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In this paper, we present a Lagrangian framework for the description of structure formation in general

relativity, restricting attention to irrotational dust matter. As an application we present a self-contained

derivation of a general-relativistic analogue of Zel’dovich’s approximation for the description of structure

formation in cosmology and compare it with previous suggestions in the literature. This approximation is

then investigated: paraphrasing the derivation in the Newtonian framework we provide general-relativistic

analogues of the basic system of equations for a single dynamical field variable and recall the first-order

perturbation solution of these equations. We then define a general-relativistic analogue of Zel’dovich’s

approximation and investigate its implications by functionally evaluating relevant variables, and we

address the singularity problem. We so obtain a possibly powerful model that, although constructed

through extrapolation of a perturbative solution, can be used to put into practice nonperturbatively, e.g.,

problems of structure formation, backreaction problems, nonlinear properties of gravitational radiation,

and light propagation in realistic inhomogeneous universe models. With this model we also provide the

key building blocks for initializing a fully relativistic numerical simulation.
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I. INTRODUCTION

General-relativistic analogues of the celebrated
‘‘Zel’dovich approximation’’ [1–5] for the description of
structure formation in the mildly nonlinear regime have
been suggested previously, first by Kasai in 1995 ([6]; for
extensions to second-order perturbation solutions see
[7,8]). We shall put these works into perspective, as well
as those by Matarrese and co-workers ([9,10]; for first- and
higher-order perturbation solutions see [11,12]), who dis-
cussed the relativistic analogues of the Newtonian equa-
tions in Lagrangian form. Croudace et al. and Salopek,
Stewart, and Croudace discussed the Zel’dovich approxi-
mation in relation to spatial gradient expansion [13,14],
and Ellis and Tsagas [15] proposed a covariant form for the
peculiar motion corresponding to Zel’dovich’s ansatz. The
reader may also consult the seminal papers [16,17] and
Ref. [18] that address the application of the orthonormal
frame approach to relativistic cosmology.

In this series of papers we reinforce the Lagrangian point
of view with full rigor within the framework of Einstein’s
equations, keeping the formalism as close as possible to the
Newtonian framework. In the present work we so obtain
(i) a natural analogue (in form and in spirit) of Zel’dovich’s
model generalizing the approximation suggested by Kasai
[6]; e.g., we obtain a quadratic form for the metric, useful

for a realistic study of the light cone structure, together
with nontrivial projected curvature and Weyl tensor
approximations, including a nonlinear gravitational radia-
tion part; (ii) general-relativistic Lagrangian equations that
feature the Lagrange-Newton system of equations as a
clear-cut geometrical limit (providing an alternative to
the set of equations derived by Matarrese and Terranova
[9] by insisting on a single dynamical field variable; and
(iii) a covariant description of relevant kinematical and
dynamical variables in the spirit of Ellis and Tsagas [15].
We shall also provide a number of useful details related to
the basic equations and, in particular, to the electric and
magnetic parts of the projected Weyl tensor that will be
needed in forthcoming work.
Paraphrasing a previous Newtonian investigation

[19–23], we look for general-relativistic analogues of
(i) the Lagrangian deformation gradient of fluid elements,
(ii) equations that feature this variable as the only dynami-
cal one, and (iii) the corresponding first-order solution for
perturbations at a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) background cosmology, which is then extrapo-
lated into the mildly nonlinear regime according to a
definition that we shall provide here. We shall restrict our
investigations to the matter model ‘‘irrotational dust.’’ We
obtain clear-cut answers to all of the above-mentioned
points and discover a very close analogy between relativ-
istic and Newtonian equations and models. This allows us
to easily transfer ‘‘Newtonian knowledge’’ to the relativ-
istic stage. The success of the corresponding Newtonian
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approximation suggests that the relativistic version of
Zel’dovich’s model presented here is a promising and
possibly powerful one.

This paper also aims at furnishing the basis for studies of
nonlinear perturbative and nonperturbative generic models
that complement standard perturbative studies and studies
of exact solutions with high symmetry. This provides not
only the basis for applications to structure formation in
relativistic cosmology; future work will combine this
approximation with exact evolution equations for the spa-
tially averaged variables [24,25], yielding nonperturbative
models that are capable of addressing, e.g., the ‘‘backreac-
tion problem’’ in relativistic cosmology, also as a possible
source of ‘‘dark energy’’; see the reviews [26–32] and
references therein. Furthermore, these relativistic models
open the door to other applications like, e.g., the under-
standing of nonlinear features of gravitational radiation, as
well as of light-propagation and distance measurements in
realistic inhomogeneous universe models that all cannot
be addressed within the Newtonian framework. Finally,
since Newtonian simulations are often initialized with the
Zel’dovich approximation, future fully relativistic simula-
tions can be initialized by the relativistic form of this
approximation as a first step. The ingredients needed for
realizing the initial conditions architecture of such simula-
tions are provided here.

A major motivation of this line of works is to put
ourselves into the position to master a possible paradigm
change in cosmology that entails the need for inhomoge-
neous relativistic models. Curvature effects may play a key
role in accessing the interpretation and high-precision
determination of cosmological parameters in the near
future. For example, the averaged spatial scalar curvature
may evolve differently from a constant-curvature homoge-
nous model, starting with a small curvature as furnished by
cosmic microwave background observations and produc-
ing an effective negative curvature in the late Universe
[26,28,33,34], bringing geometrical and topological fea-
tures into the fore. Another issue is the interpretation of
cosmological parameters that may be affected by curvature
and Riemannian volume effects when comparing averaged
variables in an inhomogeneous geometry with averages
on a Friedmannian template space (e.g., [35,36]). Finally,
note that Newtonian cosmologies require periodic bound-
ary conditions for any model of structure formation [37],
which can be relaxed in a relativistic setting (see, e.g.,
[26,27,38]).

We proceed as follows. In Sec. II we recall the
Newtonian derivation of the Lagrangian equations together
with Zel’dovich’s approximation in terms of a first-order
Lagrangian perturbation solution. In Sec. III we paraphrase
the Newtonian derivation within general relativity, give a
compact analogous formulation of Einstein’s equations
using Cartan’s coframes, and discuss first-order perturba-
tion solutions. Section IV defines the general-relativistic

analogue of Zel’dovich’s approximation and discusses it in
full detail by functionally evaluating relevant variables
including geometrical fields. Section V proposes tests of
the extrapolation into the nonlinear regime, discusses
relations to the singularity problem, and highlights the
main findings including follow-up prospects. Appendixes
are dedicated to alternative formulations of the governing
equations and an example for the proposed approximation.

II. LAGRANGIAN THEORY OF STRUCTURE
FORMATION IN NEWTONIAN COSMOLOGY

In this section we briefly recall the logical structure of a
derivation of Zel’dovich’s model within Newtonian cos-
mology. Thereafter we shall contemplate on Zel’dovich’s
original suggestion and his extrapolation idea in order to
prepare ourselves for the relativistic setup.

A. The Lagrange-Newton system

In the framework of Newtonian gravitation the field
and evolution equations governing the motion of self-
gravitating dust form a closed system in the Eulerian
picture, consisting of the Eulerian evolution equations

@t ~v ¼ �ð ~v � rÞ ~vþ ~g; (1)

@t% ¼ �r � ð% ~vÞ; (2)

and the linear gravitational field equations

r� ~g ¼ ~0; (3)

r � ~g ¼ �� 4�G%: (4)

We call this system of equations the Euler-Newton system.
Here, as usual, % is the dust’s density and G the gravita-
tional and � the cosmological constant.
Now we perform the transition from the Eulerian to the

Lagrangian picture. Then, as we shall see, the trajectory

field ~x ¼ ~fð ~X; tÞ—defining the coordinate transformation
at a fixed time, or a time-dependent diffeomorphism—will
be the only dynamical field variable that remains in the
transformed equations, where Xi are the Lagrangian coor-
dinates, comoving with the fluid, that are defined as to
coincide with the Eulerian ones at some initial instant of

time. The field ~fð ~X; tÞ measures the deviation of a fluid
element’s position at some time t from its initial one, and
its Lagrangian gradient ðfijjÞ measures the volume defor-

mation of fluid elements, where a vertical slash is used to
denote partial derivative with respect to Lagrangian coor-

dinates. Upon introducing the trajectory field ~fð ~X; tÞ we
implicitly solve the Eulerian evolution equations by

~v ¼ _~f; ~g ¼ €~f; % ¼ %
�

J
; J > 0; (5)

with the initial density field %
� ð ~XÞ, and J the Jacobian

determinant of the transformation from Eulerian to
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Lagrangian coordinates (using the functional determinant
notation in the first expression),

J � @ðf1; f2; f3Þ
@ðX1; X2; X3Þ ¼

1

6
�ijk�

lmnfijlf
j
jmf

k
jn: (6)

The Eulerian field equations then assume the form of
Lagrangian evolution equations, if the field strength is
expressed through the trajectory field as above. The result-
ing system of equations, the Lagrange-Newton system
(LNS), takes the following form ([39] for � ¼ 0 and
[19] for � � 0):

J ð €fi; fi; fkÞ ¼ 0; (7)

J ð €f1; f2; f3Þ þ cycl ¼ �J � 4�G%
�
; (8)

where J denotes the functional determinant of the
expressions in brackets. Other forms of the Lagrange-
Newton system may be found in the review [23], and in
Appendix A.

Finally, we introduce the Newtonian tidal tensor Eij,

Ei
j � gi;j �

1

3
�i

jg
k
;k

¼ 1

2J
�jklJ ð €fi; fk; flÞ þ 1

3

�
4�G

%
�

J
��

�
�i

j;

(9)

where we have inserted the field equation (4) in the second
line. In terms of this form of the tidal tensor, written as a

functional of ~f, we can express the LNS through the
symmetry conditions on the tidal tensor Eij:

E ½ij� ¼ 0 and Ek
k ¼ 0; (10)

furnishing the four Lagrangian evolution equations for the
three components of the trajectory field.

B. Derivation of a first-order scheme
and Zel’dovich’s approximation

Now we proceed by linearizing Eqs. (7) and (8) at a
reference background with respect to the deviations from

this background: we assume the only variable ~f to be a
superposition of a homogeneous and isotropic background

deformation ~fHð ~X; tÞ ¼ aðtÞ ~X and an inhomogeneous

deformation field ~pð ~X; tÞ, i.e.
~fð ~X; tÞ ¼ aðtÞ ~X þ ~pð ~X; tÞ; (11)

where for convenience aðt0Þ :¼ 1 and ~pð ~X; t0Þ ¼ 0. It is
sometimes useful to introduce the scaled trajectory field

~q ¼ ~Fð ~X; tÞ � ~fð ~X; tÞ=aðtÞ to describe motions in a coor-
dinate frame ~q that is comoving with the background
solution. Correspondingly, we may also introduce the

scaled deviation field ~Pð ~X; tÞ � ~pð ~X; tÞ=aðtÞ that will be
useful when comparing with the relativistic setting.

A homogeneous-isotropic deformation separately solves
the LNS. This yields Friedmann’s expansion law as a first

integral, with background density %H ¼ %
�
Ha

�3,

H2 � _a2

a2
¼ 8�G%H þ�

3
� const

a2
: (12)

The first-order system of equations, which has to be
solved, is

a2r0 � €~p� €aar0 � ~p ¼ ~0; (13)

a2r0 � €~pþ ð2 €aa� a2�Þr0 � ~p ¼ �4�Gð%� � %
�
HÞ:
(14)

Here r0 denotes derivative with respect to the Lagrangian
coordinates. If we insert the field equations (3) and (4) at
initial time, we are able to express the source term in (14)
by the divergence of the initial field-strength perturbation
€~pðt0Þ. Now, we split the perturbation field ~p into a longi-
tudinal part ~pL and a transverse part ~pT . The resulting
equations are for the transverse (divergence-free) part:

€~p T � €a

a
~pT ¼ ~0; (15)

whereas the longitudinal (curl-free) part obeys

€~p L þ
�
2
€a

a
��

�
~pL ¼ 1

a2
€~pLðt0Þ: (16)

Using the deviation field ~Pð ~X; tÞ, Eqs. (15) and (16) take
the form

€~P T þ 2H
_~P
T ¼ ~0; (17)

€~P L þ 2H
_~P
L � 4�G%H

~PL ¼ 1

a3
~Wð ~XÞ; (18)

where ~Wð ~XÞ � €~P
Lð ~X; t0Þ þ 2Hðt0Þ _~PLð ~X; t0Þ is the initial

peculiar-acceleration field. A more detailed derivation
together with a general solution to these equations can be
found in [20]. We wish to refer the reader also to [23]
where the general equation and solution schemes for per-
turbations at any order can be found.
As a special case of the general first-order solution we

obtain the Zel’dovich approximation when we restrict the
peculiar-velocity and peculiar-acceleration fields at some
initial time t0 by the ‘‘slaving condition’’:

~uð ~X; tÞ ¼ ~wð ~X; tÞt; t ¼ t0; (19)

where

~u ¼ a
_~P; and ~w ¼ _~uþH ~u ¼ 2 _a

_~Pþa
€~P: (20)

The condition (19) is then preserved in time.
In the case of a spatially flat background without a

cosmological constant the Zel’dovich approximation reads
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NZA ~Fð ~X; tÞ ¼ ~X þ 3

2

��
t

t0

�ð2=3Þ � 1

�
_~P
Lð ~X; t0Þt0: (21)

For general backgrounds including a constant-curvature
term and a cosmological constant, see [40].

As we shall discuss in more detail later, Zel’dovich
suggested to extrapolate this trajectory field into the mildly
nonlinear regime, so that the nonlinearly evolved density
can be calculated through its exact integral

NZA% ¼ %HðtÞ
%Hðt0Þ%

� ð ~XÞ=NZAJFð ~X; tÞ; (22)

where JF � detðFi
jjÞ is evaluated for the comoving trajec-

tory field (21). His motivation was that this expression for
the density, if linearized at the background, coincides with
the linearized solution for the density in comoving
Eulerian coordinates ~q, while the nonlinear expression is
capable of describing a continuum that develops caustics in
a finite time, in form similar to the rectilinear motion of
an inertial continuum [41] (for further discussions of
this extrapolation idea and its subsequent developments
see [19]).

We summarize the logical structure of the derivation
of Zel’dovich’s approximation: (i) the basic system of
equations furnishes a closed system for a single dynamical

variable, the deformation field ~f, or the deformation
gradient fijj; (ii) introducing a split into a background

deformation (the Hubble flow) and a deviation field, we
exploited the fact that we have only to linearize in the
deformation field and not, e.g., in the density deviations as
in the Eulerian picture; (iii) Eulerian fields, e.g., the density
field, but also others, can then be evaluated as functionals
of the linearized perturbation and so provide nonlinear
expressions as an extrapolation into the mildly nonlinear
regime (i.e. up to shell-crossing singularities developing,
after which the transformation of the Lagrangian func-
tionals back to Eulerian space is no longer regular). The
further restriction of initial data is not mandatory so that,
in principle, we can use this extrapolation idea also for
the general first-order solution including vorticity. The
functional for the vorticity is given by Cauchy’s exact
integral [20]:

~! ¼
~� � r0

~F

a2JF
; ~� � ~!ð ~X; t0Þ: (23)

C. The strategy to find the corresponding
relativistic approximation

According to what has been said above, a general-
relativistic analogue of Zel’dovich’s approximation has to
aim at (i) writing Einstein’s equations in terms of a system
of evolution equations that all feature a single dynamical
field variable corresponding to the Lagrangian deformation
gradient; (ii) reducing constraint equations to constraints

on initial data where possible; (iii) finding the general
first-order solution of the system of evolution equations
for the deformation variable; and then (iv) employing
Zel’dovich’s extrapolation idea to functionally express
other variables in terms of the single perturbed defor-
mation. It is clear that such a strategy results in a non-
perturbative approximation of relevant field variables. For
example, the resulting spatial metric as a quadratic form of
the deformation field will remain a quadratic form in this
approximation. We are so able to keep highly nonlinear
information encoded in the functional dependence on the
perturbation variable (e.g., the exact density integral, the
Ricci and Weyl curvatures, etc.), while their solution is
explicitly expressible in terms of constraint initial data and
known time-dependent coefficients. While Zel’dovich and
his co-workers mainly exploited the nonlinear functional
dependence on the deformation in the density field, we
here wish to apply this logic to all functionals of interest.
As emphasized previously, this strategy is only applicable
if the governing equations form a closed system for the
deformation variable alone.

III. LAGRANGIAN THEORY OF STRUCTURE
FORMATION IN RELATIVISTIC COSMOLOGY

In this section we shall introduce the coframe field being
the generalization of the Lagrangian deformation gradient
of Newtonian cosmology. In the general-relativistic case
the deformation of fluid elements is no longer integrable;
i.e. instead of the basis dxa ¼ fajidX

i, we have to consider

a nonexact basis �a ¼ �a
idX

i. While the linearly trans-
formed (Lagrangian or local) basis in the Newtonian case
derives from three functions (the components of the tra-
jectory field), here the linearly transformed local basis
(here viewed in the cotangent space at a point of the
manifold) involves nine functions (the coefficients of the
set of coframe fields); hence we have to find at least nine
evolution equations. (We use Latin letters a; b; . . . ¼ 1; 2; 3
as counters in order to distinguish them from coordinate
indices i; j; . . . ¼ 1; 2; 3; throughout the paper k denotes
covariant derivative with respect to the 3-metric with a
symmetric connection, whereas j denotes partial derivative
as before.) As in the previous section the three spatial
deformation one-forms will be the only dynamical varia-
bles in our setup.

A. The Lagrange-Einstein system

Restricting the matter model to irrotational dust, the
simplest spacetime foliation is given by a family of flow-
orthogonal hypersurfaces with induced 3-metric coeffi-
cients gij in the comoving and synchronous metric form

ð4Þg¼�dt�dtþð3Þg; ð3Þg�gijdX
i�dXj; (24)

where Xi are Gaussian normal (Lagrangian) coordi-
nates that are constant along flow lines (here geodesics).
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(The proper time derivative is equal to the coordinate time
derivative, u� @

@x� ¼ @
@t , below written with an overdot;

Greek indices label spacetime and Latin ones spatial coor-
dinates.) In our foliation we define the coefficients of the
extrinsic curvature as usual,

K ij � �1
2
_gij: (25)

In the following we replace this quantity by the expansion
tensor coefficients �ðijÞ � �Kij together with the sym-

metry condition �½ij� ¼ 0 (required in our foliation). In

this frame the Einstein equations take the well-known form
which has been introduced by Arnowitt, Deser and Misner
(ADM) [42], consisting of the evolution equations

_%þ�% ¼ 0; (26)

_� i
j þ��i

j ¼ ð4�G%þ�Þ�i
j � Ri

j; (27)

where Rij are the Ricci-tensor coefficients corresponding

to the 3-metric and % the dust density field, completed by
the constraint equations

�ij ��ji ¼ 0; (28)

Rþ�2 ��k
l�

l
k ¼ 16�G%þ 2�; (29)

�k
ikk ��ki ¼ 0: (30)

The latter equations are the Hamilton constraint and the
momentum constraints.

In the (3þ 1) split the raising and lowering of indices
does not commute with the time derivative; i.e. for any
tensor Tij we find

_T ij ¼ ðgikTk
jÞ_ ¼ gik _Tk

j þ 2�ikT
k
j: (31)

In the same way the covariant derivative and time de-
rivative do not commute. To handle this we derive the
following useful relation for the symmetric connection
coefficients (Christoffel symbols):

_� i
kl ¼ �i

kkl þ�i
lkk � gij�klkj: (32)

Using it we are able to rewrite the time derivative of the
3-Ricci-tensor coefficients through spatial derivatives of
the expansion tensor coefficients:

_R ij ¼ �k
ikjkk þ�k

jkikk ��ij
kk

kk ��kikj: (33)

We can thus recast the evolution equation for the expan-
sion tensor (27) into a form that only features expres-
sions built from the expansion tensor and its derivatives
(apart from the exactly integrable source %):

€�i
j þ _��i

j þ� _�i
j þ 2�i

k
_�k

j þ 2��i
k�

k
j

¼ �i
j
kk

kk þ�ki
kj ��k

j
ki
kk ��i

kkj
kk

þ 2ð4�G%þ�Þ�i
j � 4�G%��i

j: (34)

We note already that the trace of the expansion tensor is
� ¼ _J=J, with J given below, Eq. (38), so that we can
immediately solve the continuity equation _%þ�% ¼ 0
by integration and get the general integral in analogy to
the Newtonian case:

% ¼ %
� J

�

J
: (35)

It is also useful to note that, in view of the momentum
constraints (30), we have gkl _Rkl ¼ 0 and therefore

_R ¼ �2�k
lR

l
k: (36)

1. Using Cartan’s coframe fields

Introducing Cartan’s coframes �a which define, up to
rotations, a noncoordinate basis of three-dimensional space
we rewrite the spatial part of the metric as

ð3Þg ¼ �ab�
a � �b ) gij ¼ �ab�

a
i�

b
j: (37)

Noncoordinate indices are raised and lowered by �ab.
Our choice is to simplify calculations by putting all the
information on the initial data into the coframes by

�a
iðt0Þ ¼ �

� a
i. However, one could choose the more gen-

eral orthogonal (and not orthonormal) matrix Gab instead
of �ab; then the coframe would take a simple form at some
initial time, G�a

iðt0Þ ¼ �a
i, which would formally come

closer to the Newtonian description. We shall keep the
standard definition throughout this first paper, but we shall
come back to the other choice in forthcoming papers.
Chandrasekhar [43] discusses circumstances in which
such a more general choice is useful.
Throughout this paper we define the Levi-Civita-tensor

density by �i1i2i3 ¼ ð�1ÞP, where P is the sign of the

permutation ð1; 2; 3Þ ! ði1i2i3Þ and �i1i2i3 ¼ 0 if any two

indices are the same.
The determinant of the transformation between the

coordinate and noncoordinate basis is given by

J ¼ 1
6�abc�

ikl�a
i�

b
k�

c
l: (38)

The (inverse) orthonormal vector basis is described by the
triads (frames) ea ¼ ea

i@=@Xi, which can be expressed in
terms of the coframes as follows:

ea
i�a

j ¼ �i
j ) ea

i ¼ 1

2J
�abc�

ikl�b
k�

c
l: (39)

Thus, the coefficients of the inverse metric take the form

gij¼�abea
ieb

j¼ 1

2J2
�ce�df�

ikl�jmn�c
k�

d
l�

e
m�

f
n: (40)

We rewrite the vanishing of the covariant derivative of
the metric gklgklki ¼ 0 using frames and coframes and get

our first two constraints (for the second one we apply
�a

½ikj� ¼ �a
½ijj�):
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ea
k�a

kki ¼ 0; (41)

ea
k�a

ikk ¼ 2ea
k�a

½ijk�: (42)

Since J ¼ ffiffiffi
g

p
in our choice of coordinates, where g is the

determinant of the 3-metric, we have to keep in mind that J
is not a scalar but a scalar density; i.e. its covariant deriva-
tive vanishes according to (41),

Jki
J

¼ 1

2J
�abc�

mkl�a
mki�

b
k�

c
l ¼ ea

k�a
kki ¼ 0; (43)

but its partial derivative with respect to the spatial coor-
dinates does not,

Jji
J

¼ ea
k�a

kji ¼ �k
ki � 0: (44)

It is also important to note that, contrary to the Newtonian
case, the initial transformation determinant does not equal

to one, J
�
� 1 (as it would do for �ab ! Gab). The invariant

volume element then is described by the tensor

"ikl ¼ J�ikl and "ikl ¼ 1

J
�ikl: (45)

Since we use an orthonormal noncoordinate basis, we
simply have "abc ¼ �abc. We now turn to rewriting the
ADM equations in terms of the coframes only. The expan-
sion tensor coefficients with one index inverted, �i

j, will

provide the closest analogy to the Newtonian case:

�i
j ¼ _�a

jea
i ¼ 1

2J
�abc�

ikl _�a
j�

b
k�

c
l; (46)

and the symmetry condition (28) becomes

�½ij� ¼ �ab _�a
½i�

a
j� ¼ 0: (47)

Now, the three latter constraint equations have become
evolution equations.

We define the 3-Riemann curvature tensor via the com-
mutation relation of second covariant spatial derivatives,
�a

ikkkl � �a
iklkk ¼ Rkli

m�a
m, so we get

Rklij ¼ �ab

�
�a

ikkkl � �a
iklkk

�
�b

j;

and, finally,

Ri
jkl ¼ ea

i
�
�a

jkkkl � �a
jklkk

�

¼ 1

2J
�abc�

imnð�a
jkkkl � �a

jklkkÞ�b
m�

c
n:

(48)

Contraction yields the Ricci tensor, i.e. Rij ¼ Rk
ikj,

Rij ¼ 1

2J
�abc�

kmn
�
�a

jkkki � �a
jkikk

�
�b

m�
c
n: (49)

Note that by simplifying this expression using (39) and the
identity

�ijk�abc ¼ �i
a�

j
b�

k
c þ �i

b�
j
c�

k
a þ �i

c�
j
a�

k
b

� �i
b�

j
a�

k
c � �i

c�
j
b�

k
a � �i

a�
j
c�

k
b;

we get the alternative expression

Rij ¼ �abð�a
k
kk

ki � �a
kki

kkÞ�b
j: (50)

Finally, we find for the mixed 3-Ricci-tensor coefficients,
expressed solely with the help of coframes,

Ri
j ¼ �ab

�
�a

k
kkki � �a

k
kikk

�
�b

j; (51)

or, alternatively, with the help of frames (that often sim-
plifies calculations),

Ri
j ¼ �abea

i
�
eb

k
kkkj � eb

k
kjkk

�
: (52)

Contracting the Ricci tensor, i.e. R ¼ Rk
k, we obtain for

the scalar curvature in terms of coframes

R ¼ �ab

�
�a

k
klkk � �a

k
kkkl

�
�b

l; (53)

and, with (52), in terms of frames,

R ¼ �abea
k
�
eb

l
klkk � eb

l
kkkl

�
: (54)

Using the coframe as the single dynamical variable the
ADM equations become

1
2 ð�abc�ikl _�a

j�
b
k�

c
lÞ_ ¼ ð4�GJ� %� þ�JÞ�i

j � JRi
j;

(55)

and the set of (former) constraint equations become

�ab €�
a
½i�

b
j� ¼ 0; (56)

�abc�
mkl _�a

m _�b
k�

c
l ¼ 16�GJ

�
%
� þ2�J � JR; (57)

�
�abc�

ikl _�a
j�

b
k�

c
l

�
ki ¼

�
�abc�

ikl _�a
i�

b
k�

c
l

�
kj: (58)

The first of these equations, (56), arises as the time deriva-
tive of the symmetry condition for the expansion tensor,
(57) comes from the Hamilton constraint, and (58) repre-
sents the momentum constraints. We still use the covariant
derivative and the Ricci tensor in this (overdetermined)
system of 13 evolution equations for the 9 components of
the deformation coefficients �a

i but do that only for the
sake of readability. It is possible to express these in terms
of the coframes only, too, as done above for the Ricci
tensor and the scalar curvature. (We only have to make
sure that all these equations including the covariant deriva-
tives could be expressed in terms of the coframes only.) In
this sense, an interesting form of (55) is the following:
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€�a
i þ

1

J
�bcd�

mkl _�a
½i _�

b
m��

c
k�

d
l �

�
4�G

J
�
�
�

J
þ�

�
�a

i

¼ 1

J
�ab�bcd�

mklð�c
kkikm � �c

kkmkiÞ�d
l: (59)

Here the equation is solely expressed in terms of the
coframes and their time and spatial (covariant) derivatives.

We now condense this system of equations in a more
compact form. First, we get another convenient form of
(55) when we split it into its trace and trace-free parts. With
the Hamilton constraint the trace takes the form

1
2 �abc�

ikl €�a
i�

b
k�

c
l ¼ �J � 4�GJ

�
%
�
; (60)

which is Raychaudhuri’s equation. The trace-free part on
the other side is

1
2ð�abc�ikl €�a

j�
b
k�

c
l � 1

3�abc�
mkl €�a

m�
b
k�

c
l�

i
jÞ

þ ð�abc�ikl _�a
j _�

b
k�

c
l � 1

3�abc�
mkl _�a

m _�b
k�

c
l�

i
jÞ

¼ �J�ij; (61)

where �ij are the coefficients of the trace-free part of the

Ricci tensor to be calculated from Eqs. (50) and (53). We
can now recast the set of equations (50) and (56)–(61) into
what we call the Lagrange-Einstein system for dust (LES).

2. Summary: The Lagrange-Einstein system

The following (overdetermined) system of 13 evolution
equations for the 9 coframe coefficient functions is equiva-
lent to the ADM set of equations for the matter model
irrotational dust [recall that this latter restriction implies
that Eq. (62) already holds for the first time derivative of
the coframes]:

�ab €�
a
½i�

b
j� ¼ 0; (62)

1
2 �abc�

ikl €�a
i�

b
k�

c
l ¼ �J � 4�GJ

�
%
�
; (63)

ð�abc�ikl _�a
j�

b
k�

c
lÞki ¼ ð�abc�ikl _�a

i�
b
k�

c
lÞkj; (64)

�abc�
mkl _�a

m _�b
k�

c
l ¼ 16�GJ

�
%
� þ2�J � JR; (65)

1
2ð�abc�ikl €�a

j�
b
k�

c
l � 1

3�abc�
mkl €�a

m�
b
k�

c
l�

i
jÞ

þ ð�abc�ikl _�a
j _�

b
k�

c
l � 1

3�abc�
mkl _�a

m _�b
k�

c
l�

i
jÞ

¼ �J�ij: (66)

This Lagrange-Einstein system is a system of equations
described solely in terms of the coframes. We did not
explicitly insert the trace-free part and trace of the
3-Ricci curvature into the above equations because the
resulting equations are tedious to read. In principle it can
be done with the equations given in this section. Of course,
the covariant derivative can also be expressed in the

coframes language by calculating the Christoffel symbols
with (37) and (40).

3. Formulation with the Weyl tensor

We are now going to reexpress the above Lagrange-
Einstein system in terms of parts of the projected Weyl
tensor in order to furnish the analogy with the tidal for-
mulation of the Lagrange-Newton system (10). Here, the
electric part of the Weyl tensor plays the role of the tidal
tensor of Newtonian theory, whereas its magnetic part
carries additional information and describes gravitomag-
netic effects.
The Weyl tensor is defined as the trace-free part of the

4-Riemann curvature tensor,

C��
	
 ¼ ð4ÞR��

	
 � 2�½�
½	
ð4ÞR��


� þ 1
3�

½�
½	�

��

�
ð4ÞR:

(67)

It has 10 independent components and thus carries all the
information of the system. The Weyl tensor satisfies all of
the symmetry conditions of the 4-curvature tensor and
in addition is trace-free over any two indices. It can be
irreducibly split into two parts, called the electric and
magnetic parts. Both parts are symmetric, trace-free ten-
sors and have five independent components each:

E�� ¼ C�	�
u
	u
 and H�� ¼ 1

2�%�	ð�C
%�

�Þ
u
	u
:

(68)

After the (3þ 1) split the electric (tidal) part Ei
j of the

Weyl tensor and its magnetic part Hi
j take the following

forms:

Ei
j ¼ � _�i

j ��i
k�

k
j �

1

3

�
4�G

%
�
J
�

J
��

�
�i

j; (69)

Hi
j ¼ � 1

J
�ikl�jkkl: (70)

We also note the useful expressions

Ei
j ¼ � _�i

j � ð�i
k�

k
j � 1

3�
l
k�

k
l�

i
jÞ

¼ � _�i
j � 2

3��i
j � ð�i

k�
k
j � 1

3�
l
k�

k
l�

i
jÞ;

(71)

where �ij are the components of the shear tensor.

We rewrite the above parts of the Weyl tensor by fully
expressing them through coframes,

Ei
j¼� 1

2J
�abc�

ikl €�a
j�

b
k�

c
l�

1

3

�
4�G

%
�
J
�

J
��

�
�i

j; (72)

Hi
j ¼ � 1

J
�ab�

iklð _�a
jkl�

b
k þ _�a

j�
b
kklÞ: (73)

We infer that the projected electric part of the Weyl tensor
yields a direct generalization of the tidal formulation of the
Lagrange-Newton system (10):
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E½ik� ¼ 0 , ð62Þ; (74)

Ek
k ¼ 0 , ð63Þ; (75)

whereas the magnetic part reproduces the momentum con-
straints and again the symmetry condition for the time
derivative of the expansion tensor:

H½ik� ¼ 0 , ð64Þ; (76)

Hk
k ¼ 0 ( ð62Þ: (77)

At this stage the symmetry conditions on the electric and
magnetic parts of the Weyl tensor do not cover all of the
equations of the LES: the electric part of the Weyl tensor
fully covers the ‘‘electric part’’ of the LES, Eqs. (62) and
(63)—which we need for the translation of the Newtonian
approximation—while the magnetic part of the Weyl ten-
sor just captures part of the ‘‘magnetic part’’ of the LES,
namely, Eqs. (64), i.e. in total 7 equations. We believe that
another form of the magnetic part could eventually provide
a symmetric formulation of the whole system, but we did
not succeed to find it.

4. A geometrical Newtonian limit for spatial deformations

It is easy to confirm that we obtain the LNS as the
following geometrical (spatial) limit to the Lagrange-
Einstein system of equations. The transition from general
coframe coefficients �a

i to those of the integrable
(Newtonian) form

�a
i ! N�a

i ¼ faji (78)

directly transforms Eqs. (62) and (63) into (7) and (8). This
is particularly easy to see using differential forms as done
in Appendix A. We also find that, as expected, the electric
part of the Weyl tensor reduces to (minus) the tidal tensor
of the Newtonian picture, Eij ! �Eij. The spatial line

element then takes the well-known Newtonian form

ð3Þg ! NgijdX
i � dXj ¼ �abf

a
jif

b
jjdX

i � dXj; (79)

i.e. a Euclidean line element that was transformed using

the transformation ~f. The basis vectors (frames) orthonor-
mal to the coframes in the Newtonian limit are h;a

i � Nea
i

(where a comma denotes derivative with respect to
Eulerian coordinates). They obey fajjh;a

i ¼ �j
i and take

the following form:

h;a
i ¼ 1

2NJ
�abc�

iklfbjkf
c
jl: (80)

In this limit the connection coefficients reduce to the
inertial force terms

N�i
kl ¼ fajklh;a

i ¼ 1

2NJ
�abc�

imnfajklf
b
jmf

c
jn � 0:

(81)

Although the Christoffel symbols do not vanish because in
the Lagrangian picture of the Newtonian equations we
adopt curvilinear coordinates, we can easily verify that
NRij ¼ 0 as required and

N�a
kkl ¼ fajkl � N�i

klf
a
ji ¼ 0: (82)

However, since the covariant derivative and time derivative
do not commute, we have nonvanishing

N _�a
kkl ¼ _fajkl � _fajih;b

ifbjkl: (83)

Combining the latter equations we immediately confirm
that the magnetic part of the Weyl tensor [see Eq. (73)] has
no nontrivial Newtonian counterpart, as it always vanishes
in the geometrical limit defined above,

NHi
j ¼ � 1

NJ
�ab�

imnfajjð _fbjmn � _fbjkh;c
kfcjmn

Þ ¼ 0:

(84)

This geometrical limiting procedure is spatial and, there-
fore, does not involve a limit c ! 1. The light cone
structure is simply not seen within the 3-space by comov-
ing observers (the Lorentzian structure appears in the time
direction only). Note that this limit explicitly demonstrates
that a Minkowskian limit (consisting now of this geomet-
rical limit and c ! 1) in the comoving-synchronous
slicing of spacetime is well-defined. In a post-Newtonian
formulation, the Minkowskian limit leads to the Eulerian
form of the Newtonian equations, while in this setting it
leads to their Lagrangian form (see also [44,45]).

B. Derivation of a first-order scheme

To derive a first-order perturbation scheme we choose a
flat homogeneous and isotropic background with some

initial perturbation thereof, Pa
iðX; t0Þ ¼ P

�
a
iðXÞ (hence-

forth, we omit the vector symbol over X for notational
ease). With this choice of coordinates, the coframe coef-
ficients take the form

�a
i¼aðtÞ½�a

iþPa
iðX;tÞ�; and ~�a

i�
1

a
�a

i; (85)

where aðtÞ is the usual scale factor and Pa
iðX; tÞ the

inhomogeneous deviation (perturbation) field with respect
to which we shall linearize the equations (for notational

ease we shall not write ð1ÞPa
i). We call ~�a

i the ‘‘peculiar’’
coframe. At some initial time we assume aðt0Þ ¼ 1 and

P
�
a
iðXÞ � 0. The initial perturbation cannot be set to zero

because that would flatten the initial metric and suppress
any metric evolution, as pointed out by Matarrese and
Terranova [9] as well as Russ et al. [7].
Thus, the initial 3-Ricci tensor is not equal to zero.

Remember that, generally, for a homogeneous and iso-
tropic background within a space of constant intrinsic
scalar curvature �6k=a2 the zeroth order of (55) is
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HRi
j ¼ �2ðk=a2Þ�i

j, see for example [6], whereas we

have HRi
j ¼ 0. However, since we can choose appropriate

initial perturbations (R
�
i
j � 0!) to describe the space we

want, this choice implies no restriction of generality.
The perturbation Pa

i only appears summed over the
noncoordinate index in the equations, so we introduce the
following tensor coefficients and their trace:

Pi
j � �a

iPa
j and P � Pk

k ¼ �a
kPa

k; (86)

and use this notation throughout the remaining part of this
section to make reading more convenient. (Note that within
the first-order scheme we have two true tensor indices
here.)

1. Field variables and equations in the first-order scheme

Up to the first order the spatial metric takes the form

ð1Þgij ¼ a2ð�ij þ Pij þ PjiÞ: (87)

(Recall that we here aim at strict linearization, not to be
confused with the relativistic form of Zel’dovich’s approxi-
mation that we shall define below.)

The determinant of the transformation from coordinates
to the noncoordinate basis becomes

ð1ÞJ ¼ a3ð1þ PÞ and ð1ÞJ
�
¼ ð1þ P

� Þ � 1:

The first-order Christoffel symbols are

ð1Þ�i
kl ¼ ðPi

ðkjlÞ þ Pðk
i
jlÞ � PðklÞ

jiÞ; (88)

and, in particular, we find ð1Þ�k
ki ¼ Pji.

To begin with the first-order LES equations, let us have
a look at the symmetry condition (56). Straightforward
calculation up to first order yields

_P ½ij� ¼ 0 ) P½ij� ¼ P
�
½ij�: (89)

We now derive the first-order expressions for the cova-
riant derivative of the coframe coefficients and its time
derivative,

ð1Þ�a
i�a

kkl ¼ aðPi
½kjl� þ PðklÞ

ji � Pðk
i
jlÞÞ;

ð1Þ�a
i _�a

kkl ¼ a _Pi
kjl þ _aðPi

½kjl� þ PðklÞ
ji � Pðk

i
jlÞÞ:

Thus, we find an expression for the momentum constraints
(58) up to first order, which are

_P k
½kji� ¼ 0 ) Pk

½kji� ¼ P
�
k½kji�: (90)

Assuming the Hamilton constraint (57) holds for the
homogeneous background, that is, for vanishing perturba-
tions, we get

3H2 ¼ 8�G%H þ�; (91)

where %H ¼ %H0=a
3 is the homogeneous background den-

sity. Then the first-order Hamilton constraint reads

H _Pþ 4�G%HP ¼ �1
4
ð1ÞR: (92)

Next, we determine the Ricci tensor and its trace up to first
order. Since the Christoffel symbols (88) are of orderOðPÞ,
their product is always of second or higher order, and
we find

ð1ÞRij ¼ ð1Þ�k
ijjk � ð1Þ�k

kijj
¼ Pjij � Pij

jk
jk

þ ðP� ðikÞjkjj þ P
�
ðjkÞ

jk
ji þ P

�
½ij�

jk
jk � 2P

�
jijÞ; (93)

where we used the two constraint equations (89) and (90)
above to express most of the terms by means of the initial
perturbation field.
Obviously, the first-order trace is solely dependent on

the initial perturbation,

ð1ÞR ¼ � 4

a2
Pk

½k
jl
jl� ¼ � 4

a2
P
�
k
½k
jl
jl�; (94)

so the first-order Hamilton constraint finally yields

H _Pþ 4�G%HP ¼ 1

a2
P
�
k
½k
jl
jl�: (95)

Now, we address the six evolution equations of the LES
(55). The homogeneous equations reduce to the trace and,
with (91), yield Friedmann’s acceleration law

3
€a

a
¼ �4�G%H þ�; (96)

where %H ¼ %H0=a
3 again is the homogeneous back-

ground density. The first-order equations then are

€P i
jþ3H _Pi

jþH _P�i
jþ4�G%HP�

i
j¼�ð1ÞRi

j; (97)

and using the Hamilton constraint (92) we get

€P i
j þ 3H _Pi

j �
1

3
H _P�i

j �
4�G

3
%HP�

i
j ¼ �ð1Þ�ij;

(98)

where ð1Þ�ij � ð1ÞRi
j � 1

3
ð1ÞR�i

j represent the trace-free

part of the 3-Ricci tensor. Hence, it is convenient to write
these equations in their representation (60) and (61),
i.e. split into trace and trace-free parts. The first-order
Raychaudhuri equation takes the following form:

€Pþ 2H _P� 4�G%HP ¼ 0: (99)

We get another very convenient form of the scalar
equation up to first order, when we take the trace of (97)
and replace 3H _P by applying the Hamilton constraint [i.e.
instead of replacing the Ricci scalar as done in (98)].

Since the first-order trace ð1ÞR only depends on the initial
perturbation field, we subtract the resulting equation at
t ¼ t0 from the general one to get rid of it. Hence, the
alternative form of the trace equation is
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€Pþ 3H _P ¼ 1

a2
ð €Pðt0Þ þ 3Hðt0Þ _Pðt0ÞÞ: (100)

Note that this equation is equivalent to (99) (see the general
solution in the next section). However, because of the
following equations, this equation seems to be the more
natural choice even if (99) is well-known from Newtonian
theory.

Now, the trace-free part of the set of evolution
equations (61) is

€� i
j þ 3H _�i

j ¼ �ð1Þ�ij; (101)

where �i
j � Pi

j � 1
3P�

i
j. This last set of equations

governs gravitational radiation; see also [9]. This is made

clear if we express ð1Þ�ij by (93) and (94) and—analogous

to what we did with the alternative form of the trace
equation—choose the more convenient form

€� ij þ 3H _�ij þ 1

a2
ð�jij ��ij

jk
jkÞ ¼

1

a2
Cij; (102)

where Cij are constants depending on the initial pertur-

bations,

C ij ¼ €�ijðt0Þ þ 3Hðt0Þ _�ijðt0Þ þ�jijðt0Þ ��ij
jk
jkðt0Þ:

We now determined six of the nine equations which
govern the evolution of the perturbation in the first-order
scheme. The remaining three equations are Eqs. (89),
which also arise as antisymmetric part of (55), if we
understand these as a set of nine evolution equations.

2. Parts of the Weyl tensor in the first-order scheme

First, we determine the electric part of the Weyl tensor
up to the first order and find

ð1ÞEi
j ¼ HEi

j � €Pi
j � 2H _Pi

j þ
4�G

3
%HP�

i
j; (103)

where HEi
j is the homogeneous part,

HEi
j ¼ � €a

a
�i

j �
1

3
ð4�G�H ��Þ�i

j; (104)

which reproduces Friedmann’s acceleration law (96). As in
the Newtonian analogue we are able to rewrite the first part
of the ADM equations in terms of the electric part of the
Weyl tensor, i.e.

ð1ÞEk
k ¼ 0 , ð99Þ; (105)

ð1ÞE½ik� ¼ 0 , ð89Þ: (106)

On the other hand, using (89) we find the magnetic part
of the Weyl tensor to be

ð1ÞHi
j ¼ � 1

a
�ikl _Pjkjl; (107)

so Hi
j has no homogeneous part, HHi

j ¼ 0. The vanishing

of its trace reproduces (89), whereas the vanishing of the
antisymmetric part reproduces the momentum constraints,

ð1ÞHk
k ¼ 0 ( ð89Þ; (108)

ð1ÞH½ik� ¼ 0 , ð90Þ: (109)

At first order the relations between the parts of the Weyl
tensor and shear tensor (respectively, Ricci tensor) become
somewhat simpler. With the first-order shear tensor

ð1Þ�i
j ¼ _Pi

j � 1
3
_P�i

j; (110)

we find from (71),

ð1ÞEi
j ¼ �ð1Þ _�i

j � 2Hð1Þ�i
j; (111)

respectively, ð1ÞEij ¼ �ð1Þ _�ij with lowered index. With the

first-order term for the magnetic part of the Weyl tensor
above, its relation to the time derivative of the 3-Ricci
tensor simplifies compared with (B2):

2�mði�mklð1ÞH
jÞkkl ¼ � 1

a
ð1Þ _Rij: (112)

3. General solution for the first-order trace part

In this section we shall derive a general solution for
the trace evolution equation (99). The homogeneous
Friedmann equation (96) determines the scale factor aðtÞ.
With this, we separate the time and spatial derivatives and
make the ansatz

Pa
iðX; tÞ ¼ 0Qa

iðXÞ þ q1ðtÞ1Qa
iðXÞ þ q2ðtÞ2Qa

iðXÞ;
(113)

where the time functions q1=2ðtÞ are the two solutions of the
linear differential equation

€qþ 2
_a

a
_qþ

�
3
€a

a
��

�
ðqþ qðt0ÞÞ ¼ 0: (114)

Note that the first part in the ansatz reflects the nonvanish-
ing of the initial perturbation field since here we have to
take into account initial conditions for the perturbation
field as well as its first and second time derivatives. Solving
(100) instead of (99) we have three solutions in a natural
way since there the differential equation is inhomogene-
ous. (The result is the same as we show in the example in
the appendix where we explicitly solve the inhomogeneous
equation.) Note also that if we insert the above ansatz for
Pa

iðX; tÞ into the first-order Raychaudhuri equation (99),
we get the constraint

0Qa
iðXÞ ¼ q1ðt0Þ 1Qa

iðXÞ þ q2ðt0Þ 2Qa
iðXÞ:
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With the ansatz and its time derivatives we find

1Qa
i ¼ þ _q2ðt0Þ €Pa

iðt0Þ � €q2ðt0Þ _Pa
iðt0Þ

€q1ðt0Þ _q2ðt0Þ � _q1ðt0Þ €q2ðt0Þ ; (115)

2Qa
i ¼ � _q1ðt0Þ €Pa

iðt0Þ � €q1ðt0Þ _Pa
iðt0Þ

€q1ðt0Þ _q2ðt0Þ � _q1ðt0Þ €q2ðt0Þ ; (116)

and

0Qa
i ¼ Pa

iðt0Þ � q1ðt0Þ1Qa
i � q2ðt0Þ2Qa

i: (117)

Hence, the first-order peculiar coframe takes the following
form:

ð1Þ ~�a
i¼�

� a
iþðq1ðtÞ�q1ðt0ÞÞ1Qa

iþðq2ðtÞ�q2ðt0ÞÞ2Qa
i;

(118)

where �
� a

i � �a
i þ Pa

iðt0Þ is the coframe at the initial
time. Finally, we define the peculiar quantities uai and
wa

i by

_�a
i ¼ H�a

i þ uai; uai � a _Pa
i;

€�a
i ¼

€a

a
�a

i þ wa
i; wa

i � a €Pa
i þ 2 _a _Pa

i:

They are related to the spatial functions Qa
i by

wa
i �

�
2H þ €q2

_q2

�
uai ¼ a

€q1 _q2 � _q1 €q2
_q2

1Qa
i; (119)

wa
i �

�
2H þ €q1

_q1

�
uai ¼ �a

€q1 _q2 � _q1 €q2
_q1

2Qa
i; (120)

so we are able to express the first-order coframe in terms of
these quantities.

IV. RELATIVISTIC ZEL’DOVICH
APPROXIMATION (RZA)

First, a comment concerning the use of the wording
‘‘relativistic Zel’dovich approximation’’ in previous papers
is in order, avoiding from the beginning of this section
confusions that may arise during the presentation. Previous
work, e.g., [6], suggested to use the relativistic deformation
field [see (125) below] in analogy to the Lagrangian de-
formation gradient of spatial derivatives of the Newtonian
trajectory field (21). While the density field is then calcu-
lated through its exact integral (35), evaluated for this
deformation field in accord with the Newtonian expression
(22), the spatial metric, the spatial Ricci curvature and
other variables are still taken to be those of the strictly
linearized case. In order to explain why our point of view
will differ, we recall Zel’dovich’s extrapolation idea at the
basis of his approximation [2–5] in relation to the exact
foundations of this approximation in the framework of a
Lagrangian perturbation theory [19,20]. Zel’dovich indeed
used the exact integral for the density field in the

Lagrangian picture of fluid motion, well-studied in the
context of an inertial continuum, and adjusted the coeffi-
cient functions in that integral, so that its linearization on a
homogeneous-isotropic background cosmology would
reproduce the result of the Eulerian linear perturbation
theory. He considered only the growing mode solution
that, asymptotically, supports the parallelity condition
(19). While in the beginning he combined the exact solu-
tion for an inertial continuum with the linearized solution
of gravitational instability, it was later confirmed by
Doroshkevich, Ryabenkii, and Shandarin [46] that this
ansatz for the trajectory field also self-consistently solves
the divergence equation for the peculiar-field strength.
Thus, the motivation was born by appealing to the exact
solution of the inertial continuum [41], and Doroshkevich,
Ryabenkii, and Shandarin [46] added the decisive consis-
tency test in the framework of self-gravitating motion.
However, as we shall explicitly explain below, we can
strictly define the extrapolation idea in the framework of
the full set of Lagrangian equations for self-gravitating
motion, as was done in [19], and we employ this definition
also in the relativistic context. One consequence of our
definition is that we shall functionally evaluate all field
variables without linearizing the functional expressions.

A. Definition: The RZA

Within a fully Lagrangian perturbation approach the
trajectory field (21) solves the full Lagrange-Newton
system (7) and (8) to first order, while it is important to
emphasize that this latter system exclusively contains the
deformation gradient faji as the only dynamical field vari-

able. Hence, this fact suggests that it is possible to consider
the first-order solution of the LNS as an input into other
fields that, like the density integral, are just definitions and
can be functionally evaluated for any trajectory field.
Given this remark we aimed in the present work to also
write down Einstein’s equations for only one field variable,
the nonintegrable deformation coefficients �a

i, and con-
sider the linearized solution as an input into functionals of
these deformation coefficients.
We think that this point of view best reflects

Zel’dovich’s extrapolation idea. If we would linearize all
functionals, e.g., the metric as a quadratic form of the
deformation field, we would just repeat the well-known
result of the linearized Einstein equations. If we would
keep one nonlinear expression like the density integral, the
extrapolation idea is not consistently applied. Note that by
taking the exact density integral we make sure that mass is
conserved for any given perturbative solution; but also by
taking the quadratic form of the metric we make sure that
we measure distances correctly for any given perturbative
solution (being important for setting up the light cone
structure for a given order of approximation); similar re-
marks apply for other fields. We therefore propose the
following definition.
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Definition: Relativistic Zel’dovich approximation.—We
consider the 9 functions in the coframe coefficients as the
only variables in the full set of ADM equations for the
matter model irrotational dust within a flow-orthogonal
foliation of spacetime. We then consider the general line-
arized solution for these coefficients. The approximation
‘‘RZA’’ consists in exactly evaluating any other field as a
functional of the linearized solution, without performing
further approximations or truncations.

The following is a restriction that complies with the use
of the Newtonian form of Zel’dovich’s approximation. We
restrict the general first-order solution (118) to its trace part
and subject it to the condition

2Qa
iðXÞ ¼ 0; (121)

i.e. we only consider the growing mode solution. Hence,
with (120) the Zel’dovich restriction for the peculiar fields
reads

wa
i ¼

�
2H þ €q1

_q1

�
uai (122)

or, in terms of the initial perturbation field via (116),

€P a
iðX; t0Þ ¼

€q1ðt0Þ
_q1ðt0Þ

_Pa
iðX; t0Þ: (123)

With this restriction we have

1Qa
iðXÞ ¼

1

_q1ðt0Þ
_Pa

iðX; t0Þ; (124)

and we find for the peculiar coframe

RZA ~�a
iðX; tÞ ¼ �a

i þ Pa
iðX; t0Þ þ �ðtÞ _Pa

iðX; t0Þ; (125)

where

�ðtÞ � q1ðtÞ � q1ðt0Þ
_q1ðt0Þ : (126)

Remember that the peculiar coframes were defined by
~�a

iðX; tÞ ¼ 1
aðtÞ�

a
iðX; tÞ.

Apart from the term that arises because of the nonvan-
ishing initial perturbation, this solution is familiar from the
section on Newtonian dynamics above. The corresponding
expression for the deviation field pa

i takes, because of
_Pa

iðt0Þ ¼ _pa
iðt0Þ �Hðt0Þpa

iðt0Þ, the form
RZA ~�a

i ¼ �a
i þ ð1�Hðt0ÞÞpa

iðt0Þ þ �ðtÞ _pa
iðt0Þ:

We furthermore suggest, and we imply this in our
general definition above, to extend the extrapolating
approximation RZA to the general first-order solution,
notably including its trace-free part where this latter allows
us to define a nonlinear approximation for gravitational
radiation.

B. Functional evaluation of field variables

As a consequence of the above definition we are now
going to evaluate a number of relevant fields. In this section
we write

Pa
i � Pa

iðX; t0Þ and _Pa
i � _Pa

iðX; t0Þ; (127)

because aðtÞ and �ðtÞ are the only time-dependent
functions.
As said in the above definition of the RZA, we insert the

coframe RZA�a
i ¼ að�� a

i þ � _Pa
iÞ, where

�
� a

i � �a
i þ Pa

iðX; t0Þ (128)

is the coframe at some initial time t0, into the exact
definitions and equations, as given in Sec. III. The sym-
metry condition (62), for example, is extrapolated to

ð2H _�þ €�Þð _P½ij� þ �ab
_Pa

½iP
b
j�Þ ¼ 0: (129)

The metric for the coframe RZA�a
i ¼ að�� a

i þ � _Pa
iÞ

takes the following quadratic form:

RZAgij ¼ a2�ab½�� ai�� b
j þ 2��

� a
ði _Pb

jÞ þ �2 _Pa
i
_Pb

j�:
(130)

Furthermore, we define

ð0ÞJij � 1
6�abc�

ikl�
�
a
j�

�
b
k�

�
c
l;

ð1ÞJij � 1
6�abc�

ikl _Pa
j�

�
b
k�

�
c
l þ 1

3�abc�
ikl�

� a
j
_Pb

k�
�
c
l;

ð2ÞJij � 1
3�abc�

ikl _Pa
j
_Pb

k�
�
c
l þ 1

6�abc�
ikl�

�
a
j
_Pb

k
_Pc
l;

ð3ÞJij � 1
6�abc�

ikl _Pa
j
_Pb

k
_Pc
l:

With the help of these definitions the transformation
determinant RZAJ reads

RZAJ ¼ a3ðJ0 þ �J1 þ �2J2 þ �3J3Þ; (131)

where Jn � ðnÞJkk. In the homogeneous case, i.e. for

vanishing initial perturbations, we find HJ0 ¼ 1 whereas
HJ1 � HJ3 reduce to the three scalar invariants for _Pa

i.

Hence, the nonlinearly evolved density can be calculated
through its exact integral,

RZA% ¼ �
�
J
�

RZAJ
¼ %HðtÞ

%Hðt0Þ%
� ð ~XÞ J

�

RZA~J
; (132)

where RZA ~J � detð~�a
iÞ ¼ J0 þ �J1 þ �2J2 þ �3J3 is

evaluated for the peculiar coframe field (125) and

J
� � JðX; t0Þ is the transformation determinant at some
initial time.
Then the orthonormal vector basis ea

i in the RZA pic-
ture is given by

RZAea
i¼ 1

a

�
1

2~J
�abc�

iklð�� bk�� c
lþ2��

� b
k
_Pc
lþ�2 _Pb

k
_Pc
lÞ
�
;
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so the orthonormality relation for �a
i and ea

i in the RZA
becomes (here and in the following the summation always
runs from n ¼ 0 . . . 3)

RZAea
i RZA�a

j ¼ 3

P
n �

nðnÞJijP
n �

nJn

with trace RZAea
k RZA�a

k ¼ 3, as expected.
To be able to write the RZA expansion tensor in a

similarly short form we define the second set of auxiliary
quantities, i.e.

ð0ÞIij � 1
6�abc�

ikl�
� a

j�
� b

k�
� c

l;

ð1ÞIij � 1
2�abc�

ikl _Pa
j�

� b
k�

� c
l;

ð2ÞIij � 1
2�abc�

ikl _Pa
j
_Pb

k�
� c

l;

ð3ÞIij � 1
6�abc�

ikl _Pa
j
_Pb

k
_Pc
l:

Of course ð0ÞIij ¼ ð0ÞJij as well as ð3ÞIij ¼ ð3ÞJij and their

traces are identical to those of the Jij’s.

Hence, the RZA expansion tensor takes the form

RZA�i
j ¼ 3H �

P
n �

nðnÞJijP
n �

nJn
þ

_�

�
�
P

n n�
nðnÞIijP

n �
nJn

: (133)

We evaluate the mixed components of the tensor, since in
this form the corresponding Newtonian expressions are
easily recovered. The expansion scalar, for example, is

RZA� ¼ 3H þ
_�

�
� �J1 þ 2�2J2 þ 3�3J3
J0 þ �J1 þ �2J2 þ �3J3

: (134)

Now we give the expressions for the parts of the Weyl
tensor in the RZA. The electric part reads

RZAEi
j ¼ �3

€a

a
�
P

n �
nðnÞJijP

n �
nJn

�
� €�
�
þ 2H

_�

�

�P
n n�

nðnÞIijP
n �

nJn

� 1

3

�
4�G

%
�
J
�

RZAJ
��

�
�i

j: (135)

The relation to the mixed shear tensor components reads

RZAEi
j ¼�RZA _�i

j � 2HRZA�i
j �

2

3

_�

�
�
P

n n�
nJnP

n �
nJn

� RZA�i
j

� RZA�i
k
RZA�k

j þ
1

3
RZA�k

l
RZA�l

k�
i
j: (136)

[This should be compared with the somewhat simpler
form (111) in the first-order scheme and with the general
relation (71).]

The magnetic part takes the following form:

RZAHi
j ¼ �

_�

a
�ikl �

_Pkjkl þ �abð _Pa
jP

b
k þ � _Pa

j
_Pb

kÞklP
n �

nJn
;

(137)

where k here denotes the covariant derivative with respect
to the RZA metric (130).
Finally, we express the Riemann and Ricci curvature

tensors functionally in terms of the RZA deformation. To
keep the equations short, we define (analogous to the func-

tionals ð0ÞJij � ð3ÞJij above) the quantities

ð0Þ ~Ri
jkl � 1

6�abc�
imn�

� a
jkkkl�

� b
m�

� c
n;

ð1Þ ~Ri
jkl � 1

6�abc�
imn _Pa

jkkkl�
� b

m�
� c

n

þ 1
3�abc�

imn�
� a

jkkkl _Pb
m�

� c
n;

ð2Þ ~Ri
jkl � 1

3�abc�
imn _Pa

jkkkl _P
b
m�

� c
n

þ 1
6�abc�

imn�
� a

jkkkl _Pb
m
_Pc
n;

ð3Þ ~Ri
jkl � 1

6�abc�
imn _Pa

jkkkl _P
b
m
_Pc
n:

The curvature tensor then is

RZARi
jkl ¼ 3 �

P
n �

nððnÞ ~Ri
jkl � ðnÞ ~Ri

jlkÞP
n �

nJn
; (138)

and the Ricci tensor takes the form

RZARij ¼ 3 �
P

n �
nððnÞ ~Rk

ikj � ðnÞ ~Rk
ijkÞP

n �
nJn

: (139)

Of course one can express the curvature quantities solely in
terms of the RZA deformation, since we used the covariant
derivative with respect to the RZA metric (130), but the so-
found equations are long and hard to read.

V. DISCUSSION AND CONCLUSIONS

In this section we put some aspects into perspective that
were discussed in the context of the Newtonian Zel’dovich
approximation, and we summarize the main points of this
paper.

A. Possible tests of the extrapolation

Applications of the presented approximate theory leave
in suspense the unknown quality of the extrapolation done.
Of course, we may blindly accept the resulting approxi-
mate solutions driven by the belief that the corresponding
Newtonian model is extremely successful in comparison
withN-body simulations of the full problem. However, it is
in order to point out that a number of self-consistency tests
are possible and should be done. While this scheme can
predict and describe effects beyond the known highly
symmetric solutions of general relativity, it is necessary
to conduct additional tests. Such tests are best performed in
the context of the envisaged applications, and we shall
come back to them in forthcoming papers. Recall that
Doroshkevich, Ryabenkii, and Shandarin [46] provided
such a test for the Newtonian form of Zel’dovich’s ap-
proximation by considering quantitatively the difference
between the density calculated from the exact integral of
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the continuity equation and the density calculated from the
field equation, i.e. from the divergence of the peculiar-
gravitational field strength. While at first order both ex-
pressions agree by construction, the error was reported to
be of second and higher order [46]. While qualitatively this
is obvious, the error was calculated and used to estimate
the quantitative validity of the approximation in certain
regimes. In this spirit we can also compare resulting non-
linear expressions and conduct consistency tests. As an
example we note that, e.g., the scalar curvature can be
determined from the Hamilton constraint (29) through
the kinematical invariants and the density in the RZA
and alternatively from the RZA metric by explicitly calcu-
lating the trace of its Ricci tensor (53). The resulting
expressions agree to first order and the error is of higher
order and may be quantitatively controlled in the context of
a given application. We shall come back to these different
curvature expressions in forthcoming papers.

B. Singularities

Continua made of dust are bound to develop singular-
ities in the course of evolution, resulting in caustics, i.e.
loci of formally infinite density. This is a consequence of
neglecting physical effects like velocity dispersion or vor-
ticity that could regularize singularities (for the Newtonian
theory see [47]). In general relativity this situation corre-
sponds to the intersection of worldlines and, thus, to the
failure of defining a congruence of worldlines, together
with the possibility of simultaneously developing singular-
ities in geometrical fields.

The appropriate mathematical framework in which
caustics can be described and classified is catastrophe
theory [48], further developed in the framework of the
Lagrange-singularity theory especially by Arnol’d and
collaborators. Caustics are defined as images of a critical
set on a Lagrangian submanifold under a projection map.
The stable singularities of such Lagrangian mappings can
be classified into a finite set of topological structures
(germs), their number depending on the number of dimen-
sions of the Lagrangian submanifold. A classification
into a finite number of elements is only possible for mani-
folds with dimension � 5. Alternatively, the Lagrange
singularities of a family of worldlines of fluid elements
can be described in terms of Legendre singularities of the
wave fronts (if they exist) as the dual description of the
continuum’s evolution (cf. the small selection of papers by
Arnol’d [49–51], the books [52] and the collection of
papers [53]).

The singularities developing in an irrotational
Newtonian continuum moving under inertia have been
analyzed in full detail with nice hand drawings by
Arnol’d [49], and a formal relation of this mapping to the
(Newtonian) Zel’dovich approximation has been estab-
lished and analyzed in detail for caustics in two spatial
dimensions [54]. In the pancake picture developed at

the time one considers images of singularities as the local
building blocks of the large-scale structure in the Universe.
The geometry of these structures may differ for different
realizations of the model, but the local morphology of
structures (so-called unfoldings around singularities and
their evolution (so-called metamorphoses) is completely
made up from 12 (topologically classified) elements in a
four-dimensional continuum [49].
Specifically, in Newtonian theory, we may define a flow

field x ¼ fðX; tÞ by a time-dependent diffeomorphism that
sends initial (Lagrangian) positions X of fluid elements to
their Eulerian positions x (embedded into Euclidian space)
at time t. In order to apply the classification scheme of the
Lagrange-singularity theory to the motion of a Newtonian
continuum, the key property that has to be required for f is
that it can be written as a family of gradient mappings,
which form an important class of Lagrangian mappings.
This is, for example, easily possible, if the flow is irrota-
tional with respect to the Lagrangian frame, i.e. there
exists a potential � for which f ¼: rX�, where rX

denotes derivative with respect to Lagrangian coordinates.
We may then define the one-parameter family (parame-
trized by the time t) of Lagrangian mappings �t:

�t: R
3 ! R3; X � x ¼ rX�ðX; tÞ; (140)

where in this case the set fX;x ¼ fðX; tÞg forms a
Lagrangian submanifold of R6 ¼ fX;xg. Then, for each
fixed t, the (nondegenerate closed) two-form

P
idx

i ^ dXi

vanishes on the Lagrangian submanifold (Xi are local
coordinates on this manifold). Note that the requirement
of irrotationality of the flow field with respect to
Lagrangian coordinates is in general much more restrictive
than the requirement of irrotationality with respect to
Eulerian coordinates. For rotational flows, the Lagrange-
singularity theory has been extended by Bruce, Kirk, and
Du Plessis [55], specifically investigated for solenoidal
velocity fields of an inertial continuum. They found that
the most ubiquitous pancake singularities (A3 in Arnol’d’s
classification) remain stable. However, the singularities
associated with umbilics in the potential case have to be
removed from the list of generic (structurally stable) pat-
terns in the vortical case.
The possibility of writing the flow field f in the form of a

gradient mapping can be demonstrated for some important
subclasses of irrotational Lagrangian perturbation solu-
tions: the flow fields develop Lagrange singularites in the
case of first-order solutions [20], and for a large class of
second-order solutions [56]. The third- and fourth-order
contributions destroy this possibility even for restricted
classes of initial conditions [57,58].
In the case of self-gravitating continua, a proof of

the Lagrangian property meets the problem that the
velocity field and the acceleration field may become
multivalued simultaneously ([59], Sec. 6, footnote 1).
Nonperturbatively the situation is worse, since the
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gravitational field strength does not remain finite at caus-
tics, as would be suggested by Lagrangian perturbation
solutions to any order [60,61]. Indeed, a consequence of
the action of self-gravity is the development of a hierarchy
of nested caustics, which originate simultaneously, with an
ever increasing number of streams (see [56] for an example
in second-order perturbation solutions).

In general relativity the problems described above are
more involved. One open problem is the dynamical justi-
fication of the continuation of solutions across caustics,
where the multistream flow is required to satisfy the field
equations. A mathematically well-defined concept of
bifurcating dust appears to be a difficult problem; it is
evident that also the shapes of caustic surfaces may not
necessarily permit a morphological classification in the
framework of the Lagrange-singularity theory. Clarke
and O’Donnell [62] succeeded in showing the self-
consistency of an extension of spacetime through a dust
caustic. Other authors address the problem in the spheri-
cally symmetric case [63]. In cosmology the singularity
problem is mostly addressed for the asymptotic past of
solutions; for a study of the asymptotic structure of cos-
mological singularities see, e.g., [64,65]. Of course there is
a substantial literature related to singularities in general
relativity (see, e.g., [66–68], and references therein, as well
as the book by Clarke [69].

The model proposed in this paper contributes to this
discussion. We can explicitly study those fields that would
feature singularities in the relativistic Zel’dovich approxi-
mation. Since caustics correspond, in theNewtonianmodel,
to degeneracies of the Jacobian, J ¼ detðfijkÞ ¼ 0, we have

to look at degeneracies of the corresponding relativistic
field (denoted by the same letter in the present paper),
J ¼ detð�a

kÞ ¼ 0, in the local exact basis dXk. From this

it is already evident that the nonintegrability of Cartan’s
deformation field—in general—destroys the possibility
of defining a family of gradient mappings, and a morpho-
logical classification in the classical framework is not
straightforward. With the reasonable assumption that local
deformations remain finite we conclude that the metric, as
a quadratic form of the deformations, remains finite at
caustics. However, as the explicit formulas in Appendix C
show, almost all relevant fields will degenerate simulta-
neously, since they areweighted by RZAJ (while the remain-
ing terms remain finite for finite deformations). Note here
that the verticality (with respect to Eulerian coordinates)
of the Newtonian velocity gradient, which is indicative
for the occurrence of a singularity, corresponds to the
relativistic field �a

b that becomes the mixed-index object

�i
j ¼ ea

i�b
j�

a
b in the exact basis; cf. Eq. (C16). The

explicit expressions in the RZA model imply that spatial
but also spacetime curvature terms become singular at
caustics. Due to the form of the general expressions, how-
ever, we expect these degeneracies to appear also in general
situations.

C. Concluding remarks

Following the systematic derivation of Zel’dovich’s
approximation in the Lagrangian framework of the
Newtonian equations we have formulated the Einstein
equations for the matter model irrotational dust in terms
of a single dynamical variable. The nine coframe coeffi-
cients of Cartan’s deformation one-forms replace the inte-
grable Newtonian deformation gradient deriving from
three vector components. We discussed the resulting sys-
tem using different representations, and we derived the
general first-order solution for the coframe functions
(the deformation field). We then gave a definition of a
nonperturbative approximation scheme that proposes to
functionally evaluate dynamical field variables in terms
of the perturbed deformation field. The success of the
corresponding Newtonian approximation gives substantial
motivation for this generalization to relativistic cosmology.
There are a number of aspects that we consider useful.

First, using the proposed equations we can easily translate
Newtonian knowledge to the relativistic stage. This is
especially due to the formally close correspondence of
the electric part of the LES to the LNS of Newtonian
theory. Second, we can employ explicit forms of nonper-
turbative expressions for field variables that just depend on
initial data and known time-dependent functions. We so are
able to attack highly nonlinear problems in relativistic
cosmology. For example, the approximate quadratic form
of the metric can be used to realistically evaluate distance
expressions in inhomogeneous structure distributions; the
explicit structure of the light cone allows the study of the
influence of generic inhomogeneities. The same is true for
the Ricci curvature and the Weyl curvature with its parts.
As a consequence this approximation allows us to inves-
tigate many problems beyond the Newtonian approxima-
tion such as light propagation and gravitational radiation.
In forthcoming work we extend this model by employ-

ing exact integral properties of Einstein’s equations [24].
The combination of a generic model for inhomogeneous
deformations with exact integral properties has led to a
powerful model in the Newtonian approximation [70,71],
and so we shall investigate the corresponding relativistic
problem in order to quantify the influence of inhomo-
geneities on average properties of the Universe (the back-
reaction problem [26,27,30]). Furthermore, we shall give
the general perturbation and solution schemes for the
Lagrange-Einstein system including examples of higher-
order Lagrangian perturbation solutions. Nonperturbative
investigations of light propagation in inhomogeneous mod-
els as well as nonlinear aspects of gravitational radiation
are also envisaged in future applications.
A further, more challenging but possible, application of

the presented formalism would employ a self-consistently
evolving background rather than a fixed FLRWbackground
as in our examples. A background including backreaction
effects could be determined by the exact average properties
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of an inhomogeneous universe model [72]. Including pres-
sure by translating Newtonian results is possible [47,73].
Furthermore, a nonvanishing shift vector field together with
a nonconstant lapse function could be included and here-
with the Lagrangian condition extended, all providingmore
general frameworks in the spirit of this work.
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APPENDIX A: FORMULATION USING
DIFFERENTIAL FORMS

1. Newtonian equations

An alternative, somewhat simpler form of the Lagrange-
Newton system of equations can be reproduced by
introducing differential forms. Using the spatial exterior
derivative operator d, acting on functions and forms, and
the spatial exterior product, the LNS takes the form [23]

�ijd €fi ^ dfj ¼ 0; (A1)

1
2 �ijkd

€fi ^ dfj ^ dfk ¼ ð�� 4�G%Þd3f; (A2)

where the density is given by the integral % ¼ %
�
J�1, and

d3f ¼ Jd3X. Defining the three differential one-forms of
the tidal tensor Ei ¼ Ei

jdX
j, the LNS assumes instead the

compact form

�ijEi ^ dfj ¼ 0; (A3)

�ijkEi ^ dfj ^ dfk ¼ 0; (A4)

where

E i ¼ d €fi � 1
3ð�� 4�G%Þdfi: (A5)

2. Einstein equations

We introduced Cartan’s coframes �a ¼ �a
idX

i,
one-forms that define a noncoordinate basis of three-
dimensional space. We may call them spatial deformation
one-forms. The metric form is the canonical quadratic
form

g ¼ �ab�
a � �b: (A6)

Noncoordinate indices are raised and lowered by �ab.
The expansion one-form is then defined by the parallel

transport equation, i.e.

� a ¼ �a
b�

b ¼ _�a ¼ _�a
idX

i: (A7)

Spatial derivatives that take into account the varying
geometry are evaluated, for a symmetric connection, by
Cartan’s connection one-forms,

! a
b ¼ a

cb�
c (A8)

together with the curvature two-form

� a
b ¼ 1

2R
a
bcd�

c ^ �d: (A9)

These objects are defined by the (spatial) Cartan structure
equations:

! ab þ!ba ¼ 0; (A10)

d�a þ!a
b ^ �b ¼ Ta; (A11)

d!a
b þ!a

c ^!c
b ¼ �a

b; (A12)

together with the integrability conditions dd�a ¼ 0 and
dd!a

b ¼ 0, where Ta ¼ 1
2T

a
bc�

b ^ �c is the torsion two-

form. We set the torsion to zero in this work. Hence, both
!a

b and�
a
b can, in principle, be expressed solely in terms

of the deformation one-forms.
We may define the total exterior derivative of a tensor-

valued differential form � by

ðD�Þab ¼ d�a
b þ!a

c ^�c
b �!c

b ^�a
c; (A13)

which is the natural generalization of the covariant deriva-
tive when working in a noncoordinate basis. With this
definition we have

D�a ¼ Ta; DTa ¼ �a
b ^ �b and D�a

b ¼ 0;

(A14)

where the two last equations represent the two Bianchi
identities.
The invariant volume element in the noncoordinate

basis is

� 1 ^ �2 ^ �3 ¼ JdX1 ^ dX2 ^ dX3 ¼ Jd3X: (A15)
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The Lagrange-Einstein system takes the form

�ab €�
a ^ �b ¼ 0; (A16)

1
2 �abc €�

a ^ �b ^ �c ¼ ð�J � 4�G%
� Þd3X; (A17)

�abcD _�a ^ �b ¼ 0; (A18)

and

1
2 �bcd €�

a ^ �c ^ �d þ �bcd _�a ^ _�c ^ �d

¼ ½ð4�G%
� þ�JÞ�b

a � JRb
a�d3X; (A19)

where the 3-Ricci tensor can be expressed via the curvature
two-form by

Ra
d�

d ^ �b ^ �c ¼ �db�a
d ^ �c � �dc�a

d ^ �b:

(A20)

Let� ¼ �i1:::irdx
i1 ^ � � � ^ dxir be an r-form in a three-

dimensional manifold and g ¼ detðgijÞ the determinant

of the metric. Then the duality operator, or Hodge star
operator, is defined by

	�¼
ffiffiffiffiffiffijgjp

ð3� rÞ!�i1...ir�
i1...ir

irþ1...i3
dxirþ1 ^ �� � ^dxi3 : (A21)

In particular, 	1 is the invariant volume element because of

	1 ¼
ffiffiffiffiffiffijgjp
3!

�i1i2i3dx
i1 ^ dxi2 ^ dxi3

¼
ffiffiffiffiffiffi
jgj

q
dx1 ^ dx2 ^ dx3:

(A22)

With the help of (A21) we can also introduce one-forms
of the electric (tidal) and magnetic parts of the Weyl two-
form, which are

E a ¼ � €�a þ 1
3ð�� 4�G%Þ�a; (A23)

H a ¼ 	ð�bcD _�c ^ �aÞ�b: (A24)

The differential form counterparts to Eqs. (74), (75), and
(77) then read

�abE
a ^ �b ¼ 0; (A25)

�abcE
a ^ �b ^ �c ¼ 0; (A26)

�abH
a ^ �b ¼ 0; (A27)

�abcH
a ^ �b ^ �c ¼ 0: (A28)

We see that the electric part of Einstein’s equations,
(A16) and (A17), or (A25) and (A26), respectively, imme-
diately reduce to those of Newtonian gravitation (up to the
sign convention) for exact differential forms as geometrical
limits of the coframes, i.e.

� a ¼ �a
kdX

k ! fajkdX
k: (A29)

Applying this geometrical limit to the magnetic one-
form (A24), we immediately see that it vanishes in the
Newtonian limit, since the coefficients of the expansion
one-forms �a ¼ _�a reduce to the velocity gradient
N�a ! _fajkdX

k ¼ va
;bdx

b with partial derivatives,

NHa ! �be�
acdve

;d;cdx
b ¼ 0; (A30)

where the Newtonian limit implies the existence of global
Eulerian coordinates xb. (For a useful reference on
Cartan’s formalism see [74].)

APPENDIX B: OTHER FORMULATIONS
INVOLVING ELECTRIC AND MAGNETIC

PARTS OF THE WEYL TENSOR

We here provide other formulations in terms of the Weyl
tensor parts that are helpful especially in future work.
Note that throughout this appendix we adopt the invari-

ant volume element "ikl rather than the antisymmetric
tensor �ikl; see (45).
An interesting identity for the magnetic part is a relation

of its covariant curl to covariant spatial derivatives of the
expansion tensor,

gim"
mklHjkkl ¼ �ij

kk
kk ��k

jkikk; (B1)

which together with (33) allows us to relate the projected
magnetic part of the Weyl tensor back to the time deriva-
tive of the 3-Ricci tensor,

_R ij ¼ �2gmði"mklHjÞkkl þ�ij
kk

kk ��kikj: (B2)

To rewrite (34) in terms of the Weyl tensor we now derive a
full set of evolution equations for the electric and magnetic
parts.

Maxwell-like equations for the projected
parts of the Weyl tensor

The electric and magnetic parts (68) of the Weyl tensor
obey a set of evolution equations similar to the Maxwell
equations; see for example [75–80]. The Weyl tensor plays
the role of the electrodynamical field tensor. Starting from
the 4-Bianchi identities in the case of irrotational dust,
u� ¼ ð1; 0; 0; 0Þ and u�;� ¼ ��

� (where a semicolon

denotes 4-covariant derivative),

C�
�	
;� ¼ 8�G½ð%u�u½
Þ;	� þ 1

3%;½	g�
��; (B3)

we replace the Weyl tensor by its parts (68),

C��	
 ¼ ðg����g	
� � "����"	
�Þu�uE��

þ ð"����g	
� þ g����"	
�Þu�uH��;

(B4)
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where g���� � g��g�� � g��g�� and the tensor of the

invariant volume element "��	
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
���	
 is de-

fined analogous to (45). We transform to Lagrangian

coordinates as before and find, with
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
¼ ffiffiffi

g
p ¼J

and "��	
u
�¼"�	
 for the spatial invariant volume ele-

ment, the following equations for the time derivatives of
the projected parts of the Weyl tensor or their covariant
curls, respectively:

_E i
j þ 2�Ei

j ��k
jE

i
k ��k

lE
l
k�

i
j � "iklHjlkk

¼ �4�G
J
�

J
%
�
�
�i

j �
1

3
��i

j

�
; (B5)

_H i
j þ 2�Hi

j ��k
jH

i
k ��k

lH
l
k�

i
j þ "iklEjlkk

¼ � 4�G

3

J
�

J
%
�
jk"iklgjl: (B6)

Recalling that taking the time derivative does not com-
mute with the raising and lowering of indices, i.e.

_E ij ¼ ðgikEk
jÞ_ ¼ gik _Ek

j þ 2�ikE
k
j (B7)

(analogous for the magnetic part), and splitting the ex-
pansion tensor into its kinematical parts (for vanishing
vorticity),

�i
j ¼ �i

j þ 1
3��

i
j; (B8)

we get the well-known forms of (B5) and (B6) as given in
the literature, e.g., [77,78]. For the covariant divergences
of the Weyl tensor parts we find

Ek
ikk � gik"

kmn�mlH
l
n ¼ 8�G

3

J
�

J
%
�
ji; (B9)

Hk
ikk þ gik"

kmn�mlE
l
n ¼ 0: (B10)

The antisymmetric parts of Eqs. (B5) and (B6) are equiva-
lent to Eqs. (B9) and (B10), so we just take their sym-
metric parts (with lowered indices) into account, i.e.

_Eij þ 2�Eij � 3�kðiEk
jÞ ��k

lE
l
kgij � gmði"mklHjÞlkk

¼ �4�G
J
�

J
%
�
�
�ij � 1

3
�gij

�
; (B11)

_Hijþ2�Hij�3�kðiHk
jÞ��k

lH
l
kgijþgmði"mklEjÞlkk¼0:

(B12)

Note that for the right-hand side of (B12) we applied

� 4�G

3

J
�

J
%
�
jk"mklgmðigjÞl ¼ 0; (B13)

which is due to the antisymmetry of the Levi-Civita-
tensor density. These equations are automatically satis-
fied, if we insert the expressions for the parts of the Weyl
tensor we found in the previous subsection and apply the
ADM equations. Equation (B11) is the equivalent to (34)
we looked for.

APPENDIX C: EXAMPLE FOR THE RZA

In this appendix we shall derive a general solution for
the trace evolution equation (100) for a flat FLRW back-
ground universe. [This way we also clarify the way in
which the trace equations (99) and (100) are equivalent.]
The homogeneous Friedmann equation that we restrict to
the Einstein–de Sitter background determines the scale
factor

aðtÞ ¼
�
t

t0

�
2=3

: (C1)

After solving the equations we restrict the solution to the
Zel’dovich approximation and give some of the quantities
discussed above for this particular choice of model.

1. General solution for the first-order trace part

For the inhomogeneous equation (100) we make the
ansatz

Pa
iðX; tÞ ¼

X
�

q�ðtÞ�Qa
iðXÞ: (C2)

The time function qðtÞ then has to obey the inhomogeneous
differential equation

€qþ 2

t
_q ¼ 1

a2

�
€qðt0Þ þ 2

t0
_qðt0Þ

�
: (C3)

Since (C3) is linear and of second order, the general
solution can be written as the superposition of three solu-
tions, so � ¼ 1; 2; p. (Here p denotes the particular solu-
tion of the inhomogeneous equations, whereas � ¼ 1; 2
label the homogeneous solutions.) With the ansatz

q1=2ðtÞ ¼
�
t

t0

�
n1=2

; qpðtÞ ¼
�
t

t0

�
p
; (C4)

we find

n1 ¼ 0; n2 ¼ �1; p ¼ 2
3:

Hence,

Pa
i ¼ 1Qa

i þ
�
t

t0

��1
2Qa

i þ
�
t

t0

�
2=3

pQa
i: (C5)

Using this we express the initial perturbation fields in terms
of the initial conditions Pa

iðt0Þ, _Pa
iðt0Þ and €Pa

iðt0Þ,
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1Qa
i ¼ �3

2
€Pa

iðt0Þt20 � 2 _Pa
iðt0Þt0 þ Pa

iðt0Þ;
2Qa

i ¼ 3
5
€Pa

iðt0Þt20 þ 1
5
_Pa

iðt0Þt0;
pQa

i ¼ 9
10
€Pa

iðt0Þt20 þ 9
5
_Pa

iðt0Þt0:

Thus, the general solution to (C3) is, written in terms of the
coframe for the deviation field,

ð1Þ ~�a
i ¼ �a

i þ Pa
iðt0Þ

þ 2

�
1

10

�
t

t0

��1 þ 9

10

�
t

t0

�
2=3 � 1

�
_Pa

iðt0Þt0

þ 3

2

�
2

5

�
t

t0

��1 þ 3

5

�
t

t0

�
2=3 � 1

�
€Pa

iðt0Þt20: (C6)

2. The RZA for a flat FLRW background with � ¼ 0

As in Sec. IV we write

Pa
i � Pa

iðX; t0Þ and _Pa
i � _Pa

iðX; t0Þ;

because aðtÞ and �ðtÞ are the only time-dependent
functions.

First, we determine Zel’dovich’s restriction in both
forms (122) and (123) for the flat FLRW background
with vanishing cosmological constant (Einstein–de Sitter

background). The growing mode in (C5) is qðtÞ¼ ðt=t0Þ2=3,
so with the scale factor (C1) we find

uaiðt0Þ ¼ wa
iðt0Þt0; (C7)

and, in terms of the initial perturbation fields,

€P a
it0 ¼ �1

3
_Pa

i: (C8)

We subject the general first-order solution (C6) to
Zel’dovich’s restriction and find, with

�ðtÞ ¼ 3

2

��
t

t0

�
2=3 � 1

�
t0; (C9)

for the peculiar coframe

RZA ~�a
i ¼ �a

i þ Pa
i þ

3

2

��
t

t0

�
2=3 � 1

�
_Pa

it0: (C10)

Apart from the term that arises because of the nonvanish-
ing initial perturbation, this solution is familiar from the
section on Newtonian dynamics above. In the following

we shall use � and the ðnÞJij of the RZA section to keep

the equations short.

Since �
� a

i ¼ �a
i þ Pa

i, we write

RZA�a
i ¼

�
t

t0

�
2=3ð�� a

i þ � _Pa
iÞ: (C11)

Hence, the metric coefficients take the following form:

RZAgij ¼
�
t

t0

�
4=3

�abð�� a
i�
� b

j þ 2��
� a

ði _Pb
jÞ þ �2 _Pa

i
_Pb

jÞ;
(C12)

and the transformation determinant RZAJ reads

RZAJ¼
�
t

t0

�
2
RZA ~J; with RZA~J�X3

n¼0

�nJn; (C13)

where Jn � ðnÞJkk and ~J � detð~�a
iÞ is evaluated for the

peculiar coframe field (C10).
As in the general case, the nonlinearly evolved density

can be calculated through its exact integral:

RZA% ¼ �
�
J
�

RZAJ
¼ %HðtÞ

%Hðt0Þ%
� ð ~XÞ J

�

RZA~J
: (C14)

For the flat FLRW background the RZA expansion
scalar and the mixed components of the RZA expansion
tensor take the following forms:

RZA� ¼ 2

t
þ

�
t

t0

��1=3 �
P

n�n�1Jn
RZA~J

; (C15)

and

RZA�i
j ¼

2

t
�
P

�nðnÞJij
RZA~J

þ
�
t

t0

��1=3 �
P

n�n�1ðnÞJij
RZA~J

:

(C16)

(Here and in the following the summation is over
n ¼ 0 . . . 3.)
The Riemann curvature tensor (138) then becomes

RZARi
jkl ¼ 3 �

P
�nððnÞ ~Ri

jkl � ðnÞ ~Ri
jlkÞ

RZA ~J
; (C17)

and the Ricci tensor (139) takes the form

RZARij ¼ 3 �
P

�nððnÞ ~Rk
ikj � ðnÞ ~Rk

ijkÞ
RZA ~J

: (C18)

Finally, we give the expressions for the parts of the Weyl
tensor in the RZA. First, with

H ¼ 2

3t
) €�þ 2H _� ¼ 1

t0

�
t

t0

��4=3
; (C19)

the electric part reads

LAGRANGIAN THEORY OF STRUCTURE FORMATION IN . . . PHYSICAL REVIEW D 86, 023520 (2012)

023520-19



RZAEi
j ¼

2

3t2
�
P

�nðnÞJij
RZA~J

� 4�G

3
� %HðtÞ
%Hðt0Þ

�
�
J
�

RZA~J
�i

j �
1

t0

�
t

t0

��4=3 �
P

n�n�1ðnÞJij
RZA ~J

; (C20)

and the magnetic part

RZAHi
j ¼ �

�
t0
t

�
� �

ikl½ _Pkjkl þ �abð _Pa
jP

b
k þ � _Pa

j
_Pb

kÞkl�
RZA~J

; (C21)

where k is the covariant derivative with respect to the RZA metric (C12).
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