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We consider a phenomenological extension of the minimal supersymmetric standard model (MSSM)

which incorporates nonminimal chaotic inflation, driven by a quadratic potential in conjunction with a

linear term in the frame function. Inflation is followed by a Peccei-Quinn phase transition, based on

renormalizable superpotential terms, which resolves the strong CP and� problems of MSSM and provide

masses lower than about 1012 GeV for the right-handed (RH) (s)neutrinos. Baryogenesis occurs via

nonthermal leptogenesis, realized by the out-of-equilibrium decay of the RH sneutrinos, which are

produced by the inflaton’s decay. Confronting our scenario with the current observational data on the

inflationary observables, the light-neutrino masses, the baryon asymmetry of the universe and the

gravitino limit on the reheat temperature, we constrain the strength of the gravitational coupling to rather

large values (� 45–2950) and the Dirac neutrino masses to values between about 1 and 10 GeV.
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I. INTRODUCTION

There is recently a wave of interest in implementing
nonminimal chaotic inflation (nMCI) within both a non-
supersymmetric (SUSY) [1–8] and a SUSY [9–13] frame-
work. The main idea is to introduce a large nonminimal
coupling of the inflaton field to the curvature scalar, R.
After that, one can make a transformation—from the
Jordan frame (JF) to the Einstein (EF) one—which flattens
the potential sufficiently to support nMCI. The implemen-
tation of this mechanism within supergravity (SUGRA)
has been greatly facilitated after the developed [10] super-
corformal approach to SUGRA. In particular, it is shown
that the frame function can be related to a logarithmic type
Kähler potential which ensures canonical kinetic terms for
the scalars of the theory and incorporates an holomorphic
function, F, which expresses the nonminimal coupling of
the inflaton field to R. Until now, the proposed models
[10–13] of nMCI within SUGRA are constructed coupling
quadratically the inflaton superfield with another one in the
superpotential—leading thereby to a quartic potential—
and adopting a quadratic term for it in F.

In this paper we propose a novel realization of nMCI
within SUGRA, according to which the inflaton superfield
is coupled linearly to another superfield in the superpoten-
tial of the model. As a consequence, a quadratic potential
for the inflaton arises which supports nMCI, if the inflaton
develops a linear coupling to R. Actually, this setup
represents the SUSY implementation of the model of
nMCI with n ¼ �1 introduced in Ref. [7]. In contrast to
earlier models [10,14] which relied on the same super-
potential term—see also Ref. [15]—, no extra shift sym-
metry is imposed on the Kälher potential. The resulting

mass of the inflaton lies at the intermediate scale and the
inflationary observables are principally similar to those of
nMCI with quartic—not quadratic—potential and there-
fore, in excellent agreement with the current observational
data [16].
The inflationary model can be nicely embedded in a

modest phenomenological extension of the minimal super-
symmetric standard model (MSSM) which incorporates a
resolution of the strong CP problem [17] via a Peccei-
Quinn (PQ) symmetry. Note that there is an increasing
interest [18,19] in such models at present, since they
provide us with two additional cold dark matter (CDM)
candidates (axino and axion) beyond the lightest neutra-
lino. In our model, a PQ phase transition (PQPT), tied on
renormalizable [11,20] superpontential terms, can follow
nMCI generating in addition, the � term of MSSM and
intermediate masses for the right-handed (RH) [s]neutri-
nos, �c

i [~�
c
i ]. As a consequence, the light-neutrino masses

can be explained through the well-known seesaw mecha-
nism [21] provided that no large hierarchies occur in the
Dirac neutrino masses. The possible formation [22] of
disastrous domain walls can be avoided [23,24] by intro-
ducing extra matter superfields without jeopardizing
the gauge unification of MSSM. The appearance of a
Lagrangian quatric coupling of the inflaton ensures its
decay to ~�c

i , whose the subsequent out-of-equilibrium de-
cays can generate the Baryon Asymmetry of the Universe
(BAU) via nonthermal leptogenesis (nTL) [25], consistent
with the present data on neutrino data [26,27]. Our model
favors mostly quasi-degenerate �c

i—as in Ref. [28]—
which enhances the contribution from the self-energy cor-
rections to leptonic asymmetries, without jeopardizing the
validity of the relevant perturbative results, though. The

constraints arising from BAU and the gravitino ( ~G) limit
[29–31] on the reheat temperature can be met provided that

the masses of ~G lie in the multi-TeV region.
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In Sec. II we present the basic ingredients of our model,
Sec. III describes the inflationary scenario, and we outline
the mechanism of nTL in Sec. IV. We then restrict the
model parameters in Sec. V and summarize our conclu-
sions in Sec. VI. Throughout the text, the subscript of type,
� denotes derivation with respect to (w.r.t) the field �
(e.g., �� ¼ @2=@�2); charge conjugation is denoted by a
star and brackets are, also, used by applying disjunctive
correspondence.

II. MODEL DESCRIPTION

We focus on a PQ invariant extension of MSSM, which
is augmented with (i) two superfields (P and �P) which are
necessary for the implementation of nMCI; (ii) three super-

fields (S,� and ��) involved in the spontaneous breaking of
the PQ symmetry, Uð1ÞPQ; (iii) three RH neutrinos, �c

i ,

which are necessitated for the realization of the seesaw
mechanism; (iv) n—to be determined below—pairs of
SUð3ÞC triplets and antitriplets superfields, �Da and Da

respectively, (a ¼ 1; . . . ; n) in order to avoid the formation
of domain walls—c.f. Ref. [23,24]—and; (v) an equal
number of pairs of SUð2ÞL doublet superfields, �ha and ha
in order to restore gauge coupling unification at one-loop—
see below. Besides the superfields in the points (iv) and (v),
all the others are singlets under the Standard Model (SM)
gauge group GSM ¼ SUð3ÞC � SUð2ÞL �Uð1ÞY . Besides
the (color) anomalous Uð1ÞPQ, the model also possesses an

anomalous R symmetryUð1ÞR the baryon-number symme-
tryUð1ÞB and two accidental symmetriesUð1ÞD andUð1Þh.
The representations under GSM, and the charges under the
global symmetries of the various matter and Higgs super-
fields are listed in Table I. Note that the lepton number is
not conserved in our model.

In particular, the superpotential,W, of our model can be
split into four parts:

W ¼ WMSSM þWDW þWCPQ þWNR; (1)

which are analyzed in the following:
(1) WMSSM is the part of W which contains the usual

terms—except for the � term—of MSSM, supple-
mented by Yukawa interactions among the left-
handed leptons and �c

i :

WMSSM ¼ hDijd
c
i QjHd þ hUiju

c
i QjHu

þ hEije
c
i LjHd þ hNij�

c
i LjHu: (2)

Here, the group indices have been suppressed and
summation over the generation indices i and j is
assumed; the i-th generation SUð2ÞL doublet left-
handed quark and lepton superfields are denoted
by Qi and Li respectively, and the SUð2ÞL singlet
antiquark [antilepton] superfields by uci and di

c [eci
and �c

i ] respectively. The electroweak SUð2ÞL dou-
blet Higgs superfield, which couples to the up
[down] quark superfields, is denoted by Hu [Hd].

(2) WDW is the part of W which gives intermediate

scale masses via h ��i—see below—to �Da �Da

and �ha � ha. Namely,

WDW ¼ �Da
�� �DaDa þ �ha

�� �haha: (3)

Here, we chose a basis in the �Da �Da and �ha � ha
space where the coupling constant matrices �Da and
�ha are diagonal. Although these matter fields ac-
quire intermediate scale masses after the PQ break-
ing, the unification of the MSSM gauge coupling
constants is not disrupted at one-loop. In fact, if we
estimate the contribution of �Da,Da, and �ha and ha to
the coefficients b1, b2, and b3, controlling [32] the
one-loop evolution of the three gauge coupling
constants g1, g2, and g3, we find that the quantities
b2 � b1 and b3 � b2 (which are [32] crucial for the
unification of g1, g2, and g3) remain unaltered.

(3) WCPQ is the part of W which is relevant for nMCI,

the spontaneous breaking of Uð1ÞPQ, the decay of

the inflaton and the generation of the masses of �c
i ’s

and the � term of MSSM. It takes the form

WCPQ ¼ m �PPþ �aSð� ���M2
PQÞ þ �i�c��c2

i ;

(4)

where MPQ ¼ fa=2 with fa ’ ð1010–1012Þ GeV
being the axion decay constant which coincides
with the PQ breaking scale. The parameters �a

TABLE I. Superfield Content of the Model.

Superfields Representations under GSM Global Symmetries

R PQ B D h

Matter Fields

Li ð1; 2;�1=2Þ 0 �1 0 0 0

eci ð1; 1; 1Þ 2 �1 0 0 0

�c
i ð1; 1; 0Þ 2 �1 0 0 0

Qi ð3; 2; 1=6Þ 1 �1 1=3 0 0

uci ð�3; 1;�2=3Þ 1 �1�1=3 0 0

dci ð�3; 1; 1=3Þ 1 �1�1=3 0 0

Extra Matter Fields

Da ð3; 1;�1=3Þ 1 1 0 1 0
�Da ð�3; 1; 1=3Þ 1 1 0 �1 0

ha ð1; 2; 1=2Þ 1 1 0 0 1
�ha ð1; 2;�1=2Þ 1 1 0 0 �1

Higgs Fields

Hd ð1; 2;�1=2Þ 2 2 0 0 0

Hu ð1; 2; 1=2Þ 2 2 0 0 0

S ð1; 1; 0Þ 4 0 0 0 0

� ð1; 1; 0Þ 0 2 0 0 0
�� ð1; 1; 0Þ 0 �2 0 0 0

P ð1; 1; 0Þ 6 1 0 0 0
�P ð1; 1; 0Þ �2 �1 0 0 0
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and fa can be made positive by field redefinitions.
From the terms in the right-hand side (RHS) of
Eq. (4) we note that the imposed symmetries dis-
allow renormalizable terms mixing �P with some
other superfields, which avoids undesirable instabil-
ities faced in Ref. [11].

(4) WNR is the part of W which contains its non-
renormalizable terms. Namely, we have

WNR ¼ �i

�PS��c
i

mP

þ �P

P �P ���

mP

þ ��

��2HuHd

mP

;

(5)

wheremP ’ 2:44� 1018 GeV is the reduced Planck
scale. The first term in the RHS of Eq. (5) helps
accomplish sufficiently low reheat temperature
and leads to the production of ~�c

i ’s as dictated by
nTL—see Sec. IVA. Finally, the third term provides
the � term of MSSM—see below.

To get an impression for the role that each term in the
RHS of Eqs. (3)–(5) play, we display the SUSY potential,
VSUSY, induced from the following part of W

WCI ¼ WCPQ þWDW; (6)

which turns out to be

VSUSY ¼ m2ðjPj2 þ j �Pj2Þ þ j�i�c ~�
c2
i þ �aS ��j2

þ 4�2
i�c j~�c

i�j2 þ �2
aj ����M2

PQj2
þ j�aS�þ �Da

�DaDa þ �ha
�hahaj2

þ �2
Daðj �Daj2 þ jDaj2Þj ��j2

þ �2
haðj �haj2 þ jhaj2Þj ��j2; (7a)

where the complex scalar components of the superfields

P, �P, S, ��, �, �Da, Da, �ha, and ha are denoted by the same
symbol as the corresponding superfields. From Eq. (6) and
assuming [20] canonical Kähler potential for the hidden
sector fields, we can also derive the soft SUSY-breaking
part of the inflationary potential which reads:

Vsoft ¼ m2
������

� þ ðmBP �P� aT�aSM
2
PQ

þ �DaADa
�� �DaDa þ �haAha

�� �haha þ �aAaS� ��

þ �i�cAi�c��c
i þ H:c:Þ (7b)

where m�� , with

�� ¼ P; �P; S; ��;�; ~�c
i ; �Dka; Dka; �hla; hla (8)

Aa, Ai�c , ADa, Aha, B and aT are soft SUSY-breaking
mass parameters of order 1 TeV. From the potential in
Eqs. (7a) and (7b), we find that the SUSY vacuum lies at

hPi ¼ h �Pi ¼ h~�c
i i ¼ 0; (9a)

hDkai ¼ h �Dkai ¼ hhlai ¼ h �hlai ¼ 0; (9b)

and

hSi ¼ jAaj þ jaTj
2�a

; jh��ij ¼ 2jh�ij ¼ 2jh ��ij ¼ fa;

(9c)

where the resulting hSi is of the order of TeV—
cf. Ref. [20]—and we have introduced the canonically

normalized scalar field �� ¼ 2� ¼ 2 ��. Also, we use the
subscripts k ¼ 1, 2, 3 and l ¼ 1, 2 to denote the compo-
nents ofDa, �Da and ha, �ha, respectively. Note that, since the

sum of the arguments of h ��i, h�i must be 0, �� and � can
be brought to the real axis by an appropriate PQ trans-
formation. After the spontaneous breaking of Uð1ÞPQ, the
third term in Eq. (4) generates intermediate scale masses,
Mi�c for the �

c
i ’s and, thus, seesaw masses [21] for the light

neutrinos—see Sec. IV. The third term in the RHS of

Eq. (5) leads to the � term of MSSM, with j�j �
��jh ��ij2=mP, which is of the right magnitude if jh ��ij ¼
fa=2 ’ 5� 1011 GeV, �� � ð0:001–0:01Þ. Finally, since
h ���i=mP ¼ M2

PQ=mP � m ’ 1016 GeV—see Sec. III B

and VB1—the second term in the RHS of Eq. (5) has no
impact on our results.
Nonetheless, WCI also gives rise to a stage of nMCI

within SUGRA, if it is combined with a suitable Kähler
potential, K, related to the frame function, �CI via

K ¼ �3m2
P lnð��CI=3Þ: (10)

In JF a specific form of �CI ’s—see Ref. [10,11]—ensures
canonical kinetic terms of the fields involved and a non-
minimal coupling of the inflaton to R represented by an
holomorphic function FðPÞ. Going from JF to EF, and

expanding the EF potential, V̂, along a stable direction—
usually with all the fields besides inflaton placed at the

origin—V̂ takes the simple form

V̂ CI0 ’ VSUSY=fð�Þ2; (11)

where � ¼ ffiffiffi
2

p jPj and f can be found expanding �CI.
Vanishing of the noninflaton fields ensures, also, the elimi-
nation of some extra kinetic terms for scalars from the
auxiliary vector fields—see Ref. [9–11].
Let us emphasize here that the coupling of P to �P is

crucial in order to obtain the simple form of V̂CI0 in
Eq. (11), since only terms including derivatives of WCI

w.r.t �P survive in the EF SUGRA potential—see Sec. III A.
This fact ensures the appearance of just one dominant
power of � in the numerator of the SUGRA scalar poten-
tial. Such a construction is not possible, e.g., for a super-
potential term of the form mP2. Applying the strategy,
described above Eq. (11) in our case, we can observe that
along the direction

�¼ �P¼S¼ ��¼�¼ ~�c
i ¼ �Dka¼Dka¼ �hla¼hla¼0;

(12a)

with � ¼ argP, VSUSY in Eq. (7a) becomes
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VSUSY ¼ 1

2
m2�2 þ �2

aM
4
PQ: (12b)

Clearly, for � � fa, VSUSY tends to a quadratic potential
which can be flattened, according to Eq. (11), if f is mainly
proportional to �, i.e., if F is a linear function of P with a
sizable coupling constant cR. Therefore, we are led to
adopt the following frame function:

�CI¼�3þ����
�

m2
P

� k �P

m4
P

j �Pj4�ðFðPÞþF�ðP�ÞÞ; (13a)

with ��’s defined in Eq. (8) and the nonminimal gravita-
tional coupling

F ¼ 3cRP=
ffiffiffi
2

p
mP; (13b)

which breaks explicitly the imposed R and PQ symmetries
during nMCI. In Eq. (13a) the coefficients k �P and cR,
for simplicity, are taken real. We remark that we add the
third term in the RHS of Eq. (13a) to cure the tachyonic
mass problem encountered in similar models [9,10]—see
Sec. III A.

For P � mP, we can show—see Sec. IVA—that an
instability occurs in the PQ system which can drive a
PQPT which leads to the v.e.vs in Eq. (9c). Also, at the
SUSY vacuum the explicit breaking of Uð1ÞR �Uð1ÞPQ
through Eq. (13b) switches off—see Eq. (9a). A closer
look, however, reveals that instanton and soft SUSY-
breaking effects explicitly break Uð1ÞR �Uð1ÞPQ to Z2 �
Z2ðn�6Þ, as can be deduced from the solutions of the system

4r ¼ 0 ðmod 2	Þ and 2ðn� 6Þp� 12r ¼ 0 ðmod 2	Þ;
(14)

where r and p are the phases of a Uð1ÞR and Uð1ÞPQ
rotation respectively. Here, we take into account that the
R charge of W and, thus, of all the soft SUSY-breaking
term is 4 and that the sum of the R [PQ] charges of the
SUð3ÞC triplets and antitriplets is�12 [2ðn� 6Þ]. Note that
no loop-induced PQ-violating term—as this appearing in
the first paper of Ref. [13]—is detected in our case. It is
then important to ensure that Z2 � Z2ðn�6Þ is not sponta-
neously broken by h�i and h ��i, since otherwise cosmo-
logically disastrous domain walls are produced [22] during
PQPT. This goal can be accomplished by adjusting con-
veniently the number n of �Da �Da and �ha � ha—see
Table I. Indeed, when n ¼ 5 or 7 we obtain 2p ¼
0ðmod 2	Þ and therefore, Z2 � Z2ðn�6Þ is not spontane-

ously broken by h�i and h ��i. The residual unbroken Z2

subgroup of Uð1ÞPQ can be identified with the usual matter

parity of MSSM—see Table I—which prevents the rapid
proton decay and ensures the stability of the lightest SUSY
particle (LSP).

III. THE INFLATIONARY EPOCH

In Sec. III A we describe the salient features of our
inflationary model and in Sec. III B we extract the infla-
tionary observables.

A. Structure of the inflationary potential

The EF F–term (tree level) SUGRA scalar potential,

V̂CI0, of our model is obtained from WCI in Eq. (6) and K
in Eqs. (10) and (13a) by applying [9]

V̂ CI0 ¼ eK=m2
P

�
K� �
F�F �
 � 3

jWCIj2
m2

P

�
; (15a)

with

K� �
 ¼ K;���� �
 ; K
�
�K� �� ¼ �

�

�� (15b)

and

F � ¼ WCI;�� þ K;��WCI=m
2
P; (15c)

where the ��’s are given in Eq. (8). From the resulting

V̂CI0, we can deduce that along the field directions in
Eq. (12a),

V̂ CI0 ¼
m2m2

Px
2
� þ 4�2

aM
4
PQ=m

4
P

2f2
’ m2m2

Px
2
�

2f2
; (16a)

where x� ¼ �=mP and, according to the general recipe
[9–11], the function

f ¼ 1þ cRx� � x2�=6 (16b)

expresses the nonminimal coupling of � to R in JF. From

Eq. (16a), we can verify that for cR � 1 and x� � ffiffiffi
6

p
,

V̂CI develops a plateau since MPQ � mP—see Sec. III B.

Along the trajectory in Eq. (12a), we can estimate the
constant potential energy density

V̂ CI0 ¼ m2�2

2f2
’ m2m2

P

2c2R
; (17a)

and the corresponding Hubble parameter

Ĥ CI ¼ V̂1=2
CI0ffiffiffi
3

p
mP

’ mffiffiffi
6

p
cR

� (17b)

In order to check the stability of the direction in
Eq. (12a) w.r.t the fluctuations of the various fields, we
expand them in real and imaginary parts according to the
prescription

P ¼ �ei�ffiffiffi
2

p and X ¼ �1 þ i�2ffiffiffi
2

p ; (18a)

where

X ¼ �P; S; ��;�; ~�c
i ; �Dka; Dka; �hla; hla (18b)

and
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� ¼ �p; s; ��;�; �i; �Dka; Dka; �hla; hla; (18c)

respectively. Along the trajectory in Eq. (12a) we find

ðK� �
Þ ¼ diag
J2; 1=f; . . . ; 1=f|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

7þ10n elements

 !
; (19a)

where

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f
þ 3

2
m2

P

�
f;�
f

�
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3c2R

q
ffiffiffi
2

p
f

’
ffiffiffi
3

2

s
1

x�
� (19b)

Consequently, we can introduce the EF canonically nor-

malized fields, �̂, �̂ and �̂, as follows—cf. Ref. [9–12]:

K� �

_�� _�� �
 ¼ 1

2
ð _̂�2 þ _̂�

2Þ þ 1

2

X
�

ð _̂�2
1 þ _̂�2

2Þ; (20)

where the dot denotes derivation w.r.t the JF cosmic time,
t and the hatted fields are defined as follows

d�̂

d�
¼ J; �̂ ’ J�� and �̂ ’ �ffiffiffi

f
p � (21)

Note that _̂� ’ J� _� since J� ’ ffiffiffiffiffiffiffiffi
3=2

p
mP—see Eq. (19b).

On the other hand, we can show that during a stage of slow-

roll nMCI, _̂� ’ _�=
ffiffiffi
f

p
since the quantity _f=2f3=2�,

involved in relating _̂� to _�, turns out to be negligibly
small compared with _̂�. Indeed, the �̂’s acquire effective

masses m�̂ � ĤCI—see below—and therefore enter a

phase of oscillations about �̂ ¼ 0with reducing amplitude.
Neglecting the oscillating part of the relevant solutions,
we find

� ’ �̂0

ffiffiffi
f

p
e�2N̂=3 and _̂� ’ �2�0

ffiffiffi
f

p
ĤCÎ�e

�2N̂=3;

(22)

where �̂0 represents the initial amplitude of the oscilla-

tions, ̂� ¼ m2
�̂=3ĤCI and we assume _̂�ðt ¼ 0Þ ¼ 0.

Taking into account the approximate expressions for _�
and the slow-roll parameter �̂, which are displayed in
Sec. III B, we find

�
_f

2f3=2
� ¼ cR�̂Ĥ2

CI

m2
�̂

_̂� � _̂�: (23)

The masses that the various scalars acquire during nMCI

are presented in Table II. To this end, we expand V̂CI0 in
Eq. (15a) to quadratic order in the fluctuations around the
direction of Eq. (12a). As we observe from the relevant
eigenvalues of the mass-squared matrices, no instability—
as the one found in Ref. [11]—arises in the spectrum. In
particular, it is evident that k �P * 1 assists us to achieve
positivity of the mass-squared associated with the scalars
�̂p1;2,m

2
�̂p
—in accordance with the results of Ref. [9,10]. It is

remarkable that mass-squared corresponding to ~�c
i , Dka,

�Dka, hla, �hla are independent of the relevant superpotential
couplings �i�c , �Da and �ha. We have also numerically

verified that the various masses remain greater than ĤCI

during the last 50–60 e-foldings of nMCI, and so any
inflationary perturbations of the fields other than the in-
flaton are safely eliminated.
In Table II we also present the masses squared of chiral

fermions of the model along the direction of Eq. (12a).
Inserting these masses into the well-known Coleman-
Weinberg formula [33], we can find the one-loop radiative
corrections, Vrc, in our model which can be written as

TABLE II. The mass spectrum of the model during nMCI.

Fields Eingestates Mass-Squared

Bosons

1 real scalar �̂ cRm2x�=f
3J2 ’ 4H2

CI

2 real scalars �̂p1, �̂p2 m2ð2k �PcRx3� þ ð�cRx� þ ð6k �P � 1Þc2Rx2�Þ=2J2f2Þ=f2
2 real scalars ŝ1, ŝ2 ð2�aM

4
PQ=m

2
P þm2x2�Þ=3f2

6 real scalars �̂1i, �̂2i ð2�aM
4
PQ=m

2
P þm2x2�Þ=f2

4 real scalars
�̂�1��̂1ffiffi

2
p ,

�̂�2��̂2ffiffi
2

p ðm2x2�=3� �2
aM

2
PQfÞ=f2

6n real scalars D̂1ka, D̂2ka ð2�aM
4
PQ=m

2
P þm2x2�Þ=f2

6n real scalars �̂D1ka, �̂D2ka ð2�aM
4
PQ=m

2
P þm2x2�Þ=f2

4n real scalars ĥ1la, ĥ2la ð2�aM
4
PQ=m

2
P þm2x2�Þ=f2

4n real scalars �̂h1la, �̂h2la ð2�aM
4
PQ=m

2
P þm2x2�Þ=f2

Fermions

2 Weyl spinors
ĉ �P�ĉ Pffiffi

2
p m2ð6þ x2�Þ2=36f2
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Vrc ¼ 1

64	2

�
m4

�̂
ln
m2

p̂

�2
þ 2m4

�̂p
ln
m2

�̂p

�2
þ 2m4

ŝ ln
m2

ŝ

�2

þ 6m4
�̂ ln

m2
�̂

�2
þ 2m4

�̂þ
ln
m2

�̂þ
�2

þ 2m4
�̂�

ln
m2

�̂�
�2

þ 20nm4
D̂
ln
m2

D̂

�2
� 4m4

ĉ�
ln
m2

ĉ�
�2

�
; (24)

where � ¼ mP=cR is the cutoff scale of the effective
theory—see Sec. VA—and the involved above masses
squared m2

�̂
, m2

�̂p
, m2

ŝ , m
2
�̂, m

2
�̂�

, m2
D̂
and m2

ĉ�
are equal to

the ones listed in the third column of Table II from top to
the bottom. Note that the masses squared of all the extra
matter fields are equal to m2

D̂
. Based on the one-loop

corrected EF potential

V̂ CI ¼ V̂CI0 þ Vrc; (25)

we can proceed to the analysis of nMCI in EF, employing
the standard slow-roll approximation [34]. It can be shown
[35] that the results calculated this way are the same as if
we had calculated them using the nonminimally coupled
scalar field in JF. As expected and verified numerically, Vrc

does not affect the inflationary dynamics and predictions,
in the major part of the allowed parameter space—see
Sec. VB 1—since the inflationary path already possesses
a slope at the classical level—see below.

B. The inflationary observables

According to our analysis above, the universe undergoes
a period of slow-roll nMCI, which is determined by the
condition—see e.g. Ref. [34]:

maxf�̂ð�Þ; ĵð�Þjg 	 1;

where

�̂ ¼ m2
P

2

�
V̂CI;�̂

V̂CI

�
2 ¼ m2

P

2J2

�
V̂CI;�

V̂CI

�
2 ’ 4m2

P

3c2R�2
; (26a)

and

̂ ¼ m2
P

V̂CI;�̂ �̂

V̂CI

¼ m2
P

J2

�
V̂CI;��

V̂CI

� V̂CI;�

V̂CI

J;�
J

�
’ �4mP=3cR�: (26b)

Here, we employ Eqs. (17a) and (19b) and the following
approximate relations:

V̂ CI;� ’ m2mP

c3Rx2�
and V̂CI;�� ’ � 2m2

c3Rx3�
� (27)

The numerical computation reveals that nMCI terminates
due to the violation of the �̂ criterion at � ¼ �f , which is
calculated to be

�̂ð�fÞ ¼ 1 ) �f ¼ 2ffiffiffi
3

p mP

cR
� (28)

We note, in passing, that for� 
 �f the evolution of �̂—or
� via Eq. (19b)—is governed by the equation of motion

3ĤCI

d�̂

dt̂
¼ �V̂CI;�̂ ) _� ¼ � 2

ffiffiffi
2

p
m

3
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
m3

P

c3R�

vuut ; (29)

where t̂ is the EF cosmic time with dt̂ ¼ ffiffiffi
f

p
dt. Using

Eqs. (26a) and (29), we can derive Eq. (23).

The number of e-foldings, N̂�, that the scale k� ¼
0:002=Mpc suffers during nMCI can be calculated through
the relation

N̂ � ¼ 1

m2
P

Z �̂�

�̂f

d�̂
V̂CI

V̂CI;�̂

¼ 1

m2
P

Z ��

�f

d�J2
V̂CI

V̂CI;�

; (30)

where ��½�̂�� is the value of �½�̂� when k� crosses the
inflationary horizon. Given that �f � ��, we can write ��
as a function of N̂� as follows

N̂ � ’ 3cR
4mP

ð�� � �fÞ ) �� ’ 4N̂�
3cR

mP� (31)

The power spectrum PR of the curvature perturbations
generated by � at the pivot scale k� is estimated as follows

P1=2
R ¼ 1

2	m2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂CIð��Þ
6�̂ð��Þ

s
’ mN̂�
6	mPcR

; (32)

where Eq. (31) is employed to derive the last equality of
the relation above. Since the scalars listed in Table II are

massive enough during nMCI, P1=2
R can be identified with

its central observational value—see Sec. V—with almost

constant N̂�. The resulting relation reveals that m is to be
proportional to cR. Indeed we find

m ¼ 6	mPcRP1=2
R =N̂� ) m ¼ 4:1� 1013cR GeV;

(33)

for N̂� ’ 55. At the same pivot scale, we can also calculate
the (scalar) spectral index, ns, its running, as, and the
scalar-to-tensor ratio, r, via the relations:

ns ¼ 1� 6�̂� þ 2̂� ’ 1� 2=N̂�; (34a)

�s ¼ 2

3
ð4̂2� � ðns � 1Þ2Þ � 2�̂� ’ �2=N̂2�; (34b)

r ¼ 16�̂� ’ 12=N̂2�; (34c)

where �̂ ¼ m4
PV̂CI;�̂V̂CI;�̂ �̂ �̂=V̂

2
CI ¼ mP

ffiffiffiffiffiffi
2�̂

p
̂;�=J þ 2̂ �̂

and the variables with subscript � are evaluated at
� ¼ ��. Comparing the results of this section with the
observationally favored values [16], we constrain the
parameters of our model in Sec. VB1.
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IV. NON-THERMAL LEPTOGENESIS

A complete SUSY inflationary scenario should specify
the transition to the radiation dominated era and also
explain the origin of the observed BAU consistently with

the ~G constraint. These goals can be accomplished within
our setup, as we describe in this section. Namely, the basic
features of the post-inflationary evolution are exhibited in
Sec. IVA and the topic of nTL in conjunction with the
present neutrino data is analyzed in Sec. IVB.

A. The general setup

When nMCI is over, the inflaton continues to roll down
towards the SUSY vacuum, Eqs. (9a)–(9c). Note that when

x� &
ffiffiffi
3

p
�aMPQ=m, one scalar originating from the super-

fields � and ��—see Table I—acquires a negative mass-
squared triggering thereby the PQPT. As the inflaton
continues its rolling, there is a brief stage of tachyonic
preheating [36] which does not lead to significant particle
production [37]. Soon afterwards, it settles into a phase of

damped oscillations about the minimum of the V̂CI0. Since
no gauge symmetry is broken during nMCI, no superheavy
bosons are produced and therefore no particle production
via the mechanism of instant preheating [38] occurs. Also,
since the inflaton cannot decay via renormalizable inter-
actions to SM particles, effects of narrow parametric reso-
nance [36] are also absent in our regime.

Nonetheless, the standard perturbative approach to the
inflaton decay provides a very efficient decay rate. Namely,
at the SUSY vacuum the fields involved acquire the v.e.vs
shown in Eqs. (9a)–(9c) giving rise to the mass spectrum
presented in Table III. There we can show the mass, mI, of

the (canonically normalized) inflaton P̂ and the masses
Mi�c of the RH [s]neutrinos, �c

i [~�
c
i ], which play a crucial

role in our scenario of nTL. Note that since h�i ¼ h ��i ¼
MPQ � mP, h�i ’ �3 and so hfi ’ 1. Therefore, apart

from P̂, the EF canonically normalized field are not dis-
tinguished from the JF ones at the SUSY vacuum. On the

other hand, P̂ can be expressed as a function of P through
the relation

P̂

P
¼ hJi where hJi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3c2R=2

q
: (35)

Making use of Eq. (33) we can infer that mI is kept
independent of cR and almost constant at the level of
1013 GeV. Indeed,

mI ’ m

hJi ¼
ffiffiffi
2

3

s
m

cR
’ 2

ffiffiffi
3

p
	mP

P1=2
R

N̂
’ 1013 GeV; (36)

where the WMAP7 value of P1=2
R —see Sec. VA—is

employed in the last step of the relation above. In the
expressions of the various eigenstates listed in Table III,
we adopt the following abbreviations

�� ¼ ��MPQ; � �� ¼ ���MPQ; (37a)

and

c� ¼ ðc �� � c�Þ=
ffiffiffi
2

p
; (37b)

where c x with x ¼ P̂, P, S, ��, �, �Dka, Dka, �hla, and hla
denote the chiral fermions associated with the superfields

P̂, P, S, ��, �, �Dka, Dka, hla, and hla respectively. The
eigenstates c� and ���, with

��� ¼ ð� ��� ��Þ= ffiffiffi
2

p
; (38)

contain the components of the axion supermultiplet.
Namely axion [saxion] can be identified with the phase
[modulus] of the complex field ���, whereas c� can be
interpreted as the axino. Note that the zero masses of
saxion and axino can be replaced with masses of order
1 TeV if we take into account the soft SUSY-breaking
masses—see discussion below Eq. (9c).

The decay of P̂ commences when mI becomes larger
than the expansion rate and is processed via the first
coupling in the RHS of Eq. (5), into S and ~�c

i and S, ~�c
i

and ��þ or ���. The relevant Lagrangian sector is

L dc ¼ � mI

mP

�iP̂
�S~�c

i

�
MPQ þ ��þ � ���ffiffiffi

2
p

�
þ H:c:

(39)

which arises from the cross term of the F-term, correspond-
ing to �P, of the SUSY potential derived from the super-
potential terms in Eqs. (4) and (5). Note that we have no
cR-induced decay channels as in Ref. [12], since hPi ¼ 0.
The interaction above gives rise to the following decay
width

�I ¼ 1

8	

��
MPQ

mP

�
2 þ 1

64	2

�
mI

mP

�
2
�
mI

X3
i¼1

�2
i ; (40)

where we take into account that mI � mPQ and mI �
Mj�c . These prerequisites are safely fulfilled when �a

and �i�c remain perturbative, i.e. �a, �i�c 	 ffiffiffiffiffiffiffi
4	

p
—see

Table III. From the two contributions to �I, the dominant
one is the second one—the 3-body decay channel—
originating from the two last terms of Eq. (39).
Taking also into account that the decay width of the

produced ~�c
i , �i�c , is much larger than �I—see below—we

TABLE III. The mass spectrum of the model at the SUSY
vacuum.

Eigenstates Eigenvalues (Masses)

Scalars Fermions

P̂, �P ðc �P � c P̂Þ=
ffiffiffi
2

p
mI ¼ m=hJi

S, ð� ��þ ��Þ= ffiffiffi
2

p ðc S � cþÞ=
ffiffiffi
2

p
mPQ ¼ ffiffiffi

2
p

�aMPQ

ð� ��� ��Þ= ffiffiffi
2

p ðc �� � c�Þ=
ffiffiffi
2

p
0

~�c
i �c

i Mi�c ¼ 2�i�cMPQ

Dka, �Dka c Dka
, c �Dka

mDa
¼ �Da

MPQ

hla, �hla c hla , c �hla
mha ¼ �haMPQ
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can infer that the reheat temperature, Trh, is exclusively

determined by the P̂ decay and is given by [39]

Trh ¼
�

72

5	2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffi

�ImP

p
; (41)

where g� ’ 232:5 counts the effective number of the rela-
tivistic degrees of freedom at temperature Trh for the (s)
particle spectrum of MSSM plus the particle content of the
axion supermultiplet. Although the factor before the square
root of Eq. (41) differs [39] slightly from other calculations
of Trh—cf. Ref. [25]—the numerical result remains pretty
stable and close to 108 GeV—see Sec. VB 1.

If Trh � Mi�c , the out-of-equilibrium condition [40] for
the implementation of nTL is automatically satisfied.
Subsequently, ~�c

i decay into ~Hu and Li or ~H�
u and ~L�

i via
the tree-level couplings derived from the second term of
the second line of Eq. (2). Interference between tree-level
and one-loop diagrams generates a lepton-number asym-
metry (per �c

i decay) "i [40], when CP is not conserved in
the Yukawa coupling constants hNij—see Eq. (2). The

resulting lepton-number asymmetry after reheating can
be partially converted through sphaleron effects into
baryon-number asymmetry. However, the required Trh

must be compatible with constraints for the ~G abundance,
Y ~G, at the onset of nucleosynthesis (BBN). In particular,
the B yield can be computed as

YB ¼ �0:35
5

4

Trh

mI

X
i

Bri"i with Bri ¼ �2
iP

i �
2
i

(42)

the branching ratio of P̂ to ~�c
i—see Eq. (40). In the formula

above the first numerical factor (0.35) comes from the
sphaleron effects, whereas the second one (5=4) is due to
the slightly different calculation [39] of Trh—cf. Ref. [25].

On the other hand, the ~G yield due to thermal production at
the onset of BBN is estimated to be [31]

Y ~G ’ 1:9� 10�22Trh=GeV: (43)

where we assume that ~G is much heavier than the gauginos.

Let us note that nonthermal ~G production within SUGRA
is unlikely in our scenario, since these contributions are
[41] usually proportional to the v.e.v of the inflaton which
is zero in our case.

Both Eqs. (42) and (43) calculate the correct values of

the B and ~G abundances provided that no entropy produc-
tion occurs for T < Trh—see also Sec. VA. This fact can be
easily achieved within our setting. Indeed, following the
arguments of Ref. [11], one can show that the PQ system
comprised of the fields S and ��þ decays via the third
term in the RHS of Eq. (5) before its domination over
radiation, for all relevant values of �i’s. Regarding the
saxion, ���, we can assume that it has mass of the order
of 1 TeV, its decay mode to axions is suppressed (w.r.t the
ones to gluons, Higgses and Higgsinos [19,42,43]) and the
initial amplitude of its oscillations is equal to fa. Under

these circumstances, it can [42] decay before domination
too, and evades [43] the constraints from the effective
number of neutrinos for the fa’s and Trh’s encountered in
our model. As a consequence of its relatively large decay
temperature, the LSPs produced by the saxion decay are
likely to be thermalized and therefore, no upper bound on
the saxion abundance is [43] to be imposed. Finally, if
axino is sufficiently light it can act as a CDM candidate
[18,19] with relic abundance produced predominantly
thermally—due to the relatively large Trh. Otherwise,
it may enhance [19] nonthermally the abundance of a
Higgsino-like neutralino-LSP, rendering it a successful
CDM candidate.

B. Lepton-number asymmetry and neutrino masses

As mentioned above, the decay of ~�c
i , emerging from the

P̂ decay, can generate a lepton asymmetry, "i, caused by
the interference between the tree-level and one-loop decay
diagrams, provided that a CP-violation occurs in hNij’s.

The produced "i can be expressed in terms of the Dirac
mass matrix of �i, mD, defined in a basis (called �c

i -basis
henceforth) where �c

i are mass eigenstates, as follows:

"i ¼
P

i�j Im½ðmy
DmDÞ2ij�ðFSðxij; yi; yjÞ þ FVðxijÞÞ
8	hHui2ðmy

DmDÞii
;

(44a)

where we take hHui ’ 174 GeV, for large tan
 and

xij ¼
Mj�c

Mi�c

and yi ¼ �i�c

Mi�c

¼ ðmy
DmDÞii

8	hHui2
� (44b)

Also FV and FS represent, respectively, the contributions
from vertex and self-energy diagrams which in SUSY
theories read [44–46]

FVðxÞ ¼ �x lnð1þ x�2Þ; (44c)

and

FSðx; y; zÞ ¼ �2xðx2 � 1Þ
ðx2 � 1� x2z lnx2=	Þ2 þ ðx2z� yÞ2 ;

(44d)

with the latter expression written as given in Ref. [46].
When

�iji � 1 and �ijj � 1 with �ijk ¼
jx2ij � 1j
xikyk

;

(45)

(no summation is applied over the repeated indices) we can
simplify FS expanding it close to x ’ 1 as follows:

FS ’ 2x

1� x2
’ 1

1� x
� 1

2
� (46)

The involved in Eq. (44a) mD can be diagonalized if we
define a basis—called weak basis henceforth—in which
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the lepton Yukawa couplings and the SUð2ÞL interactions
are diagonal in the space of generations. In particular
we have

UymDU
cy ¼ dD ¼ diagðm1D; m2D; m3DÞ; (47)

where U and Uc are 3� 3 unitary matrices which relate Li

and �c
i (in the �

c
i -basis) with the ones L

0
i and �

c0
i in the weak

basis as follows:

L0 ¼ LU and �c0 ¼ Uc�c: (48)

Here, we write LH lepton superfields, i.e. SUð2ÞL doublet
leptons, as row 3-vectors in family space and RH antilep-
ton superfields, i.e. SUð2ÞL singlet antileptons, as column

3-vectors. Consequently, the combination my
DmD appeared

in Eq. (44a) turns out to be a function just of dD and Uc.
Namely,

my
DmD ¼ UcydDdDUc: (49)

The connection of the leptogenesis scenario with the low
energy neutrino data can be achieved through the seesaw
formula, which gives the light-neutrino mass matrix m� in
terms of miD and Mi�c . Working in the �c

i -basis, we have

m� ¼ �mDd
�1
�c mT

D; (50)

where

d�c ¼ diagðM1�c ;M2�c ;M3�cÞ (51)

with M1�c 	 M2�c 	 M3�c real and positive. Solving
Eq. (47) w.r.t mD and inserting the resulting expression in
Eq. (50) we extract the mass matrix

�m� ¼ Uym�U
� ¼ �dDU

cd�1
�c UcTdD; (52)

which can be diagonalized by the unitary PMNS matrix
satisfying

�m� ¼ U�
�diagðm1�; m2�; m3�ÞUy

� (53)

and parameterized as follows:

U� ¼
c12c13 s12c13 s13e

�i�

U21� U22� s23c13

U31� U32� c23c13

2
664

3
775 � P : (54)

Here

U21� ¼ �c23s12 � s23c12s13e
i�; (55a)

U22� ¼ c23c12 � s23s12s13e
i�; (55b)

U31� ¼ s23s12 � c23c12s13e
i�; (55c)

U32� ¼ �s23c12 � c23s12s13e
i�; (55d)

with cij :¼ cos�ij, sij :¼ sin�ij and � the CP-violating

Dirac phase. The two CP-violating Majorana phases ’1

and ’2 are contained in the matrix

P ¼ diagðe�i’1=2; e�i’2=2; 1Þ: (56)

Following a bottom-up approach, along the lines of
Ref. [47], we can find �m� via Eq. (53) using as input
parameters the low-energy neutrino observables, the CP
violating phases and adopting the normal or inverted hier-
archical scheme of neutrino masses. Taking also miD

as input parameters we can construct the complex sym-
metric matrix

W ¼ �d�1
D �m�d

�1
D ¼ Ucd�cUcT (57)

—see Eq. (52)—from which we can extract d�c as follows:

d�2
�c ¼ UcyWWyUc: (58)

Note that WWy is a 3� 3 complex, Hermitian matrix and
can be diagonalized following the algorithm described in
Ref. [48]. Having determined the elements of Uc and the
Mi�c’s we can compute mD through Eq. (49) and the "i’s
through Eq. (44a).

V. CONSTRAINING THE MODEL PARAMETERS

We exhibit the constraints that we impose on our cos-
mological setup in Sec. VA, and delineate the allowed
parameter space of our model in Sec. VB.

A. Imposed constraints

The parameters of our model can be restricted once we
impose the following requirements:
(1) According to the inflationary paradigm, the horizon

and flatness problems of the standard Big Bang
cosmology can be successfully resolved provided

that N̂� defined by Eq. (30) takes a certain value,
which depends on the details of the cosmological
scenario. Employing standard methods [7], we can

easily derive the required N̂� for our model, consis-
tent with the fact that the PQ oscillatory system
remains subdominant during the post-inflationary
era. Namely we obtain

N̂� ’ 22:5þ 2 ln
VCIð��Þ1=4
1 GeV

� 4

3
ln
VCIð�fÞ1=4
1 GeV

þ 1

3
ln

Trh

1 GeV
þ 1

2
ln
fð�fÞ
fð��Þ � (59)

(2) The inflationary observables derived in Sec. III B are
to be consistent with the fitting [16] of the WMAP7,
BAO and H0 data. As usual, we adopt the central

value of P1=2
R , whereas we allow the remaining

quantities to vary within the 95% confidence level
(c.l.) ranges. Namely,
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P1=2
R ’ 4:93� 10�5; (60a)

0:944 	 ns 	 0:992; (60b)

�0:062 	 �s 	 0:018; (60c)

r < 0:24: (60d)

(3) For the realization of nMCI, we assume that cR
takes relatively large values—see e.g. Eq. (16a).
This assumption may [5,49] jeopardize the validity
of the classical approximation, on which the analysis
of the inflationary behavior is based. To avoid this
inconsistency—which is rather questionable [10,49]
though—we have to check the hierarchy between
the ultraviolet cutoff scale [7], � ¼ mP=cR, of the
effective theory and the inflationary scale, which

is represented by V̂CIð��Þ1=4 or, less restrictively,

by the corresponding Hubble parameter, Ĥ� ¼
V̂CIð��Þ1=2=

ffiffiffi
3

p
mP. In particular, the validity of the

effective theory implies

V̂CIð��Þ1=4 	 � or (61a)

Ĥ� 	 �: (61b)

(4) To ensure that the inflaton decay according to the
Lagrangian part of Eq. (39) is kinematically allowed
we have to impose the constraint—see Table III:

mI 
 2mPQ þMi�c ) 2mPQ þMi�c & 1013 GeV;

(62)

where we make use of Eq. (36). This requirement
can be easily satisfied by constraining �a and �i�c to
values lower than the perturbative limit. As the
inequality in Eq. (62) gets strengthened, the accu-
racy of Eq. (40) where masses of the decay products
are neglected, increases.

(5) From the solar, atmospheric, accelerator and reactor
neutrino experiments we take into account the
following inputs [26]—see also Ref. [27]—on the
neutrino mass-squared differences:

�m2
21¼

�
7:59þ0:2

�0:18

�
�10�3 eV2; (63a)

�m2
31¼

�
2:5þ0:09

�0:16

h
�2:4þ0:08

�0:09

i�
�10�3 eV2; (63b)

on the mixing angles:

sin 2�12 ¼ 0:312þ0:017
�0:015; (63c)

sin 2�13 ¼ 0:013þ0:007
�0:005

h
0:016þ0:008

�0:006

i
; (63d)

sin 2�23 ¼ 0:52þ0:06
�0:07½0:52� 0:06�; (63e)

and on the CP-violating Dirac phase:

� ¼ �
�
0:61þ0:75

�0:65

h
0:41þ0:65

�0:7

i�
	 (63f)

for normal [inverted] neutrino mass hierarchy. In
particular, mi�’s can be determined via the relations

m2� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1� þ �m2
21

q
(64a)

and

m3� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1� þ �m2
31

q
(64b)

for normally ordered (NO) mi�’s or

m1� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3� þ j�m2
31j

q
(64c)

for invertedly ordered (IO) mi�’s. The sum of mi� ’s
can be bounded from above by the WMAP7
data [16] X

i

mi� 	 0:58 eV (65)

at 95% c.l. This is more restrictive than the 95% c.l.
upper bound arising from the effective electron
neutrino mass in 
-decay [50]:

m
 :¼
��������X

i

U2
1i�mi�

��������	 2:3 eV: (66)

However, in the future, the KATRIN experiment
[51] expects to reach the sensitivity of m
 ’
0:2 eV at 90% c.l.

(6) The interpretation of BAU through nTL dictates [16]
at 95% c.l.

YB ¼ ð8:74� 0:42Þ � 10�11: (67)

(7) In order to avoid spoiling the success of the BBN, an
upper bound on Y ~G is to be imposed depending on

the ~G mass, m ~G, and the dominant ~G decay mode.

For the conservative case where ~G decays with a
tiny hadronic branching ratio, we have [31]

Y ~G&

8>>>>>><
>>>>>>:

10�14

2:5�10�14

4:3�10�14

10�13

form ~G’

8>>>>>><
>>>>>>:

0:69TeV

5TeV

8TeV

10:6TeV

: (68)

As we see below, this bound is achievable within our model
only for m ~G * 8 TeV. The bound above may be somehow

relaxed in the case of a stable ~G.

B. Results

As can be easily seen from the relevant expressions in
Secs. II and IVB, our cosmological setup depends on the
following independent parameters:

m;�a; ��; k �P; �i; fa; n; �;ml�; miD; ’1 and ’2;

where ml� is the low scale mass of the lightest of �i’s
and can be identified with m1�½m3�� for NO [IO]
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neutrino mass spectrum.We do not consider cR and �i�c as
independent parameters since cR is related to m via
Eq. (33) while�i�c can be derived from the last six parame-
ters above which affect exclusively the YL calculation and
can be constrained through the requirements 5 and 6 of
Sec. VA. Note that the �i�c’s can be replaced by Mi�c’s
given in Table III keeping in mind that perturbativity

requires �i�c 	 ffiffiffiffiffiffiffi
4	

p
or Mi�c 	 3:5fa. Recall also that

Vrc in Eq. (24) is independent of �Da; �h � �a and de-
pends only on n, which is set equal to 5 for definiteness.
To facilitate the realization of seesaw mechanism,
we take fa ¼ 1012 GeV. This choice makes also possible
the generation of the � term of MSSM through the PQ
symmetry breaking, since �� 1 TeV is obtained for
�� ¼ 0:01, whereas lower fa’s dictate larger ��’s.

Moreover, our computation reveals that "1 in Eq. (44a) is
mostly smaller than "2 and "3. Therefore, fulfilling the
baryogenesis criterion enforces us to consider Br1 � Br2;3
or �1 � �2;3 � 0:1. Since "2 and "3 are of the same order

of magnitude, the resulting YB does not depends crucially
on �2=�3. Therefore we believe that �2 ¼ �3 ¼ 0:5 is a
representative choice—e.g., we explicitly checked that the
option �2 ¼ 0:1 and �3 ¼ 0:9 or �2 ¼ 0:9 and �3 ¼ 0:1
lead to similar results. Finally, our results are independent
of �a and k �P provided Eq. (62) is fulfilled and the positivity
ofm2

�̂p
—see Table II—is ensured, respectively. To facilitate

the achievement of these objective, we get �a ¼ 0:01
and k �P ¼ 1.

Summarizing, we set throughout our calculation:

k �P ¼ 1; �1 	 0:01; �2 ¼ �3 ¼ 0:5; n ¼ 5; (69a)

�� ¼ �a ¼ 0:01 and fa ¼ 1012 GeV: (69b)

The selected values for the above quantities give us a wide
and natural allowed region for the remaining fundamental
parameters of our model, as we show below concentrating

separately in the inflationary period (Sec. VB 1) and in the
stage of nTL (Sec. VB 2).

1. The stage of nonminimal inflation

For nMCI, we use as input parameters in our numerical
code��,m and cR. For every chosen cR 
 1we restrictm
and �� so that the conditions in Eq. (59)—with Trh eval-
uated consistently using Eq. (41)—and (60a) are satisfied.
Let us remark that, in our numerical calculations, we use

the complete formulas for V̂CI—see Eq. (25)—, N̂�, the
slow-roll parameters and P1=2

R in Eqs. (30), (26a), (26b),

and (32) and not the approximate relations listed in
Sec. III B for the sake of presentation.
Our results are displayed in Fig. 1, where we draw the

allowed values of cR (solid line) mI (dashed line) and Trh

(dot-dashed line) [�f (solid line) and �� (dashed line)]
versus m—see Figs. 1(a) and 1(b). The constraint of
Equation (61b) is satisfied along the various curves
whereas Eq. (61a) is valid only along the gray and light
gray segments of these. Along the light gray segments,
though, we obtain �� 
 mP. The lower bound on m is
derived from the saturation of the upper bound of inequal-
ity in Eq. (60b) whereas the upper bound comes from
the fact that the enhanced resulting m’s destabilize the
inflationary path through the radiative corrections in
Eq. (25)—see Eq. (24). Indeed, Vrc starts to influence the
inflationary dynamics for m 
 1:5� 1016 GeV, and con-
sequently, the variation of �f as a function of cR or
m—drawn in Fig. 1(b)—deviates from the behavior
described in Eq. (28). On the contrary the variations of
�� follows Eq. (31).
In all, we obtain

45 & cR & 2950 and 2:5 &
m

1015 GeV
& 102 (70)

011
1

10

102

m
I
 / 1013 GeV

T
rh

 / 108 GeV

c

m (1016 GeV)
(a)

/ 10

011
10-3

10-2

10-1

1

i = f

i = *

σ
i / 

m
P

m (1016 GeV)
(b)

FIG. 1. The allowed by Eqs. (59), (60a), (60b), and (61b) values of cR (solid line), mI—given by Eq. (36)—(dashed line) and
Trh—given by Eq. (41)—(dot-dashed line) [�f (solid line) and �� (dashed line)] versus m (a)[(b)] for �1 � �2 ¼ �3 ¼ 0:5. The light

gray and gray segments denote values of the various quantities satisfying Eq. (61)a too, whereas along the light gray segments we
obtain �� 
 mP. Values of the parameters to the right of the lined region correspond to ns’s lying within its 68% c.l. observationally
favored region.

NONMINIMAL CHAOTIC INFLATION, PECCEI-QUINN . . . PHYSICAL REVIEW D 86, 023523 (2012)

023523-11



for N̂� ’ 54:5. From Fig. 1(a), we observe that m depends
on cR almost linearly whereas mI remains close to
1013 GeV as we anticipated in Eqs. (33) and (36), respec-
tively. As a result of the latter effect, Trh given by Eq. (41)
remains also almost constant. As m (or cR) decreases
below its maximal value in its allowed region in Eq. (70),
we obtain

0:965 & ns & 0:991; (71a)

6:5 & ��s=10
�4 & 12; (71b)

3:1 & r=10�3 & 7:3: (71c)

Clearly, the predicted ns, �s and r can lie within the allowed
ranges given in Eqs. (60b)–(60d) respectively. In particular,
values of the various parameters plotted in Fig. 1, which
lie to the right of the lined regions correspond to ns ’
ð0:965–0:98Þ. This result is consistent with the 68% c.l.
observationally favored region—see Eq. (60b). It is notable,

however, that ns increases impressively for ��=mP >
ffiffiffi
6

p
,

contrary to the situation in models of nMCI with quadratic
coupling to R where ns remains constantly close to
its central observational favored value in Eq. (60b)—
cf. Ref. [11].

As regards the ~G abundance, employing Eq. (43),
we find

3:5 & Y ~G=10
�14 & 8:4 (72)

asm varies within its allowed range in Eq. (70). Comparing
this result with the limits of Eq. (68), we infer that
our model is consistent with the relevant restriction for
m ~G * ð8–10Þ TeV.

2. The stage of nonthermal leptogenesis

As we show above, the stage of nMCI predicts almost
constant values of mI and Trh—recall that we consider �i’s
of the order of 0.1. In other words, the post-inflationary
evolution in our setup is largely independent of the precise
value of m in the range of Eq. (70). As a consequence, YB

calculated by Eq. (42) does not vary withm, contrary to the
naive expectations. Just for definiteness we take through-
out this section m ¼ 4:2� 1015 GeV which corresponds
to cR ¼ 100, ns ¼ 0:969, mI ¼ 3:4� 1013 GeV and
Trh ¼ 2:1� 108 GeV (Y ~G ’ 4� 10�14)—recall that we
use �1 � �2 ¼ �3 ¼ 0:5.
On the contrary, YB in our approach depends crucially on

the low-energy parameters related to the neutrino physics.
In our numerical program, for a given neutrino mass
scheme, we take as input parameters: ml�, ’1, ’2 and the
best-fit values of the neutrino parameters listed in para-
graph 5 of Sec. VA. We then find the renormalization
group (RG) evolved values of these parameters at the
scale of nTL, �L, which is taken to be �L ¼ mI, integrat-
ing numerically the complete expressions of the RG

TABLE IV. Parameters yielding the correct BAU for various neutrino mass schemes.

Parameters Cases

A B C D E F G

Normal Hierarchy Degenerate Masses Inverted Hierarchy

Low Scale Parameters

m1�=0:1 eV 0.05 0.1 0.5 1. 0.7 0.5 0.49

m2�=0:1 eV 0.1 0.13 0.51 1.0 0.705 0.51 0.5

m3�=0:1 eV 0.5 0.51 0.71 1.12 0.5 0.1 0.05P
imi�=0:1 eV 0.65 0.74 1.7 3.1 1.9 1.1 1

m
=0:1 eV 8� 10�3 0.013 0.19 0.46 0.3 0.42 0.44

’1 	 	 0 	=4 	=4 	=4 	=4

’2 0 0 5	=6 	 	 	=2 	=4

Leptogenesis-Scale Parameters

m1D=0:1 GeV 2 2.5 4 8 9 6 5

m2D=0:1 GeV 3 3.49 5 9.3 6 3 1

m3D=0:1 GeV 6.7 4 8 11 4.7 2 2.1

M1�c=10
11 GeV 2.5 2.4 3.3 6.5 4.6 1 0.3

M2�c=10
11 GeV 11 7.3 5.2 8.13 4.9 5.56 4.3

M3�c=10
11 GeV 17 7.6 6 8.36 8.6 6.7 5.1

�iji=10
4 4.5 0.5 0.96 0.05 0.3 1.6 1.4

�ijj=10
4 1.6 0.54 0.48 0.04 0.3 1.2 3.5

(with i ¼ 2 and j ¼ 3 except for case E where i ¼ 1 and j ¼ 2)

Resulting B-Yield

1011Y0
B 8.3 7.4 6.3 3.3 7.2 9.3 4.8

1011YB 8.7 8.85 8.98 8.4 8.9 8.96 8.95
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equations—given in Ref. [52]—for mi�, �ij, �, ’1 and ’2.

In doing this, we consider the MSSM with tan
 ’ 50
(favored by the preliminary LHC results [53]) as an effec-
tive theory between �L and a SUSY-breaking scale,
MSUSY ¼ 1:5 TeV. Below MSUSY the running of the vari-
ous parameters is realized considering the particle content
of SM with a mass of about 120 GeV for the light Higgs.
Following the procedure described in Sec. IVB, we evalu-
ate Mi�c at �L taking miD as free parameters. In our
approach we do not consider the running of miD and
Mi�c and therefore we give their values at �L.

We start the exposition of our results arranging in
Table IV some representative values of the parameters
leading to the correct BAU for normally hierarchical (cases
A and B), degenerate (cases C, D and E) and invertedly
hierarchical (cases F and G) neutrino masses. For compari-
son we display the B-yield with (YB) or without (Y

0
B) taking

into account the RG effects. We observe that the two results
differ appreciably especially in the cases with degenerate
or IO mi�’s. As it is evident from the miD’s chosen, our
model is not compatible with any GUT-inspired pattern of
large hierarchy between the miD’s. In particular, we need
m1D <m2D <m3D [m3D <m2D <m1D] for NO [IO] mi�’s
(cases A, B, C and D [cases E, F and G]).

From Table IV we also notice that the achievement of YB

within the range of Eq. (67) dictates mostly proximity
between two of the Mi�c’s. Indeed, except for the case A,
we obtain M2�c=M1�c ’ 1:06 in case E and M3�c=M2�c <
1:2 in the residual cases. However, it is clear from the
displayed �iji’s and �iji’s (with i ¼ 2 and j ¼ 3 for all

the cases besides case E where i ¼ 1 and j ¼ 2) that in our
framework the conditions of Eq. (45) are comfortably
retained and therefore, our proposal is crucially different
from that of resonant leptogenesis [44–46]—it rather re-
sembles that of Ref. [28]. On the other hand, the correct-
ness of YB in the case A entails M2�c and M3�c [�2�c and
�3�c] roughly larger than 10

12 GeV [unity]. In all cases the
current limit of Eq. (65) is safely met—the case D
approaches it—, while m
 turns out to be well below the

projected sensitivity of KATRIN [51].
To highlight further our conclusions inferred from

Table IV, we can fix ml� (m1� for NO mi�’s or m3� for
IOmi�’s)m1D,’1 and’2 to their values shown in this table
and vary m2D and m3D so that the central value of Eq. (67)
is achieved. The resulting contours in the m2D �m3D

plane are presented in Fig. 2(a)—since the range of
Eq. (67) is very narrow the possible variation of the
drawn lines is negligible. The resulting values of Mj�c

2

4

6

8

10

1 2 3 4 5 6 7 8 9

m
2D

 (GeV)
(a)

m
3D

 (
G

eV
)

       
           m

1ν / eV   m
1D

 / GeV     ϕ
1
       ϕ

2
       

    0.005        2                 π         0
    0.01          2.5              π         0
    0.05          4                 0       5π/6
    0.1            8                 π/4       π

           m
3ν / eV   m

1D
 / GeV     ϕ

1
       ϕ

2
       

    0.005        5                π/4      π/4   
    0.01          6                π/4      π/2     
    0.05          9                π/4      π      

   

1 2 3 4 5 6 7 8 9 10 11 12 13

5

10

15

20

25

30

M
2ν

c (
10

11
 G

eV
)

M
1νc (1011 GeV)

(b)

1 2 3 4 5 6
3

4

5

6

7

8

5 10 15 20 25 30

5

10

15

20

25

30

35

M
3ν

c (
10

11
 G

eV
)

M
2νc (1011 GeV)

(c)

3 4 5 6 7 8
4

5

6

7

8

9

FIG. 2. Contours in the m2D �m3D (a) M1�c �M2�c (b) and M2�c �M3�c (c) plane yielding the central YB in Eq. (67), for various
ðm‘�;m1D; ’1; ’2Þ’s indicated next to the graph (a) and NO [IO] mi�’s (black [gray] lines).

NONMINIMAL CHAOTIC INFLATION, PECCEI-QUINN . . . PHYSICAL REVIEW D 86, 023523 (2012)

023523-13



are displayed inM1�c �M2�c andM2�c �M3�c plane—see
Fig. 2(b) and 2(c) respectively. The conventions adopted
for the types and the color of the various lines are also
described next to the graphs (a) of Fig. 2. In particular, we
use black [gray] lines for NO [IO] mi�’s. Besides the case
with m1� ¼ 0:005 eV we observe that every curve in all
graphs has two branches and not large hierarchies allowed
in the sectors of both the mD’s and M�c’s. Note that the
black contour for m1� ¼ 0:01 eV in Fig. 2(c) is included
within the one for m1� ¼ 0:1 eV and so, it is not quite
distinguishable. For m1� ¼ 0:005 eV, �3�c saturates the
perturbation limit. Since we expect that the �i�c’s increase
[54] due to their RG running from low to higher scale, our
results do not jeopardize the validity of the conventional
perturbation approach up to the scale �L. In all cases we
find that miD & 10 GeV.

It is worth emphasizing that, although our mechanism of
nTL is connected with the specific inflationary model
under consideration, it can have a much wider applicabil-
ity. It can be realized within other models of inflation with
similar inflaton mass and reheat temperature, since it is
largely independent of the details of the inflationary phase
but restricts mainly the yet unknown parameters of neu-
trino physics ðmi�;miD; ’1; ’2Þ.

VI. CONCLUSIONS

We investigated a novel inflationary scenario in which
the inflaton field appears in a bilinear superpotential term
and in a linear holomorphic function included in a loga-
rithmic Kähler potential. The latter function can be inter-
preted in JF as a nonminimal coupling to gravity, whose the
strength is constrained so as the EF inflationary potential
can be flattened enough to support a stage of nonminimal
inflation compatible with observations. The inflationary

model was embedded in a moderate extension of MSSM
augmented by three RH neutrino superfields and three
other singlet superfields, which lead to a PQPT tied to
renormalizable superpotential terms. The PQPT follows
nMCI and resolves the strong CP and the � problems of
MSSM and also provides RH neutrinos with masses lower
than about 1012 GeV. The possible catastrophic production
of domain walls can be eluded by the introduction of extra
matter superfields which can be chosen so that the MSSM

gauge coupling constant unification is not disturbed. For ~G
masses larger than 8 TeV, observationally safe reheating of
the universe with Trh ’ 108 GeV can be accomplished by a
three-body decay of the inflaton. The subsequent out-of-
equilibrium decays of the produced RH sneutrinos can
generate the required by the observations BAU consistently
with the present low-energy neutrino data, provided that
the Dirac neutrino masses are constrained in the range
1–10 GeV for all the light-neutrino mass schemes. It is
gratifying that the degeneracy of the masses of the RH (s)
neutrinos required by the mechanism of nTL in our
model is low enough compared with their decay widths,
so that perturbative calculation remains safely valid.
Finally, we briefly discussed scenaria in which the poten-
tial axino and saxion overproduction problems can be
avoided.
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