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We investigate the phenomenological consequences of a modification of the initial state of quantum

fluctuations of a single inflationary field. While single-field inflation with the standard Bunch-Davies

initial vacuum state does not generally produce a measurable three-point function (bispectrum) in the so-

called squeezed triangle configuration (where one wave number, k, is much smaller than the other two,

k � k1 � k2), allowing for a nonstandard initial state produces an exception. Here, we calculate the

signature of an initial state modification in single-field slow-roll inflation as it would appear in both

the scale-dependent bias of the large-scale structure and �-type distortion in the black-body spectrum of

the cosmic microwave background (CMB). We parametrize the initial state modifications and identify

certain choices of parameters as natural, though we also note some fine-tuned choices that can yield a

larger bispectrum. In both cases, we observe a distinctive k�3 signature in large-scale structure (as

opposed to the k�2 of the so-called local-form bispectrum). As a nonzero bispectrum in the squeezed

configuration correlates one long-wavelength mode with two short-wavelength modes, it induces a

correlation between the CMB temperature anisotropy observed on large scales with the temperature-

anisotropy-squared on very small scales; this correlation persists as the small-scale anisotropy-squared is

processed into the �-type distortion of the black-body spectrum. While the correlation induced by the

local-form bispectrum turns out to be too small to detect in near future, a modified initial vacuum state

enhances the signal by a large factor owing to an extra factor of k1=k compared to the local form. For

example, a proposed absolutely-calibrated experiment, PIXIE, is expected to detect this correlation with a

signal-to-noise ratio greater than 10, for an occupation number of about 0.5 in the observable modes.

Relatively-calibrated experiments such as Planck and LiteBIRD should also be able to measure this effect,

provided that the relative calibration between different frequencies meets the required precision. Our

study suggests that the CMB anisotropy, the distortion of the CMB black-body spectrum, and the large-

scale structure of the Universe offer new ways to probe the initial state of quantum fluctuations.

DOI: 10.1103/PhysRevD.86.023518 PACS numbers: 98.80.Cq, 04.62.+v

I. INTRODUCTION

While cosmologists have accumulated extensive evi-
dence for an early-universe inflationary period, the cause
and dynamical specifics of that epoch remain unclear.
Current and upcoming measurements will provide increas-
ingly precise measurements of the effects of inflation,
demanding that theorists persist in relating these observa-
tions to inflation’s underlying mechanism. Primordial non-
Gaussianity is a popular discriminant among the proposed
models of inflation (e.g., [1–3]).

The scalar curvature perturbation, � , which appears in
the space-space part of the metric in a suitable gauge as
gij ¼ a2ðtÞe2��ij [where aðtÞ is the Robertson-Walker

scale factor], is a convenient quantity relating the observ-
ables such as the cosmic microwave background (CMB)

and the large-scale structure (LSS) of the Universe to the
primordial perturbations generated during inflation. In par-
ticular, this quantity is conserved outside the horizon for
single-field inflation (e.g., [4]). We shall define the two-
point function [power spectrum, denoted as P� ðkÞ] and the

three-point function [bispectrum, denoted as B� ðk1; k2; kÞ]
of � in Fourier space as follows:

h�k1
�ki ¼ ð2�Þ3�ðk1 þ kÞP� ðkÞ; (1)

h�k1
�k2

�ki ¼ ð2�Þ3�ðk1 þ k2 þ kÞB� ðk1; k2; kÞ: (2)

The current data constrain the shape of P� ðkÞ as P� ðkÞ /
kns�4 with ns ¼ 0:96� 0:01 [5,6].
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The so-called local-form bispectrum defined as [7,8]

Blocal
� ðk1; k2; kÞ � 6

5
fNL½P� ðk1ÞP� ðk2Þ þ ð2 perm:Þ� (3)

is particularly interesting, both because a detection of the
primordial bispectrum at the level of fNL � 1 would dis-
favor single-field inflation [9–12] and because it is easy to
measure the primordial signal since few late-time effects
can produce the local-form bispectrum. The most impor-
tant contamination of fNL known to date is due to the
lensing-integrated Sachs-Wolfe effect bispectrum [13],
which can be calculated precisely and removed. The con-
tamination of fNL due to nonlinearity in the photon-baryon
fluid has been shown to be at most one [14].

The local-form bispectrum has the largest signal in the
so-called ‘‘squeezed triangle configuration,’’ for which one
of the wave numbers, say k, is much smaller than the other
two, k � k1 � k2. This can be seen from Eq. (3): as
P� ðkÞ / k�3 for a scale-invariant spectrum (ns ¼ 1), the
bispectrum is maximized when k is taken to be small. In
this limit, one finds

Blocalðk1; k1; k ! 0Þ ! 12

5
fNLP� ðk1ÞP� ðkÞ / 1

k31k
3
; (4)

for a scale-invariant spectrum.
Recently, Agullo and Parker have shown that a non-

standard initial state of quantum fluctuations generated
during single-field inflation can enhance the bispectrum
in the squeezed configuration by a factor of k1=k, i.e.,
Bðk1; k1; k ! 0Þ / 1=ðk21k4Þ [15]. This would have pro-
found implications for observations of the bispectrum in
the squeezed configuration. For example, the signature in
the bispectrum of CMB of this model was investigated in a
paper by one of the authors [16], who found that the model
could produce a measurable local fNL signal in the CMB.

The primordial bispectrum in the squeezed configura-
tion was initially constrained mostly by measurements of
the temperature anisotropy of the CMB [5,17]. However,
over time, tools for observing the bispectrum have prolif-
erated, providing a variety of ways to compare inflationary
models. In this paper, we will explore two such methods:

(i) In the LSS of the Universe, the local-form bispec-
trum leaves a signature by contributing a scale-
dependence to the halo bias, bðkÞ [18–20]. For the
local-form bispectrum, the scale dependence goes as
1=k2; however, for a modified initial state, this scale
dependence can become 1=k3.

(ii) Anisotropy in the so-called�-type distortions of the
black-body spectrum of the CMB can be correlated
with the CMB temperature anisotropy measured on
large scales. This correlation can be used to measure
the bispectrum in the squeezed configuration but
with a larger value of k1=k than previously thought
possible [21].

This paper is organized as follows. In Sec. II, we review
the model under consideration. In Sec. III, we give the form
of the bispectrum and comment on potential uncertainties
in the results. In Sec. IV, we discuss a useful approximation
to the bispectrum in the squeezed configuration. In Sec. V,
we calculate the signal of this model in the scale-dependent
bias of LSS. In Sec. VI, we calculate the signal of this
model in the �-type distortion of the CMB black-body
spectrum, correlated with the CMB temperature anisotropy
on large scales. Finally, we conclude in Sec. VII.

Throughout this paper, we shall set Mpl�1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p �1,

and use the cosmological parameters given by the WMAP
5-year best-fit parameters (WMAPþ BAOþH0 ML;
[22]): �M ¼ 0:277, �� ¼ 0:723, h ¼ 0:702, ns ¼ 0:962,
and �2

� ðk0 ¼ 0:002 Mpc�1Þ ¼ 2:46� 10�9, unless stated

otherwise.

II. ACTION AND MODE FUNCTION

We consider here single-field slow-roll inflation with a
canonical kinetic term, where the action (to lowest order in
slow-roll) can be written as [9]

S ¼ S2 þ S3;

S2 ¼ 1

2

Z
d4x

_�2

H2
½a3 _�2 � að@�Þ2�;

S3 ¼
Z

d4x
_�4

H4
a5H _�2@�2 _�:

(5)

We expand the curvature perturbation into creation, ayk,
and annihilation, ak, operators [not to be confused with the
Robertson-Walker scale factor, aðtÞ]:

�ðx; tÞ ¼
Z d3k

ð2�Þ3 ½akukðtÞe
ik	x þ ayku



kðtÞe�ik	x�: (6)

Usually, one chooses an initial state so that a comoving
observer in the approximately de Sitter spacetime observes
no particles [i.e., for this observer akj0i ¼ 0]. This implies
a positive-frequency mode function given by

ukð�Þ ¼ H2

_�

1ffiffiffiffiffiffiffiffi
2k3

p ð1þ ik�Þe�ik�; (7)

where � � R
t dt0
aðt0Þ is the conformal time; for future refer-

ence, we note

u0k �
@uk
@�

¼ H2

_�

ffiffiffi
k

2

s
�e�ik�: (8)

While this is certainly a reasonable assumption, it is an
assumption, and all assumptions must be tested by obser-
vations. Thus, a responsible scientist should ask: ‘‘If the
initial state of � was not in this preferred vacuum state
(known as the Bunch-Davies state), what are the implica-
tions for observations?’’ Our goal in this paper is not to
construct candidate models of a modified initial state, but
to study phenomenological consequences of such a
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modification, i.e., to let our observations tell us about the
initial state of quantum fluctuations.

Oncewe adopt this approach, the next question is: ‘‘How
should we parametrize a modified initial state?’’ We will
represent a modified initial state as a Bogoliubov trans-
formation of the above Bunch-Davies mode function:

~u kð�Þ ¼ �kukð�Þ þ �ku


kð�Þ: (9)

This is not the most general form one can write down (see,
e.g., [23]), but it provides us with a reasonable starting
point. In line with our previous goal, we will take the
Bogoliubov coefficients as given rather than trying to
derive them from a fundamental theory. From the commu-
tation relation of creation and annihilation operators, the
coefficients �k and �k must satisfy j�kj2 � j�kj2 ¼ 1. We
also find that the occupation number of particles Nk, i.e.,
the expected number density of particles with momentum
k, is given by j�kj2.

These Bogoliubov coefficients, �k and �k, encode in-
formation about physics on scales where we have limited
information; thus, they can vary widely without inconsis-
tency. However, we can place some constraints on the
coefficients by demanding that the theory reproduce the
observed power spectrum (including the spectral tilt,
ns ¼ 0:96� 0:01) and that the energy in the fluctuations
not back-react on the background inflaton dynamics
[23–25]. These requirements can be satisfied in a fairly
natural way if we suppose that the coefficients are such that

hNki � Nk;0e
�k2=k2cut , where the cutoff momentum kcut must

be specified. The values allowed for Nk;0 depend on the

value of kcut [25]; for kcut � ffiffiffiffiffiffiffiffiffiffiffiffi
MplH

p
, i.e., the scale of

inflation, Nk;0 can be of order unity. Additionally, if we

suppose that the smallest primordial scales observable
today come from momenta sufficiently smaller than kcut,
then hNki � Nk;0 � N, i.e., roughly constant in k.
Remembering that hNki ¼ j�kj2 and that only the relative
phase between �k and �k is significant, we parametrize

�k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

p
ei	k ; �k �

ffiffiffiffi
N

p
: (10)

There is still uncertainty with respect to 	k. As explained
further in [16], we identify two scenarios as plausible
behaviors: (1) 	k � k�0, where kj�0j � 1 for relevant k,
and (2) 	k � const � 	. In the latter scenario, one can tune
the value of 	 to give larger effects; we will generally show
results that assume the value of 	 that gives the largest
signal. In this sense (and for another reason discussed in
[16]), we consider the former scenario to be more
conservative.

III. POWER SPECTRUM AND BISPECTRUM

The power spectrum of � on super-horizon scales,
k� � 1, which seeds the observed fluctuations, is given
simply by P� ðkÞ ¼ j~ukð� ! 0Þj2 [16], i.e.,

P� ðkÞ ¼ H4

_�2

1

2k3
j�k þ �kj2; (11)

which becomes [using Eq. (10)]

P� ðkÞ ¼ H4

_�2

1

2k3
ð1þ 2N þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp

cos	kÞ: (12)

The calculation of the bispectrum requires more
thought. Formally, it is given by [9]

h�k1
ðtÞ�k2

ðtÞ�kðtÞi ¼ �i
Z t

t0

dt0h½�k1
ðtÞ�k2

ðtÞ�kðtÞ; Hintðt0Þ�i;
(13)

where the interaction Hamiltonian, Hint, is given byR
dt0Hintðt0Þ ¼ �S3 with S3 given by Eq. (5). We would

then specify the initial state at the initial time, t0, or
equivalently at the initial conformal time, �0. For the
action given by Eq. (5), one finds

B� ðk1; k2; kÞ ¼ 2i
_�4

H6

k21k
2
2 þ k22k

2 þ k2k21
k21k

2
2k

2
~uk1 ~uk2 ~uk

�
Z �

�0

d�0

ð�0Þ3 ~u
0

k1
~u0
k2 ~u

0

k þ c:c: (14)

In this paper, dots will denote derivatives with respect to t
and primes will denote derivatives with respect to �. For
the standard calculation, we take the Bunch-Davies initial
vacuum state, given by �k ¼ 1 and �k ¼ 0, for all modes
into the infinite past, �0 ! �1 (i.e., t ! 0). For this case,
there is an accepted prescription for calculations: we take
�0 ! �0 þ i
j�0j, giving � an imaginary component
when its absolute value is large [9]. The exponential terms

in the integrand like eiðk1þk2þkÞ�0 [see (8) for their origin]
would ordinarily oscillate rapidly at very early times but
are suppressed by the imaginary part of �0. Note that this
suppression depends on k1 þ k2 þ k > 0.
However, when we allow for a more general initial state,

we can have �k � 0 resulting in terms like eið�k1þk2þkÞ�0 ,

eið�k1�k2þkÞ�0 , etc. Furthermore, one may object (e.g., for
reasons of renormalizability) to setting initial conditions
in the infinite past, especially if some of the modes are
excited (i.e., �k � 0); instead, one might prefer that initial
conditions be set at some finite time. If we ignore this
objection for a moment, one can still suppose that �0 !
�0 þ i
j�0j. By triangle inequalities (e.g., k1 � k2 þ k,
etc.), the exponentials are still suppressed except at the
precise folded limit k1 ¼ k2 þ k [note that this would
result in Eq. (15) but without the exponentials].
In this paper, however, we will generally take the ob-

jection seriously and suppose that initial conditions were
not set infinitely far in the past. Unfortunately, this draws
us into an area of active research which does not offer a
definite formalism for calculations. Here, as in [26]
(though see [27,28]), we will adopt the ‘‘Boundary
Effective Field Theory’’ approach to non-Bunch-Davies
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initial conditions [29], which like the other available
approaches is not without problems (e.g., [30]). In this
approach, one cuts off the integral given in Eq. (13) at a
finite �0, where the initial conditions are set.

We shall assume that for excited modes k (i.e., where
�k � 0), kj�0j � 1 so that k was deep inside the horizon
at the initial time. This can be explained as expressing the
requirement that the process for mode excitation was
causal and thus, could only excite subhorizon modes.

Performing the integral given in Eq. (14), one obtains the
bispectrum [16]

B� ðk1; k2; kÞ ¼ 1

2

H6

_�2

k21k
2
2 þ k22k

2 þ k2k21
k31k

3
2k

3

�<
�

1

k1 þ k2 þ k
F���ð1� eiðk1þk2þkÞ�0Þ

þ 1

k1 þ k2 � k
F���ð1� eiðk1þk2�kÞ�0Þ

þ 1

k1 � k2 þ k
F���ð1� eiðk1�k2þkÞ�0Þ

þ 1

�k1 þ k2 þ k
F���ð1� eið�k1þk2þkÞ�0Þ

�
;

(15)

where

FXYZ � ð�k1 þ �k1Þð�k2 þ �k2Þð�k þ �kÞX

k1
Y

k2
Z

k

� ð�

k1
þ �


k1
Þð�


k2
þ �


k2
Þð�


k þ �

kÞXC

k1
YC
k2
ZC
k ;

(16)

for �C � �, �C � �; FXYZ gives information about the
initial conditions at �0. Note that we ignore a field redefi-
nition term (derived in [9]) that is negligibly small for the
purposes of this paper.

First, note that we recover the standard Bunch-Davies
result [9] if we set F��� ¼ 1, F��� ¼ F��� ¼ F��� ¼ 0,

and �0 ! �ð1� i
Þ1. In the squeezed limit, k � k1 �
k2 and we get B� ! 2

_�2

2H2 P� ðk1ÞP� ðkÞ, where _�2

2H2 � 10�2

is the slow-roll parameter, which is equivalent to fNL ¼
Oð10�2Þ [see Eq. (4)]. If we restore the field-redefinition
piece we ignored, we obtain the full standard squeezed-
limit bispectrum: B� ! ð1� nsÞP� ðk1ÞP� ðkÞ [9].

Since we have assumed kj�0j � 1, the exponentials in
the bispectrum (15) oscillate rapidly and can, to a decent
approximation, be ignored. Then, one sees that the bispec-
trum peaks in the so-called ‘‘folded triangle configura-
tion,’’ where one of the wave numbers is approximately
equal to the sum of the other two, i.e., k � k1 þ k2, k2 �
k1 þ k, or k1 � k2 þ k; this was noted earlier by
[26,27,31]. Since the local bispectrum has no correspond-
ing peak, this regime provides a way to distinguish the
shape of this bispectrum from a purely local form.We shall
come back to this point in Sec. VII.

We can also investigate the squeezed configuration
k � k1 � k2; this configuration is in fact a special case
of the folded limit k1 � k2 þ k when we additionally
suppose that k is much smaller than k1 or k2. In this limit,
the third and fourth terms are larger than the first and
second by a factor of k1=k � 1; the bispectrum becomes

B� / 8
_�2

2H2
k1
k P� ðk1ÞP� ðkÞ (with a proportionality factor

j�k1 þ �k1 j�2j�k þ �kj�2<½F���ð1� eik�0Þ�). Note that

this is enhanced relative to the local form in the squeezed
configuration [15].
We should highlight that the exponential terms cannot

be completely ignored [27] because they prevent the
bispectrum from blowing up in the folded limit. In particu-

lar, the factor 1
�k1þk2þk ½1� eið�k1þk2þkÞ�0�, which seems to

blow up in the folded limit if one ignores the exponen-
tial, actually goes as �i�0 þOðð�k1 þ k2 þ kÞ�2

0Þ.
Accounting for this behavior plays a role in the usefulness
of the approximation we demonstrate in the next section.

IV. APPROXIMATION TO THE BISPECTRUM
IN THE SQUEEZED CONFIGURATION

While the full form of the bispectrum given by Eq. (15)
is complicated, the observables that we shall discuss in
this paper (the scale-dependent halo bias in LSS and the
anisotropy in the�-type distortion of the CMB black-body
spectrum) depend primarily on the squeezed configura-
tion, k � k1 � k2. Therefore, it is useful to find an accu-
rate approximation to the bispectrum in the squeezed
configuration.
In [16], the author expanded to the lowest order in

k (k here is equal to k3 in [16]) after averaging over the
exponential. Specifically, he approximated

1� eiðk1�k2þkÞ�0

k1 � k2 þ k
� 1

k
: (17)

This result is also consistent with a prescription of ignoring
oscillating terms by taking �0 ! �0 þ i
j�0j for large
j�0j, as discussed in the previous section.
When we do not ignore oscillating terms, the approxi-

mation demonstrates the correct scaling on large scales but
it is off by a factor. This arises because the approximation
does not properly account for the oscillatory behavior of
Eq. (17) at small k.
Fortunately, we can come up with a better approxima-

tion. Observe that, when calculating observables, the bis-
pectrum is usually multiplied by a function and then
integrated over some of the wave numbers [see, e.g.,
Eq. (31) below]. Let us focus on the integral over k2.
Note that the limits of integration for k2 are k2 2
½jk1 � kj; k1 þ k�; in the squeezed limit, the function mul-
tiplying the bispectrum will vary little over this small
range, while the oscillatory terms like the left-hand side
of Eq. (17) will vary very rapidly. Thus, we can perform the
k2 integral only over the rapidly oscillating term, e.g.,
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Z
dk1

Z k1þk

k1�k
dk2 	 	 	 1� eiðk1�k2þkÞ�0

k1 � k2 þ k

�
Z

dk1 	 	 	
��������k2¼k1

�Z k1þk

k1�k
dk2

1� eiðk1�k2þkÞ�0

k1 � k2 þ k

�
:

(18)

For this integral, we find

Z k1þk

k1�k
dk2

1� eiðk1�k2þkÞ�0

k1 � k2 þ k

¼ ½�� Cið�2k�0Þ þ logð�2k�0Þ� þ i Sið�2k�0Þ
� �� Cið�2k�0Þ þ logð�2k�0Þ;

where � � 0:5772 is Euler’s constant, CiðzÞ �
�R1

z dt cosðtÞ=t is the cosine integral, and SiðzÞ �R
z
0 dt sinðtÞ=t is the sin integral (which is ��=2 for

z > 1); in the last line, we have dropped the second term
since it becomes increasingly unimportant for large k�0.

If we perform this new approximation, we find that, for
	 � k�0, the chief contributor to the squeezed bispectrum
looks like

B	k�k�0

�;k�k1
ðk1; k2; kÞ � H6

_�2

1

k1k2k
4
� Nð1þ NÞ

� 1

2
½�� Cið�2k�0Þ þ logð�2k�0Þ�:

(19)

For 	k � const � 	, we find

B	k�const
�;k�k1

ðk1; k2; kÞ �H6

_�2

1

k1k2k
4
� ½Nð1þNÞð3� cos2	Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1þNÞ

p
ð1þ 2NÞcos	�

� 1

2
½��Cið�2k�0Þ þ logð�2k�0Þ�:

(20)

These two equations provide useful approximations to the
bispectrum from a modified initial state in the squeezed
configuration.

Note that we can also view this approximation as finding
a sort of average for the left-hand side of (17), i.e., that

�
1� eiðk1�k2þkÞ�0

k1 � k2 þ k

�
avg

� 1

2k

Z k1þk

k1�k
dk2

1� eiðk1�k2þkÞ�0

k1 � k2 þ k

� �� Cið�2k�0Þ þ logð�2k�0Þ
2k

:

Thus, ignoring the oscillating terms in the bispectrum
(as in [16]) is equivalent to neglecting a factor
1
2 ½�� Cið�2k�0Þ þ logð�2k�0Þ�, so that the regime in-

vestigated in [16] differs from the one here by a factor of
order unity.

V. SCALE-DEPENDENT BIAS

How can we measure B� ðk1; k2; kÞ observationally?

Obvious observables are the bispectrum of the CMB tem-
perature and polarization anisotropy, and that of the matter
density distribution in LSS. These observables are (in
linear theory) related to B� ðk1; k2; kÞ in a straightforward

way [8,32].
A much less obvious observable is the power spectrum

of dark matter halos (in which galaxies and clusters of
galaxies would be formed). Dark matter halos are formed
only at the locations of peaks of the underlying matter
distribution. While the power spectrum of the underlying
matter distribution is insensitive to the bispectrum, the
power spectrum of peaks is sensitive to the bispectrum as
well as to higher-order correlation functions [33]. This
leads to a remarkable prediction: one can use the observed
power spectrum of the distribution of galaxies (and of
clusters of galaxies) to measure the bispectrum of primor-
dial fluctuations [18–20].
In general, as the power spectrum of peaks (hence halos)

is different from that of the underlying matter distribution,
we say that halos are biased tracers of the underlying
matter distribution [34]. The degree of bias is often pa-
rametrized by the so-called ‘‘bias factor,’’ bðkÞ, defined as

b2ðkÞ � PhaloðkÞ
PmatterðkÞ : (21)

Alternatively, one may define bðkÞ as the ratio of the
matter-halo cross power spectrum to the matter power
spectrum.
On large scales, where the matter density fluctuations

are still in the linear regime, bðkÞ approaches a constant for
Gaussian matter density fluctuations, bðkÞ ! b1. However,
the presence of the primordial bispectrum leads to a
nontrivial k dependence in bðkÞ, and this is called a
‘‘scale-dependent bias.’’
Building on the previous work on the peak statistics

[20,33], Desjacques, Jeong, and Schmidt arrived at the
following formula for bðkÞ [35]:

�bðk; RÞ ¼ 2
F RðkÞ
MRðkÞ

�
ðb1 � 1Þ�c þ d lnF RðkÞ=d lnR

d ln�R=d lnR

�
;

(22)

where �bðk; RÞ � bðk; RÞ � b1, �c ¼ 1:686, R is related
to the mass of halos under consideration as M ¼
4�
3 �M
cR

3, and 
c ¼ 2:775� 1011 h2 M
 Mpc�3 is the

present-day critical density of the Universe. The various
functions are defined by

F RðkÞ � 1

4�2
RP� ðkÞ

Z d3k1
ð2�Þ3 MRðk1ÞMRðjk1 þ kjÞ

� B� ðk1; jk1 þ kj; kÞ; (23)
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�2
R �

Z d3k

ð2�Þ3 P� ðkÞM2
RðkÞ; (24)

M RðkÞ � 2k2DðzÞ
5�MH

2
0

TðkÞWRðkÞ; (25)

WRðkÞ � 3j1ðkRÞ
kR

; (26)

where TðkÞ is the linear transfer function normalized
such that TðkÞ ! 1 for k ! 0, and DðzÞ is the growth
factor of linear density fluctuations normalized such that
ð1þ zÞDðzÞ ! 1 during the matter era. [For example,
Dð0Þ ¼ 0:7646 for�M¼0:277,��¼0:723, andw¼�1.]

Before we show the numerical calculations, we will first
try to analytically explore Eq. (22) for the case of a
modified initial state, allowing us to estimate the bispec-
trum shape.

An important observation in what follows is that WRðkÞ
oscillates rapidly for k * 1=R, so that the integral ofF RðkÞ
is dominated by k1 � 1=R. Therefore, when we are inter-
ested in k � k1, the integral of F RðkÞ is dominated by the
squeezed configuration, and is approximated as

F RðkÞ� 1

4�2
RP� ðkÞ

Z d3k1
ð2�Þ3M

2
Rðk1ÞB� ðk1;k1;kÞ: (27)

We can insert the squeezed configuration local bispectrum
and calculate

F RðkÞ � 3

5
fNL: (28)

The second term in the parenthesis in Eq. (22) vanishes for
this case and we find �bðk; RÞ / 1=k2 [18–20].

For the bispectrum for a modified initial state, which
goes as 1=k21k

4, we instead find

F RðkÞ /
�k1ðRÞ
k

; (29)

where

�k 1ðRÞ � 1

�2
R

Z d3k1
ð2�Þ3 k1M

2
Rðk1ÞP� ðk1Þ: (30)

One may interpret �k1 as a characteristic wave number for
the short-wavelength mode in the squeezed configuration.
Thus, we expect the modified-state bispectrum to produce
a scale-dependent bias which grows faster [by a factor of
�k1=k � 1=ðkRÞ] for small values of k than that for the
local-form bispectrum.

What about the second term in the brackets in Eq. (22)?
If we note that the extra k factor in the integrand of
Eq. (30) (as compared with the integrand for �2

R) is
evaluated at roughly 1=R, we get �k1ðRÞ � 1=R and
d lnF RðkÞ=d lnR � �1.

On the other hand, �2
R is dominated by the power

spectrum of matter density fluctuations at k � 1=R.

Approximating the power spectrum of matter density
fluctuations as a power-law near k � 1=R, i.e.,

M2
RðkÞP� ðkÞjk�R�1 / kneff ðRÞ, one obtains d ln�R=d lnR ¼

�½neffðRÞ þ 3�=2. For example, neffðRÞ¼�2:2,�1:8, and
�1:6 for R¼1, 5, and 10 h�1Mpc (or M¼3:2�1011,
4:0� 1013, and 3:2� 1014 h�1 M
), respectively.
Therefore, while this second term changes the amplitude

of �bðk; RÞ by a factor of 1þ 2
½neff ðRÞþ3��cðb1�1Þ , it does not

change the k dependence of �bðk; RÞ. We thus expect the k
dependence of the scale-dependent bias for a modified
initial state to be given by �bðk; RÞ / 1=k3. This scaling
was also predicted by [36].
In principle, the second term can change the amplitude

of�bðk; RÞ by a large factor for low-mass halos whose bias
is closer to unity [35]. Nevertheless, as we are focused on
the shape of �bðk; RÞ rather than on the amplitude, we will
ignore this factor. Then, Eq. (22) simplifies to

�bðk;RÞ
b1�1

¼ 1

8�2�2
R

�c

MRðkÞP� ðkÞk
Z 1

0
dk1k1MRðk1Þ

�
Z k1þk

k1�k
dk2k2MRðk2ÞB� ðk1;k2;kÞ

¼ 1

20�2DðzÞ~�2
R

�c

�MH
2
0k

3P� ðkÞTðkÞWRðkÞ
�
Z 1

0
dk1k

3
1Tðk1ÞWRðk1Þ

�
Z k1þk

k1�k
dk2k

3
2Tðk2ÞWRðk2ÞB� ðk1;k2;kÞ; (31)

which agrees with the formula first derived by [20]. Here,
~�R � �R=DðzÞ, which is independent of z.
To evaluate Eq. (31) we will use R ¼ 1 h�1 Mpc

(corresponding toM ¼ 3:2� 1011 h�1 M
). Also, in order
to determine the factor H6= _�2 which appears in the bis-
pectrum, we use the WMAP 5-year normalization,
k30P� ðk0Þ=ð2�2Þ ¼ 2:41� 10�9 for k0 ¼ 0:002 Mpc�1

[22], in Eq. (12):

k30P� ðk0Þ
2�2

¼ 1

8�2

H2



ð1þ 2N þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

p
cos	Þ;

(32)

where 
 � ð1=2Þ _�2=H2 is the slow-roll parameter; for
	k � k�0, the term in parenthesis simply becomes
(1þ 2N). This relation gives H2 for a given 
, N, and 	.
We now insert the full bispectrum [Eq. (15)] into

Eq. (31) and numerically integrate for the halo bias.
Figure 1 shows the results of the numeric integration for

 ¼ 0:01, N ¼ 0:5, and 	k for both scenarios (	k ¼ k�0

and 	 ¼ const, with 	 chosen to maximize�b). We do find
the expected k�3 scaling, which can also be seen by
comparison with the local form in Fig. 2.
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Figure 1 also shows the halo bias as calculated from
the approximation given in Eq. (19), as well as from the
earlier approximation from [16] [which is Eq. (19) without
the last line]. One sees that the full calculation and the
new approximation are very similar except on very small
scales (near the smoothing scale); by contrast, the old
approximation is off in absolute scale. (There is also a
slight change in shape, due to the terms that depend
on k�0).

VI. �-TYPE DISTORTION OF THE BLACK-BODY
SPECTRUM OF CMB

A. Motivation and background

Diffusion damping of acoustic waves heats CMB pho-
tons and creates spectral distortions in the black-body
spectrum of the CMB [37]. However, this distortion is
erased, maintaining a black-body spectrum for the CMB,
as long as photon nonconserving processes are effective.
According to [38], double-Compton scattering (e� þ
� ! e� þ 2�) is an effective thermalization process for
z > zi � 2� 106. After this epoch, however, this process
shuts off and the spectral distortions from diffusion damp-
ing cannot be smoothed from the CMB spectrum. Since
elastic Compton scattering (e� þ � ! e� þ �) continues
to be effective until zf � 5� 104, the photons can still

achieve equilibrium but with a conserved photon number.
The result is a Bose-Einstein distribution with a nonzero
chemical potential, � (rescaled by kBT to be dimension-
less), an effect known as the ‘‘�-type distortion’’ of the
black-body spectrum of the CMB, and it affects the
distribution by

1

eh�=ðkBTÞ � 1
! 1

eh�=ðkBTÞþ� � 1
; (33)

a positive � reduces the number of photons at low
frequencies. Finally, after zf, even elastic Compton scat-

tering is inefficient and photons fall out of kinetic equi-
librium with electrons, leaving only the so-called ‘‘y-type
distortion’’ [39]. As it would be difficult to distinguish
among the y distortions created by the heating of CMB
photons due to diffusion damping, by the cosmic reioni-
zation (z � 10), and by the thermal Sunyaev-Zel’dovich
effect [39] from groups and clusters of galaxies (z & 3)
[40], we shall focus on the �-type distortion in this
paper.
Diffusion damping occurs near the damping scale

given as follows. Over the redshifts of interest, z � 5�
104 � 2� 106, the expansion rate of the Universe is domi-
nated by radiation, HðzÞ / ð1þ zÞ2, and the effect of
baryon density on the photon-baryon fluid is negligible.
Therefore, the damping scale, kD, is given by [41]

k�2
D ¼

Z �

0
d�0 8

45�Tnea
¼ �

Z z

1
dz0

8ð1þ zÞ
45�TneH

; (34)

which gives

kD � 130½ð1þ zÞ=105�3=2 Mpc�1: (35)

Meanwhile, the heat generated by diffusion damping,Q, is
given by

Q ¼ 1

4

�h�2

�i; (36)

where 
� is the photon energy density and �� is the photon

energy density contrast. The coefficient 1=4 merits further
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FIG. 1 (color online). Scale-dependent halo bias from single-
field inflation with a nonstandard initial state, using a smoothing
scale of R ¼ 1 h�1 Mpc. The occupation number is N ¼ 0:5,
the slow-roll parameter 
 ¼ 0:01, and the initial conformal time
j�0j ¼ 1:0� 106 Mpc (the results are insensitive to the
exact choice of �0, so long as it is large). The bottom three
(thicker) lines show the more natural case where 	k � k�0,
while the top two (thinner) lines show the case when 	k �
const is chosen to give the maximal halo bias. The dashed lines
show the new approximations given by Eqs. (19) and (20),
while the dotted-dashed line shows the approximation used
in [16] [which is equal to Eqs. (19) and (20) without the last
lines].
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FIG. 2 (color online). Scale-dependent bias from the local-
form bispectrum (dotted-dashed line) versus the modified initial
state case described herein (solid line). The parameters here are
the same as in Fig. 1, with fNL ¼ 1 for the local-form bispec-
trum. The difference in scaling between the models is quite
evident.
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explanation. Naively, it would be c2s ¼ 1=3, where

cs ¼ 1=
ffiffiffi
3

p
is the sound speed of the photon fluid.

However, a recent computation using second-order pertur-
bation theory [42] reveals that we need an additional factor
of 3=4, yielding the number above. This heat is then
converted into � as

� � 1:4
Z 1

zf

dz
1


�

dQ

dz
e�ðz=ziÞ5=2

� 1:4

4
½h�2

�iðziÞ � h�2
�iðzfÞ�:

(37)

The diffusion damping scales at zi and zf are given by

kDðziÞ � 12000 Mpc�1 and kDðzfÞ � 46 Mpc�1, respec-

tively. Therefore, the �-type distortion is created by the
(squared) photon density perturbation on very small scales.
This property allows us to probe the power spectrum on
such small scales [37,43].

Pajer and Zaldarriaga recently pointed out that a nonzero
bispectrum in the squeezed configuration makes the distri-
bution of� on the sky anisotropic, and that this anisotropy
of � is correlated with the temperature anisotropy of the
CMB, which measurements are on scales much larger than
the damping scale [21]. This allows us to measure the
bispectrum in the squeezed configuration with a larger
value of k1=k than previously thought possible. The small-
est possible wave number one can measure from the CMB
anisotropy in the sky corresponds to the quadrupole, i.e.,
k � 2=rL � 1:4� 10�4 Mpc�1, where rL � 14000 Mpc
is the comoving distance to the last scattering surface
at zL ¼ 1090. This gives k1=k � kD=k ¼ 3:3� 105 �
8:6� 107, which is far greater than that accessible from
the temperature anisotropy of the CMB in l ¼ 2� 3000,
i.e., k1=k ¼ 1� 1500, or that accessible from the
scale-dependent bias of LSS: k1=k � 1=ðkRÞ � 103 for
k � 10�3 hMpc�1 (the lowest wave number that can be
plausibly measured from the LSS data in near future) and
R � 1 hMpc.

B. Cross-power spectrum of CMB temperature
anisotropy and �-type distortion

First, we decompose the CMB temperature anisotropy
on the sky into spherical harmonics: �Tðn̂Þ=T ¼P

lma
T
lmYlmðn̂Þ. The spherical harmonics coefficients are

related to the primordial curvature perturbation as

aTlm ¼ 12�

5
ð�iÞl

Z d3k

ð2�Þ3 �ðkÞgTlðkÞY


lmðk̂Þ; (38)

where gTlðkÞ is the radiation transfer function. Our sign
and normalization are such that gTlðkÞ ! �jlðkrLÞ=3 in
the Sachs-Wolfe limit. In other words, �Tðn̂Þ=T !
��ðn̂rLÞ=5 in the Sachs-Wolfe limit. However, we will
not use the Sachs-Wolfe limit (except for comparison), and
instead use gTlðkÞ as computed from a linear Boltzmann
code [44].

Next, we similarly decompose the distribution of �
measured on the sky, �ðn̂Þ, into spherical harmonics:
�ðn̂Þ ¼ P

lma
�
lmYlmðn̂Þ. Following [21], we write

a�lm¼18�ð�iÞl
Z d3k1d

3k2
ð2�Þ6 Y


lmðk̂Þ�ðk1Þ�ðk2ÞW
�
k

ks

�

�jlðkrLÞhcosðk1rÞcosðk2rÞip½e�ðk2
1
þk2

2
Þ=k2DðzÞ�zizf ; (39)

with k1 þ k2 þ k ¼ 0. (Note that the coefficient of our
expression is 18� instead of 24� because of the factor of
3=4, mentioned earlier, from [42]). Here,WðxÞ � 3j1ðxÞ=x
is a filter function; ks is the scale over which the damped
acoustic waves are averaged to give heat [and which we
will take to be equal to kDðzfÞ to obtain a lower bound on

the � distortion]; rL � 14 Gpc is the distance to the sur-

face of last scattering; 3 cosðkrÞe�k2=k2D comes from the
small-scale limit of the photon linear transfer function;
and hip denotes an average over the oscillation period.

Correlating Eqs. (38) and (39), we find

C
�T
l ¼ 27

20�3

Z 1

0
k21dk1½e�2k2

1
=k2DðzÞ�zizf

�
Z 1

0
k2dkW

�
k

ks

�
B� ðk1; k2; kÞjlðkrLÞgTlðkÞ; (40)

with ks � kDðzfÞ.
In order to quantify how well we can measure C�T

l in

real data, we shall estimate the cumulative signal-to-noise
ratio, S=N, from

�
S

N

�
2 ¼ Xlmax

l

ð2lþ 1Þ ðC�T
l Þ2

CTT
l C

��;N
l

: (41)

Here, we have assumed that the temperature data on large
scales are dominated by the signal (which is already the
case for the WMAP data), while the �-type distortion data
are dominated by noise.

C. Estimating the noise level of �: Absolutely
calibrated experiments

One can relate � to a small change in the CMB photon
intensity, I� ¼ ð2h�3=cÞðexþ� � 1Þ�1, as

�I� ¼ @I�
@�

���������¼0
�¼�2h�3

c2
ex

ðex � 1Þ2�

¼�2:70� 10�18 Wm�2 Hz�1 sr�1 x3ex

ðex � 1Þ2�; (42)

where x � h�=ðkBTÞ ¼ �=ð56:80 GHzÞ, for T ¼ 2:725 K.
This gives

�

10�8 ¼�ðex�1Þ2
x3ex

�I�
2:70�10�26 Wm�2Hz�1 sr�1

; (43)

which can be used to estimate the noise level of � from

that of I�. A factor ðex�1Þ2
x3ex

is typically of order unity:
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ðex�1Þ2
x3ex

¼ 1:038, 0.7307, 0.6568, and 0.8804 for � ¼ 60,

100, 150, and 240 GHz, respectively.
For example, a proposed satellite experiment, PIXIE

[46], is designed to have a typical noise level of
�I� ¼ 4� 10�24 Wm�2 Hz�1 sr�1 within each of 49152
equal-area pixels covering the full sky and each of 400
spectral channels covering 30 GHz to 6 THz with a 15 GHz
bandwidth. Averaging over the full sky, PIXIE would reach
j�j � 0:5� 10�8 at 100 GHz.

We shall assume that noise is white. The white noise
level in the power spectrum can be calculated as

C��;N
l ¼ ð1�� uncertainty in� per pixelÞ2

� ðSolid angle of a pixel in units of steradiansÞ
� b�2

l ; (44)

where bl is the so-called beam transfer function, which is
the spherical harmonics coefficients of an experimental
beam profile. For a Gaussian beam with a full-width-at-
half-maximum of 	b, bl is given by

bl ¼ exp

�
� l2	2b

16 ln2

�
: (45)

For PIXIE, we shall take the 1� uncertainty in � averaged
over the full sky to be 10�8. Therefore, the white noise
level in the power spectrum is given by 4�� 10�16

[21]. Their beam has 	b ¼ 1:6�, yielding C
��;N
l ¼

4�� 10�16 � el
2=842 .

D. Estimating the noise level of �: Relatively
calibrated experiments

One must have an absolutely-calibrated experiment such
as PIXIE in order to measure a uniform �. However, an
interesting implication of a nonzero bispectrum in the
squeezed configuration is that � becomes anisotropic.
This induces a position-dependent temperature fluctuation
as h�=ðkTÞ ! h�=ðkTÞ þ�, i.e.,

T ! Tðn̂Þ ¼ 2:725 K

1þ �ðn̂Þ
x

: (46)

The level of anisotropy is thus

�Tðn̂Þ
T

� ���ðn̂Þ
x

; (47)

where �� is a fluctuating part of �, i.e., �ðn̂Þ ¼
��þ ��ðn̂Þ. Therefore, in principle, experiments which
are calibrated to the CMB dipole such as WMAP and
Planck, as well as the proposed LiteBIRD [47], are also
capable of measuring this effect by making a map of ��ðn̂Þ
from the difference between temperature maps at two
different frequencies, �1 and �2. Then, the formula for
the noise power spectrum becomes

C
��;N
l ¼

�
�1�2=ð�1 � �2Þ
56:80 GHz

�
2

� ½ð1�� uncertainty in�T=T per pixel at�1Þ2
þ ð1�� uncertainty in�T=T per pixel at�2Þ2�
� ðSolid angle of apixel in units of steradiansÞ
� b�2

l : (48)

According to the Planck Blue Book [48], the expected
sensitivities of Planck at 100 and 143 GHz are �T=T ¼
2:5� 10�6 per 100 � 100 pixel, and �T=T ¼ 2:2� 10�6

per 7:10 � 7:10 pixel, respectively. The in-flight perform-
ance then shows that the achieved noise level is 70% of the
expectation, and the beam sizes at 100 and 143 GHz are
9:40 and 7:20, respectively [49]; thus, we estimate Planck’s
sensitivity to ��measured from maps at 100 and 143 GHz

as C��;N
l � 1:1� 10�15 � el

2=8612 . This is comparable to

the above estimate for PIXIE, which is based on the
absolute measurement of the CMB spectrum.
However, as the sensitivity of PIXIE (and LiteBIRD) to

CMB anisotropy is at least an order of magnitude better
than that of Planck, if we focus only on the spatially-
varying part of � rather than the uniform part of �, then

it may be possible to increase the sensitivity to C�T
l . The

expected noise power spectrum is of order C
��;N
l � 10�17

or better, according to Eq. (48). In other words, the signal-

to-noise of C�T
l can be improved by an order of magnitude

as compared to the case where we look at absolute mea-
surements of �.
In order to do this in practice, we must calibrate instru-

ments at different frequencies so that they have the equal
response to the thermal CMB. To estimate the required
precision for calibration, let us suppose that the response
of one instrument at �1 is different from that of another
at �2 by 
. Then, the difference between two maps at
these frequencies will yield ð�T=TÞð�1Þ � ð�T=TÞð�2Þ ¼

ð�T=TÞ, where �T is the CMB anisotropy. This residual

will be confused as a signal in ��, such that �� ¼
½�1�2=ð�1��2Þ

56:80 GHz �
ð�T=TÞ which, in turn, will give a contami-

nation of C
�T
l given by

lðlþ 1ÞC�T
l;contamination

2�
¼ 2� 10�10


�
�1�2=ð�1 � �2Þ
56:80 GHz

�

�
�
lðlþ 1ÞCTT

l =2�

2� 10�10

�
: (49)

As we shall show below (also see [21]), C�T
l from the

local-form bispectrum is of order lðlþ 1ÞjC�T
l j=ð2�Þ �

4� 10�17fNL. Therefore, the required precision for the
calibration is given by

�
�1�2=ð�1 � �2Þ
56:80 GHz

�

 � 2� 10�7fNL: (50)
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For example, the calibration precision of the WMAP data

is 
 ¼ 2� 10�3 [50], and thus the contamination of C�T
l

due to the calibration mismatch is negligible for fNL �
104½�1�2=ð�1��2Þ

56:80 GHz �. To search for a C
�T
l signal, future CMB

experiments such as LiteBIRD may wish to place more
emphasis on the relative calibration of their instruments.
Note that the signal from a modified initial state will be

much larger, lðlþ 1ÞjC�T
l j=ð2�Þ � 2�10�11

l ð _�2

2H2 =0:01Þ (see
Sec. VI F), so the required precision for the calibration can
be relaxed greatly.

Another factor which may limit the utility of relatively
calibrated instruments is foreground contamination. In
principle, foreground contamination can be removed by
using multifrequency data, since the frequency spectrum of
the foreground (roughly proportional to ��3, ��2, and �2

for synchrotron, free-free, and dust emission, respectively)
is different from that of�-type distortion (/��1). Detailed
study of foreground contamination is beyond the scope of
this paper, but it is worth studying this in detail once the
required calibration precision is reached.

E. Results for the local-form bispectrum

Before we discuss C�T
l from the modified initial state

effect, let us discuss C
�T
l from the local-form bispectrum.

Using the local-form bispectrum [Eq. (3)] in the expression

for C�T
l [Eq. (41)], we find

C
�T
l ¼ 81

25�3
fNL

Z 1

0
k21dk1½e�2k2

1
=k2DðzÞ�zizfP� ðk1Þ

�
Z 1

0
k2dkW

�
k

kDðzfÞ
�
P� ðkÞjlðkrLÞgTlðkÞ: (51)

For a scale-invariant spectrum, P� ¼ 2�2

k3
�2

� with �2
� ¼

2:4� 10�9, we find

C
�T
l ¼ 324�

25
fNL�

4
� ln

�
kDðziÞ
kDðzfÞ

�

�
Z 1

0

dk

k
W

�
k

kDðzfÞ
�
jlðkrLÞgTlðkÞ: (52)

While we use the exact radiation transfer function calcu-
lated from the linear Boltzmann code (except as indicated),
it is instructive to obtain an analytical expression for the
Sachs-Wolfe limit, gTlðkÞ ! �jlðkrLÞ=3. As the wave
numbers that are responsible for the Sachs-Wolfe regime
are much smaller than kDðzfÞ, one can approximate

W½ k
kDðzfÞ� ! 1. We then find

C�T
l ! � 54�

25
fNL�

4
� ln

�
kDðziÞ
kDðzfÞ

�
1

lðlþ 1Þ
� �3:5� 10�17fNL � 2�

lðlþ 1Þ : (53)

This result agrees with that obtained by [21] up to a factor
of 3=4 recently found by [42]. Therefore, on large scales
where the Sachs-Wolfe approximation is valid, the cross-
power spectrum is ‘‘scale invariant,’’ in a sense that

lðlþ 1ÞC�T
l ¼ constant. The overall sign is negative for

a positive fNL because, for a positive curvature perturba-
tion � , �T=T ¼ ��=5 is negative whereas the fluctuation
in �� / fNL� is positive for a positive fNL.
How good is the Sachs-Wolfe approximation? In Fig. 3,

we compare the Sachs-Wolfe approximation with the exact
calculation. We find that the Sachs-Wolfe approximation
breaks down at l � 10, and the acoustic oscillation changes

the sign of C
�T
l at l � 40. As C

�T
l crosses zero at l � 40,

we expect the signal-to-noise ratio to grow more slowly
with increasing multipole than with the Sachs-Wolfe
approximation.
In Fig. 4, we show the cumulative signal-to-noise

ratio of C
�T
l from the local-form bispectrum as a function

of the maximum multipole, lmax. We find that the Sachs-
Wolfe approximation overestimates the signal-to-noise

ratio by about 40%. Because of the sign change in C�T
l ,

the signal-to-noise ratio does not grow between lmax � 20
and 80.

For PIXIE’s specification with 	b ¼ 1:6� and C��;N
l ¼

4�� 10�16, the signal-to-noise ratio reaches S=N ¼
4:3� 10�4fNL. Therefore, PIXIE would be able to see
the signal if fNL � 2300. If PIXIE’s detectors can be
calibrated so that the difference between maps at different
frequencies cancels the CMB anisotropy to the required
precision, then S=N can improve by an order of magnitude.
Reducing the beam size would not help much because
the signal-to-noise ratio grows only logarithmically with
lmax [21].
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l

C
l

T
10

16
l2

f N
L

Sachs Wolfe approx.

full transfer function

FIG. 3 (color online). C
�T
l , the cross-power spectrum of the

�-type distortion and the CMB temperature anisotropy, from the
local-form bispectrum with fNL ¼ 1. The solid line shows C

�T
l

using the full radiation transfer function, while the dotted-dashed
line shows it using the Sachs-Wolfe approximation. The ampli-
tude of C

�T
l is linearly proportional to fNL.
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F. Results for the modified initial state bispectrum

We now calculate C�T
l from the modified initial state

bispectrum. We start from

C�T
l ¼ 27

20�3

H6

_�2
�ðNÞ

Z 1

0
dk1½e�2k21=k

2
DðzÞ�zizf

�
Z 1

0

dk

k2
W

�
k

kDðzfÞ
�
jlðkrLÞgTlðkÞ�ðk�0Þ

¼ 27

40
ffiffiffi
2

p
�5=2

H6

_�2
�ðNÞ½kDðziÞ � kDðzfÞ�

�
Z 1

0

dk

k2
W

�
k

kDðzfÞ
�
jlðkrLÞgTlðkÞ�ðk�0Þ; (54)

where �ðNÞ is given by the second lines of Eqs. (19) and
(20) and �ðk�0Þ is given by the last lines of Eqs. (19) and

(20). Once again, a factorH6= _�2 will be calculated from the
normalization ofP� ðkÞ for a given 
,N, and 	 [see Eq. (32)].

To obtain an order-of-magnitude estimation, let us set
� ¼ 1 and take the Sachs-Wolfe limit. We then obtain

C
�T
l ! � 9

40
ffiffiffi
2

p
�5=2

H6

_�2
�ðNÞ½kDðziÞ � kDðzfÞ�

�
Z 1

0

dk

k2
j2l ðkrLÞ

¼ � 9

320
ffiffiffi
2

p
�3=2

H6

_�2

�ðNÞ½kDðziÞ � kDðzfÞ�rL
ðlþ 3

2Þðlþ 1
2Þðl� 1

2Þ
: (55)

Therefore, C
�T
l from the modified initial state falls as

C�T
l / l�3, which is faster than that from the local form,

/ l�2. However, the amplitude is proportional to

kDðziÞrL � 1:7� 108 instead of ln½kDðziÞ=kDðzfÞ� � 5:5,

which leads to a large amplification of the signal relative to
the local form.

In Fig. 5, we compare the shapes of C
�T
l from the local-

form bispectrum (solid line) and from the modified initial
state bispectrum (dotted-dashed line). As expected, for

the low multipoles l & 40 (where C�T
l is negative), C�T

l

from the modified initial state is steeper (by a factor of 1=l)
than that from the local form, whereas for high multipoles

l * 40 (where C�T
l is positive), C�T

l from the modified

initial state is shallower (because it diminishes faster
by 1=l).
In order to better compare the modified initial state

result [Eq. (55)] with the local-form result (Eq. (53)),
let us use the power spectrum normalization, �2

� ¼
H2ð1þ 2NÞ=ð8�2
Þ [Eq. (32)], to rewrite Eq. (55) as

C
�T
l ¼ � 9�5=2

10
ffiffiffi
2

p �4
�


�ðNÞ
ð1þ 2NÞ2

½kDðziÞ � kDðzfÞ�rL
ðlþ 3

2Þðlþ 1
2Þðl� 1

2Þ

� �1:7� 10�11

lþ 3
2




10�2

�ðNÞ
ð1þ 2NÞ2 �

2�

l2 � 1
4

: (56)

We find the ratio

C
�T;nBD
l

C
�T;local
l

� 4:9� 105

ðlþ 3
2ÞfNL




10�2

�ðNÞ
ð1þ 2NÞ2

lðlþ 1Þ
l2 � 1

4

: (57)

For single-field slow-roll inflation, fNL � 
 � 10�2.
Therefore, the ratio [Eq. (57)] is � 5� 107=l.
We can verify this ratio in a different way. Heuristically,

for a modified initial state, the enhancement of the
bispectrum in the squeezed configuration by a factor of

20 40 60 80 100 120 140

0 0

l

C
l

T
l2

modified initial state

local form

FIG. 5 (color online). A comparison of the shapes of C
�T
l (the

cross-power spectra of the �-type distortion and the CMB
temperature anisotropy) from the local-form bispectrum (solid
line) and the modified state bispectrum (dotted-dashed line).
The amplitudes of the graphs are scaled so they can both
appear in the same figure; therefore, the overall amplitude is
arbitrary.
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S N
f N

L
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Sachs Wolfe approx.

full transfer function ideal

FIG. 4 (color online). Signal-to-noise ratio of C
�T
l from the

local-form bispectrum with fNL ¼ 1. The bottom two lines show
C
�T
l using the full radiation transfer function, while the dotted-

dashed line shows it using the Sachs-Wolfe approximation. The
solid, dashed line is for 	b ¼ 0 (ideal) and 1.6� (PIXIE),
respectively. The noise level is C

��;N
l ¼ 4�� 10�16el

2	2
b
=ð8 ln2Þ

for all cases [i.e., the root-mean-square (r.m.s.) uncertainty of �
averaged over the full sky is 10�8]. The signal-to-noise is
proportional to fNL and is inversely proportional to the r.m.s.
uncertainty of �.
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k1=k � 1 becomes a enhancement of C
�T
l by a factor of

kDðziÞrL=l ¼ kDðziÞ=kCMB;l � 2� 108=l, i.e., the ratio

of the acoustic damping wave number to the wave number
generating the multipole l, giving close to the ratio
above. Note that the biggest contribution to the signal
will come from small multipoles (in particular the quadru-
pole l ¼ 2), so the signal boost relative to the local form is
indeed large.

In Fig. 6, we show the signal-to-noise ratio of C�T
l for

a modified initial state as a function of the occupation
number N. For PIXIE’s specification with 	b ¼ 1:6� and

C
��;N
l ¼ 4�� 10�16el

2	2
b
=ð8 ln2Þ, we find a large signal-

to-noise ratio: when the occupation number is N � 0:5,
the signal-to-noise ratios are S=N � 60ð
=10�2Þ and
500ð
=10�2Þ for 	k � k�0 and 	k � const, respectively.
(Recall that, for the latter case, we have chosen a constant
	k so that it maximizes the signal.) This large increase in the
signal-to-noise ratio relative to the local-form bispectrum is
consistent with the analytical estimate given in Eq. (57).

Note that these calculations were done assuming �0 was
finite, i.e., we included the last lines of Eqs. (19) and (20).
If we ignore the exponential terms in Eq. (15) by taking
�0 ! �0 þ i
j�0j for large j�0j, then the signal-to-noise
ratio goes down to about ten for 	k � k�0 and N � 0:5,
which is still large enough for detection. Therefore, we

should be able to detect C�T
l in the PIXIE experiment

unless N were very small.
If the calibration of detectors at different frequencies

meets the requirements (see Sec. VID), then PIXIE would
be able to improve its signal-to-noise ratio for detecting

C
�T
l by an order of magnitude. Moreover, if Planck’s

calibration meets the requirement, Planck would be able
to detect this signal. This merits further study.

However, one caveat should be mentioned, namely, that
these results assume that the cutoff wave number, kcut, lies
above the scales involved in the � distortion. If kcut lay
within the �-distortion scales, this model could produce a
measurable CMB and LSS signal but have a smaller-than-

expected C
�T
l .

VII. CONCLUSION

We have investigated phenomenological consequences
of a modification of the initial state of quantum fluctuations
generated during single-field slow-roll inflation. In our
model, the initial state is given by a Bogoliubov trans-
formation on the standard Bunch-Davies initial vacuum
state. A distinctive feature of this model is that the bispec-
trum of � in the squeezed configuration—where one of the
wave numbers, k, is much smaller than the other two, i.e.,
k � k1 � k2—is enhanced by a factor of k1=k relative
to the local-form bispectrum [15]. This enhancement
generates notable effects on the scale-dependent bias of
LSS and on the �-type distortion of the black-body spec-
trum of CMB.
For LSS, the scale-dependent bias goes as �k1=k

3 instead
of 1=k2, where �k1 is a characteristic wave number corre-
sponding to the short-wavelength mode in LSS for a given
halo mass [Eq. (30)].
For the �-type distortion, the squeezed configuration

bispectrum can make � anisotropic, which can be mea-
sured by cross-correlating a map of � with a map of CMB
temperature anisotropy on large scales [21]. The modified

initial state enhances power spectrum C
�T
l of this cross

correlation by a factor of kDrL, which corresponds to the
ratio of the wave number of the acoustic damping scale
to the wave number measured by CMB temperature
anisotropy on large scales. We predict that an absolutely-

calibrated experiment such as PIXIE can detect C
�T
l

unless the occupation number is much smaller than of
order unity.
As this effect makes � anisotropic, one may not even

need an absolutely-calibrated experiment. If detectors at
different frequencies are calibrated to have the same re-
sponse to thermal CMB with the sufficient precision, then
relatively-calibrated experiments such as Planck and
LiteBIRD could detect this signal.
We acknowledge that our derivation of the bispectrum

from a modified initial state is limited by uncertainties
about how to set initial conditions and how to translate
these conditions into a proper calculational framework.
While we think that the calculations presented in this paper
capture plausible outcomes of a modified initial state, more
investigation on quantum field theory with such a state is
still necessary. That this model predicts such interesting
signatures in LSS and the CMB motivates further study.
Finally, while we have focused only on the bispectrum in

the squeezed configuration in this paper, this model also
predicts a large bispectrum in the folded limit, where the
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FIG. 6 (color online). Signal-to-noise ratio of C
�T
l from the

modified initial state for 
 ¼ 10�2, as a function of the occupa-
tion number N. The top and bottom lines are for 	k � const
(dashed) and 	k � k�0 (solid), respectively. The noise level is
C
��;N
l ¼ 4�� 10�16el

2=842 for both cases (i.e., the r.m.s. uncer-

tainty of � averaged over the full sky is 10�8, and the beam size
is 1.6�). The signal-to-noise ratio is proportional to 
 and is
inversely proportional to the r.m.s. uncertainty of �.
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largest wave number is equal to the sum of the other two

wave numbers, k1 ¼ k2 þ k [26,27,31]. The observational

signatures that we have discussed in this paper should

come also with the signal in the folded limit, which pro-

vides a powerful cross-check of the nature of the detected

signal.
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