consider the situation where
just enough e-folds occur in the waterfall regime, i.e.
Nepg > Ne and Nepg — Ne < N.. When g, > g, as is
the case sufficiently close to the critical point, the ampli-
tude of the power spectrum in phase 1(a) is

_ A _ A3
247 Mie,, 1272 BSMS o’

Pr 41)

The prediction for the scalar spectral index now depends
on the initial condition for ; i.e. the choice of i in the
present parametrization. However, as explained in Sec. V,
the auxiliary field dynamics at the critical instability point
is not classical but dominated by quantum diffusion effects.
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The classical regime is nevertheless reached quickly and
our initial value 5 must be seen as the value that would
take the auxiliary field if the classical trajectory was traced
back up to the critical instability point.

Note moreover that when ¢ >> i,

32a2y?
ot

cos? = 1 — N>M3}

(42)

When we impose that the exit scale is close to the
critical point, the superpotential coupling must be of order
Kk ~ M?/M3 or k ~ m¥/M3. Close to the critical point,
when assuming that ¢ is given by a value close to its lower
bound (53), it then turns out that the effective 1 parameter
(25) is suppressed by M?/M3 or m%,/M3. Therefore, the
scalar spectral index approaches values very close to unity
when the horizon exit of the largest observable scale
occurs close to the critical point of SUSY hybrid inflation.
It should therefore be possible to find parameters that
produce all possible values for the scalar spectral index
n, between the values (26) and 1. The parameters for
which the horizon exit occurs close to the critical point
can be estimated from Figs. 1-3 from the intersection of
the exclusion region, for which less than N, e-folds occur
below the critical point and the relation between « and M
or mgy, respectively. In particular, for F-term inflation, we
can estimate that k = 10713 and M = 10!2 GeV, in order
to yield a value of ng close to its presently observed central
value. A precise determination of this point in parameter
space and a quantitative analysis of how much tuning is
required, such that the spectral index falls within the
allowed range, will be subject of a future study.

Calculating the possible values of «, M or mpg for a
given ng using the present methods does not appear to be
possible in a simple analytic way. For example, Eq. (40)
cannot be solved for « in terms of elementary functions.
Due to the simple nature of the slow-roll equations, a
numerical study should however be feasible.

V. FROM QUANTUM DIFFUSION TO
CLASSICAL DYNAMICS

The statistical distribution of the initial auxiliary field
values iy can be evaluated by studying the quantum
diffusion near the critical instability point [29,56].
The coarse-grained auxiliary field can be described by a
Klein-Gordon equation to which a random noise field A(z)
is added [57]. This term acts as a classical stochastic source
term. In the slow-roll approximation, the evolution is given
by the first order Langevin equation

Y+ = A0, (43)
o

which can be rewritten by using Eq. (12b)
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. H3? day M} 2
g=——\1t+H alpz P(l - 0—2)
2 o o

c c

(44)

The two-point correlation function of the noise field obeys
M@y =0, QAWA() =o6(—1). (45

In the limit of H constant (this approximation is valid at
the critical instability point when the expansion is gov-
erned by the evolution of ¢ in the false vacuum), this
equation can be integrated exactly. Under a convenient
change of variable [58],

2 M2
x=Z = exp(—zNTPﬁag), (46)
O-C
one gets
dy _ HY? 4ayM3(1 — x)
ax  darx Ax) = 202rx ’ “47)

with r = M3B0?/A. This equation has an exact solution
¥(x) = Cexp(Cyx — CyInx) — C; exp(Cyx — C, Inx)

X [ " exp(—=Cox! + C, Inx) A(x')d, (48)
1

where C, = H'2/(4mr), C, =2a/(0%r) and C is a
constant of integration. The variance of the auxiliary
field distribution is then obtained by taking the two point
correlation function of ¢ (x). By assuming an initial delta
distribution for ¢ at o >> o, one obtains

_ H? [exp(x)
W)= |

where we have defined a = 4aM3/(a%r) = 4aA/(Bo?)
and where I is the upper incomplete gamma function. Near
the instability, x = 1 and one thus has

]ar(a, ax), (49)

H? (e\a

W= (5 Taa, (50)
T°r\a

By using recurrence relations as well as the asymptotic

behavior of the I' function, one can find

(S) X T, u) ~ ‘/g\/% when u — o0,  (51)

such that

W= 1) HA
x=1))= = .
872r2a 167 M}\27Ba

At the critical instability point, the average value of ¢
over the whole Universe is zero, and Eq. (52) describes
the statistical distribution of the field around zero.
However, over a small patch that will contain our observ-
able Universe, the average value is nonzero and increases
statistically with time due to the second term of Eq. (44).
But the variance (/%) in this patch is still given by Eq. (52).

(52)
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After some e-folds of inflation, the classical regime is
reached and the classical evolution of ¢y proceeds faster
than quantum diffusion, #~'¢ > H. By using Eqs. (12b),
(14), (31), and (36), one finds that this happens when

A3/2
> .
v 8v3NBM3

We should therefore see the classical dynamics of ¢ during
the waterfall as emerging in a patch of the Universe where
the quantum diffusion was previously dominating. But the
time when inflation takes place, the dynamics of the field o
remains classical. In particular, when combining the esti-
mates (52) and (53), one may see that typically, N < 1
when the classical evolution begins: for F-term inflation,
N ~ kM®/M.® and for D-term inflation, N ~ gm$,/MS.

Besides the problem of the quantum diffusion of the
auxiliary field, one must also take care that the inflaton
itself is classical. For the original hybrid model, the regime
dominated by the quantum stochastic fluctuations of the
inflaton has been studied in Ref. [56] and leads to a strong
reduction of the number of e-folds realized during the
waterfall. This argument imposes the additional condition
|do/dN| > H/(27). During the phase 1(a), the classical
evolution of o is governed by (36), so that this condition
can be rewritten

(33)

2046 32 (6
127°Mp B o > 1
AS

(54
It is satisfied provided xM3/M?® > 1 for the F-term
model, and kM3 /m3; > 1 for the D-term model. It there-
fore appears for the D-term model that in the range
0.1Mp < mp; < Mp, g ~ O(1) and k =~ 10* that was
found to be in agreement with CMB observations, the
quantum effects of o during the phase 1a can be important.
However, in that particular case, since the inflaton is driven
by the second term of (12a) during the last 60 e-folds of
inflation (phase 2a), we argue that its dynamics is classical
during this phase such that observable predictions are not
affected by the quantum stochastic effects of o at the
critical instability point.

VI. SUMMARY AND CONCLUSIONS

In the present work, we have explored the prospects of
SUSY F- and D-term models of accounting for the
observed normalization and spectral index of the primor-
dial perturbation power spectrum. We have focused on the
parametric regime where all scales that are observable
today have left the horizon during the waterfall stage. It
is particularly interesting to confront these scenarios with
observational data, because they only rely on the scale of
symmetry breaking and the superpotential coupling for
F-term inflation and, in addition, the gauge coupling for
D-term inflation. When the scale of symmetry breaking
is small compared to the Planck scale, the influence of
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nonrenormalizable operators that is expected within the
supergravity completion of these models, is suppressed.
Besides, the trajectories of the scalar fields are attracted to
the valley of the hybrid inflation potential, is what makes
these models rather predictive.

In order to derive our results, we use the analytical
methods that have been introduced in Ref. [30]. A more
accurate numerical study will be the subject of future work.
The main conclusions, that we presently achieve, are as
follows:

(i) Inflation proceeds in the waterfall regime, provided

K <K M?*/Mp? or k < mZ;/My?, respectively. More
accurate relations are given by Eqs. (23) and (40).

(i1) When the number of e-folds of inflation in the

waterfall regime is much larger than 60, the dynam-
ics can be well approximated as in Sec. III. There is
no restriction on the scale of symmetry breaking,
but the normalization of the power spectrum im-
poses a relation with the superpotential coupling «,
cf. Egs. (29) and (41) and Figs. 1-3. The spectral
index ny, Eq. (26) (cf. also Ref. [30]), then takes
values below its present central observational value.
It can be in agreement (but in strong tension) with
WMAP only for the D-term model with 0.1Mp =
mp < Mp, g ~ O(1) and k = 107%.

(ii1) Itis therefore interesting to study how larger values
of ng can be achieved. In Sec. IV, we have shown
that provided the largest observed scales leave
the horizon close to the critical point, the deviation
of n, from unity is suppressed as M?/M;* or
m¥ /My?, tespectively. The point, where just
enough e-folds of inflation in the waterfall regime
occur and the power spectrum is normalized in
accordance with the observed values can be in-
ferred from Figs. 1-3. In particular, for F-term
inflation, we can estimate that this situation occurs
for k = 1072 and M = 5 X 10" GeV.

When the observed limits on 7, further tighten around its
presently observed value, it is in order to further study the
latter possibility. For the purpose of determining the parame-
ters more accurately than by the order-of-magnitude estimate
in the present work, it will be necessary to perform a numeri-
cal study instead of the present analytic approximations. In
particular, this is necessary because of the inaccuracies in the
matching between the phases 1 and 2, as explained in Sec. IV,
and because we did not consider the possible contribution of
isocurvature modes. An interesting question will be how the
observational uncertainty in ng will translate into allowed
ranges of k and M or mg, because this will quantify the
amount of parametric tuning that is required for SUSY hybrid
inflation to match observations.

Finally, we have mentioned for the D-term model an
extreme case in which the energy scale of inflation is only a
few TeV, so that the model can provide a mechanism to the
current cosmic acceleration of the expansion, accordingly
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to Ref. [55]. This occurs for g = 1072°, k = 107! and
megp = IO_SMP.

We conclude that SUSY hybrid models will remain
interesting proposals in order to explain the observations
of the primordial power spectrum, even when it is further
confirmed that n; is substantially below 0.98. Even without
effects from additional nonrenormalizable operators,
smaller values of ng are predicted provided the largest
observed scales left the horizon during the waterfall re-
gime. Note that also in this situation, the appealing features
of the model, which are the dependence on a small number
(two or three) of renormalizable operators only, the natural
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emergence of inflationary field configurations due to the
attractor property of the potential and finally, the motiva-
tion from SUSY [15] remain intact.
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