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We argue that in an inflationary cosmology a consequence of the lack of time translational invariance is

that spontaneous breaking of a continuous symmetry and Goldstone’s theorem do not imply the existence

of massless Goldstone modes. We study spontaneous symmetry breaking in an Oð2Þ model, and

implications for OðNÞ in de Sitter space-time. The Goldstone mode acquires a radiatively generated

mass as a consequence of infrared divergences, and the continuous symmetry is spontaneously broken for

any finite N; however there is a first order phase transition as a function of the Hawking temperature

TH ¼ H=2�. For Oð2Þ the symmetry is spontaneously broken for TH < Tc ¼ �1=4v=2:419 where � is the

quartic coupling and v is the tree-level vacuum expectation value and the Goldstone mode acquires a

radiatively generated mass M2
� / �1=4H. The first order nature of the transition is a consequence of the

strong infrared behavior of minimally coupled scalar fields in de Sitter space-time; the jump in the order

parameter at TH ¼ Tc is �0c ’ 0:61H=�1=4. In the strict N ! 1 the symmetry cannot be spontaneously

broken. Furthermore, the lack of kinematic thresholds imply that the Goldstone modes decay into

Goldstone and Higgs modes by emission and absorption of superhorizon quanta.
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I. INTRODUCTION

In its simplest realization, inflationary cosmology can be
effectively described as a quasi-de Sitter space-time. Early
studies [1–6] revealed that de Sitter space-time features
infrared instabilities and profuse particle production in
interacting field theories. Infrared divergences in loop
corrections to correlation functions hinder the reliability
of the perturbative expansion [7–9], lead to the suggestion
of an infrared instability of the vacuum [10–14], and affect
correlation functions during inflation [7,8,15–20] requiring
a nonperturbative treatment.

Backreaction from particle production in a de Sitter
background has been argued to provide a dynamical‘‘scre-
ening’’ mechanism that leads to relaxation of the cosmo-
logical constant [21–23], a suggestion that rekindled the
interest on infrared effects in de Sitter space-time. A body
of work established that infrared and secular divergences
are manifest in super-Hubble fluctuations during de Sitter
(or nearly de Sitter) inflation [24–27], thus a consistent pro-
gram that provides a resummation of the perturbative expan-
sion is required. Nonperturbative methods of resummation of
the secular divergences have been implemented in several
studies in de Sitter space-time [28] suggesting a dynamical
generation of mass [27], a result that was originally antici-
pated in the seminal work of Ref. [29], and explored and
extended in Ref. [30]. More recently a self-consistent mecha-
nism of mass generation for scalar fields through infrared
fluctuations has been suggested [24,27,31–37].

The lack of a global timelike killing vector in de Sitter
space-time leads to remarkable physical effects, as it im-
plies the lack of particle thresholds (a direct consequence

of energy-momentum conservation) and the decay of
fields even in their own quanta [28,38] with the concom-
itant particle production, a result that was confirmed
in Refs. [12,39] and more recently investigated in
Refs. [40,41] for the case of heavy fields.
For light scalar fields in de Sitter space-time with mass

M � H, it was shown in Refs. [28] that the infrared
enhancement of self-energy corrections is manifest as
poles in � ¼ M2=3H2 in correlation functions and that
the most infrared singular contributions to the self-energy
can be isolated systematically in an expansion in � akin to
the � expansion in critical phenomena. A similar expansion
was noticed in Refs. [27,31,34,41,42].
Whereas infrared effects in de Sitter (or quasi-de Sitter)

cosmology are typically studied via correlation functions,
recently the issue of the time evolution of the quantum states
has begun to be addressed. In Ref. [43] the Wigner-
Weisskopf method [44,45] ubiquitous in quantum optics
[46] has been adapted and extended as a nonperturbative
quantum field theory method in inflationary cosmology to
study the time evolution of quantum states. This method
reveals how quantum states decay in time, it has been shown
to be equivalent to the dynamical renormalization group in
Minkowski space-time [43,47], and has recently been imple-
mented to study the radiative generation ofmasses and decay
widths of minimally coupled fields during inflation [37].
Early studies [48,49] suggested that infrared divergences

during inflation can prevent spontaneous symmetry break-
ing; however more recently the issue of spontaneous sym-
metry breaking during inflation has been revisited in view
of the generation of masses by radiative corrections
[33,34,36]. In Ref. [34] the study of an OðNÞ model in
the large N limit reveals that there is no spontaneous
symmetry breaking as a consequence of the infrared*boyan@pitt.edu
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divergences: if the OðNÞ symmetry is spontaneously bro-
ken there would be massless Goldstone bosons that lead to
strong infrared divergences, the resolution, as per the re-
sults of this reference, is that the symmetry is restored by
the strong infrared divergences and no symmetry breaking
is possible. This result is in qualitative agreement with those
of earlier works, Refs. [48,49]. However, a different study of
the same model in Ref. [36] reaches a different conclusion:
that indeed theOðNÞ symmetry is spontaneously broken but
Goldstone bosons acquire a radiatively induced mass. In
Ref. [33] a scalar model with Z2 symmetry is studied with
the result that radiative corrections tend to restore the sym-
metry via the nonperturbative generation of mass. Both
Refs. [33,36] suggest a discontinuous transition.

A. Motivation, goals, and results

Spontaneous symmetry breaking is an important ingre-
dient in the inflationary paradigm, and as such it merits a
deeper understanding of whether radiative corrections
modify the familiar picture of slow roll inflation. If, as
found in Ref. [34], symmetry breaking is not possible in
some models, these would be ruled out at least in the
simple small field scenarios of slow roll, as inflation would
not be successfully ended by the inflaton reaching the
broken symmetry minimum. Furthermore, if the inflaton
is part of a Higgs-type mode of multiplet of fields, the
question of whether the fields associated with unbroken
generators are massless is very important as these could
lead to entropy perturbations whose infrared divergences
are more severe than those of adiabatic perturbations [9].

In this article we study an Oð2Þ scalar field theory in
de Sitter space-time and extract implications forOðNÞwith
the following goals: (i) Revisit at a deeper level the content
of Goldstone’s theorem in an expanding cosmology in
absence of manifest time translational invariance. In par-
ticular, whether spontaneous symmetry breaking of a con-
tinuous symmetry does imply the existence of massless
Goldstone modes in an inflationary setting. (ii) Study
beyond the local mean field approximation of whether a
continuous symmetry can be spontaneously broken in
de Sitter space-time. (iii) Reveal how the mechanism of
self-consistent nonperturbative mass generation can be
compatible with symmetry breaking and Goldstone modes.

Recently there has been renewed interest in a deeper
understanding of Goldstone’s theorem and spontaneous
symmetry breaking both in relativistic and nonrelativistic
systems [50–52]; thus our study provides a complementary
investigation of symmetry breaking in a cosmological
setting wherein the lack of a global timelike Killing vector
leads to unexpected yet very physical consequences.

B. Brief summary of results

(i) We argue that in absence of time translational in-
variance Goldstone’s theorem does not imply the

existence of massless excitations if a continuous
symmetry is spontaneously broken. We revisit the
implementation of Goldstone’s theorem in a sponta-
neously brokenOð2Þ symmetry in Minkowski space-
time and highlight that the masslessness of
Goldstone bosons is a consequence of a cancellation
between space-time local and nonlocal terms in the
loop expansion and discuss the implications for an
OðNÞ theory in the large N limit.

(ii) We then study the same model in de Sitter space-
time, and emphasize that whereas in Minkowski
space-time the conservation of the Noether current
associated with the continuous symmetry directly
leads to Goldstone’s theorem, in an expanding cos-
mology this current is covariantly conserved and the
consequences are, therefore, much less stringent. In
conformal coordinates a conserved Noether current
is manifestly obtained, but the lack of time transla-
tional invariance renders the content of Goldstone’s
theorem much less stringent.

(iii) We implement a self-consistent nonperturbative
approach based on the Wigner-Weisskopf method
described in Refs. [37,43] that allows one to extract
the mass of the single-particle excitations and dis-
tinctly shows that the space-time local terms cannot
be cancelled by nonlocal self-energy terms in leading
order in a � expansion. As a result Goldstone modes
acquire a radiatively generatedmass as a consequence
of infrared divergences in agreement with the results
in Refs. [34,36]. The lack of a timelike Killing vector
entails that there are no kinematic thresholds, and as a
consequence Goldstone modes acquire a width from
processes of absorption and emission of superhorizon
quanta of both Goldstone and Higgs-like modes.

(iv) We show that for finiteN there is a symmetry break-
ing first order transition as a function of theHawking
temperatureTH ¼ H=2�, Goldstonemodes acquire
a radiatively infrared generated self-consistent mass
but also a decaywidth, and that the symmetry cannot
be spontaneously broken in the strict N ! 1 limit.
We argue that a first order transition is a distinct and
expected consequence of infrared effects, because a
continuous transition would entail that at the critical
point there should be massless excitations which
would lead to infrared divergences. Radiative cor-
rections relieve the infrared singularities by gener-
ating a mass but at the expense of turning the
symmetry breaking transition into first order.

II. SPONTANEOUS SYMMETRY BREAKING AND
GOLDSTONE BOSONS IN MINKOWSKI

SPACE-TIME

A. General aspects

We consider the Oð2Þ linear sigma model as a simple
example of a scalar theory with spontaneous symmetry
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breaking (SSB) and extract consequences for the case of
OðNÞ in the large N limit.

The Lagrangian density for the Oð2Þ sigma model is

L ¼ 1

2
ð@��Þ2 þ 1

2
ð@��Þ2 � Vð�2 þ �2Þ; (2.1)

which is invariant under the infinitesimal transformations

� ! �þ ��; � ! �� ��; (2.2)

with � a space-time constant infinitesimal angle. The
canonical momenta conjugate to the �, � fields are, re-
spectively,

P�ðxÞ ¼ _�ðxÞ; P�ðxÞ ¼ _�ðxÞ; (2.3)

with the equal time canonical commutation relations

½P�ð ~x; tÞ; �ð ~y; tÞ� ¼ �i�3ð ~x� ~yÞ;
½P�ð ~x; tÞ; �ð ~y; tÞ� ¼ �i�3ð ~x� ~yÞ:

(2.4)

The conserved Noether current associated with the global
symmetry (2.2) is

J�ðxÞ ¼ ið�ðxÞ@��ðxÞ � �ðxÞ@��ðxÞÞ;
@�J

�ðxÞ ¼ 0; (2.5)

with the conserved charge

Q ¼ i
Z

d3xð�ð ~x; tÞP�ð ~x; tÞ � �ð ~x; tÞP�ð ~x; tÞÞ: (2.6)

Consider the following identity resulting from current
conservation (2.5):Z

d3xh0j½ ~r � ~Jð ~x; tÞ; �ð ~y; t0Þ�j0i

¼ @

@t

Z
d3xh0j½J0ð ~x; tÞ; �ð ~y; t0Þ�j0i: (2.7)

Assuming spatial translational invariance we introduce

Sð ~k; t; t0Þ ¼
Z

d3xe�i ~k�ð ~x� ~yÞh0j½J0ð ~x; tÞ; �ð ~y; t0Þ�j0i: (2.8)

If the surface integral on the left-hand side of Eq. (2.7)
vanishes, then it follows that

lim
k!0

@

@t
Sð ~k; t; t0Þ ¼ 0: (2.9)

In general this result implies that

lim
k!0

Sð ~k; t; t0Þ ¼ h0j½QðtÞ; �ð ~y; t0Þ�j0i
¼ h0j�ð ~y; t0Þj0i ¼ vðt0Þ; (2.10)

namely, Q is time independent. In absence of time trans-
lational invariance the results (2.9) and (2.10) are the only
statements that can be extracted from the conservation of
the current. However, if time tranlational invariance holds

then Sð ~k; t; t0Þ ¼ Sð ~k; t� t0Þ and introducing the spectral
representation

Sð ~k; t� t0Þ ¼
Z d!

2�
Sð ~k; !Þe�i!ðt�t0Þ; (2.11)

it follows from (2.9) that (i) vðt0Þ ¼ v in (2.10) is time
independent and (ii)

lim
k!0

Sð ~k;!Þ ¼ 2�v�ð!Þ; v ¼ h0j�ð~0; 0Þj0i; (2.12)

where we have used Eqs. (2.6) and (2.4).
When space-time translational invariance is available,

further information is obtained by writing Sð ~k; !Þ in term
of a complete set of eigenstates of the momentum and
Hamiltonian operators by inserting this complete set of
states in the commutators

ei
~P� ~xe�iHtjni ¼ ei ~pn� ~xe�iEntjni; (2.13)

from which we obtain

Sð ~k; !Þ ¼ 2�
X
n

fh0jJ0ð~0; 0Þjnihnj�ð~0; 0Þj0i

� �3ð ~pn � ~kÞ�ðEn �!Þ � h0j�ð~0; 0Þjni
� hnjJ0ð~0; 0Þj0i�3ð ~pn þ ~kÞ�ðEn þ!Þg: (2.14)

Then the result (2.12) implies an intermediate state with
vanishing energy for vanishing momentum. This is the
general form of Goldstone’s theorem valid even for non-
relativistic systems [50–53]. The result has a clear inter-
pretation: under the assumption that the current flow out
of the integration boundaries vanishes, the total charge
is a constant of motion. If the theory is manifestly time
translational invariant, this automatically implies that

Sð ~k; t� t0Þ in (2.8) does not depend on t� t0 by charge
conservation; therefore, it follows directly that in the limit

k ! 0 the spectral density Sð ~k; !Þ can only have support at
! ¼ 0.
The standard intuitive explanation for gapless long

wavelength excitations relies on the fact that the continu-
ous symmetry entails that the manifold of minima away
from the origin form a continuum of degenerate states. A
rigid rotation around the minimum of the potential does not
cost any energy because of the degeneracy; therefore the
energy cost of making a long wavelength spatial rotation
vanishes in the long wavelength limit precisely because of
the degeneracy. Both this argument and the more formal
proof (2.12) rely on the existence of a conserved energy
and energy eigenstates, which is not available in the cos-
mological setting.
The main reason for going through this textbook deri-

vation of Goldstone’s theorem is to highlight that time
translational invariance is an essential ingredient in the
statement that the Goldstone theorem implies a gapless
excitation if the symmetry is spontaneously broken.1

1Under the assumption that the current flow out of a boundary
vanishes, see discussion in [53].
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Precisely this point will be at the heart of the discussion
of symmetry breaking in inflationary cosmology.

B. Tree-level, one-loop, and large N

In order to compare the well-known results in
Minkowski space-time with the case of inflationary cos-
mology, we now study how Goldstone’s theorem is imple-
mented at tree and one-loop levels in the Oð2Þ case, and
in the large N limit in the case of OðNÞ symmetry,
as this study will highlight the main differences between
Minkowski and de Sitter space-times.

To be specific, we now consider the Oð2Þ model with
potential

Vð�2 þ �2Þ ¼ �

8

�
�2 þ �2 ��2

�

�
2
: (2.15)

Shifting the field

� ¼ �0 þ � (2.16)

the potential (2.15) becomes

Vð�;�Þ ¼M2
�

2
�2 þM2

�

2
�2 þ�

2
�0J�þ�

2
�0�

3

þ�

2
�0�

2�þ�

8
�4 þ�

8
�4 þ�

4
�2�2; (2.17)

where

J ¼ �2
0 �

�2

�
; M2

� ¼ �

�
�2

0 þ
J

2

�
;

M2
� ¼ �

2
J ) M2

� �M2
� ¼ ��2

0:
(2.18)

The value of �0 is found by requiring that the expectation
value of � vanishes in the correct vacuum state, thus it
departs from the tree-level value �2=� by radiative
corrections.

Tree level.—At tree level �2
0 ¼ �2=�, M2

� ¼ 0, M2
� ¼

�2, and the � field obeys the equation of motion

€�ð ~x; tÞ � r2�ð ~x; tÞ ¼ 0: (2.19)

The � field is quantized in a volume V as usual

�ð ~x; tÞ ¼ X
~k

1ffiffiffiffiffiffiffiffiffi
2Vk

p ½a ~ke
�iðkt� ~k� ~xÞ þ ay~k e

iðkt� ~k� ~xÞ�: (2.20)

The conserved current (2.5) becomes

J� ¼ i�0@
��þ ið�@��� �@��Þ: (2.21)

At tree level only the first term contributes to the spectral
density (2.14), since at this level the � field creates a
single-particle state out of the vacuum, which is the only
state that contributes to (2.14). We refer to the first term as
J�tl and its conservation is a result of the equation of motion

(2.19) and �0 being a space-time constant. It is straightfor-
ward to find

h0jJ0tlð~0; 0Þj1 ~pih1 ~pj�ð~0; 0Þj0i
¼ �h0j�ð~0; 0Þj1 ~pih1 ~pjJ0tlð~0; 0Þj0i ¼

�0

2V
; (2.22)

where V is the quantization volume. Therefore

Sð ~k; !Þ ¼ 2��0

Z d3p

ð2�Þ3
1

2
½�ðpþ!Þ�3ð ~pþ ~kÞ

þ �ðp�!Þ�3ð ~p� ~kÞ�; (2.23)

and

lim
k!0

Sð ~k; !Þ ¼ 2��0�ð!Þ: (2.24)

One loop.—We now focus on understanding how the
�� field remains massless with radiative corrections. We
carry out the loop integrals in four-dimensional Euclidean
space-time; the result is independent of this choice. The
interaction vertices are depicted in Fig. 1.
The vacuum expectation value�0 is fixed by the require-

ment that

h�i ¼ 0; (2.25)

to which we refer as the tadpole condition; it is depicted in
Fig. 2. We find

h�i ¼ 0 ) ��0

2M2
�

½J þ 3I� þ I�� ¼ 0; (2.26)

where

I� ¼
Z d4k

ð2�Þ4
1

k2 þM2
�

; I� ¼
Z d4k

ð2�Þ4
1

k2 þM2
�

:

(2.27)

This condition ensures that the matrix element of the
interaction Hamiltonian HI between the vacuum and
single-particle states vanishes, namely,

FIG. 1. Vertices in broken symmetry. The broken line ending
in the black dot refers to the linear term in � in Eq. (2.17).
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h1 ~kjHIj0i ¼ 0: (2.28)

There are two solutions of the tadpole equation

�0 ¼ 0; (2.29)

J ¼ �3I� � I� ) �2
0 ¼

�2

�
� 3I� � I� � 0: (2.30)

If available, the second solution (2.30) leads to spontane-
ous symmetry breaking.

At finite temperature

Z d4k

ð2�Þ4
1

k2 þM2
�;�

) T
X
!n

d3k

ð2�Þ3
1

!2
n þ ~k2 þM2

�;�

;

!n ¼ 2�nT;

(2.31)

where !n are the Matsubara frequencies. For T2 � M2
�;�

both integrals are proportional to T2 and the symmetry
breaking solution becomes

�2
0 ¼ CðT2

c � T2Þ (2.32)

with C a positive numerical constant. This well-known
observation will become relevant below in the discussion
of symmetry breaking in de Sitter space-time because
the (physical) event horizon of de Sitter space-time 1=H
determines the Hawking temperature TH ¼ H=2�.

The � propagator becomes

G�ðkÞ ¼ 1

k2 þM2
� ���ðkÞ

; (2.33)

where the Feynman diagrams for the self-energy are shown
in Fig. 3.

The contributions from diagrams (a), (b), (c) yield

��;aðkÞ þ ��;bðkÞ þ ��;cðkÞ ¼ �2�2
0

2M2
�

½J þ 3I� þ I�� ¼ 0

(2.34)

as a consequence of the tadpole condition (2.26). The
remaining diagrams yield

��;dðkÞ þ��;eðkÞ þ��;fðkÞ

¼ ��

2

�
I� þ 3I� � 2��2

0

Z d4q

ð2�Þ4

� 1

ðq2 þM2
�Þððqþ kÞ2 þM2

�Þ
�
: (2.35)

The pole in the � propagator determines the physical mass
of the � field; we find

k2þM2
����ðkÞ¼k2þ�

2

�
JþI�þ3I��2��2

0

Z d4q

ð2�Þ4

� 1

ðq2þM2
�ÞððqþkÞ2þM2

�Þ
�
; (2.36)

where we have used M2
� given by Eq. (2.18).

If there is spontaneous symmetry breaking, J ¼ �3I� �
I� leading to

M2
� � ��ðkÞ ¼ �

Z d4q

ð2�Þ4
�

1

q2 þM2
�

� 1

q2 þM2
�

� ��2
0

ððqþ kÞ2 þM2
�Þðq2 þM2

�Þ
�
: (2.37)

Therefore the inverse propagator is given by

k2 þM2
� ���ðkÞ ¼ k2 þ ��2

0

Z d4q

ð2�Þ4
1

q2 þM2
�

�
�

1

q2 þM2
�

� 1

ðqþ kÞ2 þM2
�

�
;

(2.38)

where we used Eq. (2.18). Obviously (2.37) and (2.38)
vanish as k2 ! 0 (and are proportional to k2 in this limit
by Lorentz invariance); therefore the propagator for the
Goldstone mode � features a pole at k2 ¼ 0. We empha-
size that the vanishing of the mass is a consequence of a
precise cancellation between the local tadpole terms,
Figs. 3(d) and 3(e) and the nonlocal (in space-time) con-
tribution Fig. 3(f), in the k ! 0 limit.
The propagator for �—the Higgs-like mode—is ob-

tained in a similar manner; the Feynman diagrams for the
self-energy ��ðkÞ are similar to those for �� with �

external lines and the only difference being the combina-
toric factors for diagrams (a)–(e), and two exchange dia-
grams of the (f)-type with intermediate states of two �
particles and two � particles, respectively. Again diagrams

FIG. 2. Tadpole condition (2.25).

FIG. 3. One-loop diagrams that contribute to the � field self-
energy ��ðkÞ.
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of the type (a)–(c) are cancelled by the tadpole condition
(2.26), and we find

k2 þM2
� � ��ðkÞ ¼ k2 þ �

2

�
2�2

0 þ J þ 3I� þ I�

� ��2
0
~I�ðkÞ � 9��2

0
~I�ðkÞ

�
; (2.39)

where

~I �;�ðkÞ ¼
Z d4q

ð2�Þ4
1

ððqþ kÞ2 þM2
�;�Þ2

: (2.40)

If the symmetry is spontaneously broken, using the condi-
tion (2.30) we find

k2 þM2
� � ��ðkÞ ¼ k2 þ ��2

0

�
1� �

2
~I�ðkÞ � 9�

2
~I�ðkÞ

�
:

(2.41)

Large N limit.—If rather than an Oð2Þ symmetry we
consider the OðNÞ case, after symmetry breaking along
the � direction the ~� fields belong to an OðN � 1Þ multi-
plet. In the large N limit the leading term in the tadpole
condition h�i ¼ 0 (2.25) is given by the last diagram (solid
circle) in Fig. 2,

h�i ¼ 0 ) ��0

2M2
�

½J þ NI�� ¼ 0; (2.42)

where we have neglected terms of Oð1=NÞ in the large N
limit. In this limit the leading contribution to the � self-
energy is given by Fig. 3(e),

�� ¼ ��

2
NI�; (2.43)

where again we neglected terms of Oð1=NÞ. Therefore the
inverse � propagator in the large N limit is given by

k2 þM2
� � �� ¼ k2 þM2

�; (2.44)

where

M2
� ¼ �

2
½J þ NI��; (2.45)

thus in the largeN limit, the tadpole condition (2.42) can be
written as

h�i ¼ 0 ) �0M2
� ¼ 0: (2.46)

Therefore, if this condition is fulfilled with �0 � 0,
namely, with spontaneous symmetry breaking, automati-
cally the � field becomes massless.

C. Counterterm approach

An alternative approach that is particularly suited to the
study of radiative corrections to masses in the cosmologi-
cal setting is the familiar method of introducing a mass
counterterm in the Lagrangian by writing the mass term in
the Lagrangian density as

M2
��

2 ¼ M2
��

2 þ �M2
��

2; �M2
� ¼ M2

� �M2
�;

(2.47)

and requesting that the counterterm �M2 subtracts the �
self-energy at zero four momentum

� �M2
� þ ��ð0Þ ¼ 0 ) M2

� ¼ M2
� � ��ð0Þ; (2.48)

and the inverse propagator becomes

G�1
� ðkÞ ¼ k2 þM2

� � ½��ðkÞ ���ð0Þ� (2.49)

in the broken symmetry phase M2
� ¼ 0 from Eqs. (2.37)

and (2.38) and the propagator features a pole at zero four
momentum.
The main reason to go through this exercise is to high-

light the following important points:
(i) The tadpole type diagrams (a), (b), (c) are cancelled

by the tadpole condition (2.26) which is tantamount
to the requirement that the interaction Hamiltonian
has a vanishing matrix element between the vacuum
and a single � particle state.

(ii) At one-loop level the vanishing of the � mass in the
case of spontaneous symmetry breaking is a conse-
quence of the cancellation between the local tadpole
diagrams (d), (e) and the nonlocal one-loop diagram
(f) in the k ! 0 limit (the nonlocality is in configu-
ration space not in Fourier space). This point will be
at the heart of the discussion in inflationary space-
time below.

(iii) In the large N limit, only the local tadpole Fig. 3(e)
contributes to the � self-energy and the tadpole
condition (2.26), for which a symmetry breaking
solution immediately yields a vanishing � mass.
The tadpole and nonlocal diagrams Figs. 3(d) and 3(f)
are suppressed by a power of 1=N in this limit
compared to the diagram [3(e)].

(iv) The general, nonperturbative proof of the existence
of gapless long wavelength excitations as a conse-
quence of the results (2.12) and (2.14) manifestly
relies on time translational invariance and energy
eigenstates. In its most general form, without in-
voking time translational invariance, the result
(2.10) is much less stringent on the long wavelength
spectrum of excitations without an (obvious) state-
ment on the mass spectrum of the theory. Such a
situation, the lack of time translational invariance
(global timelike Killing vector), is a hallmark of
inflationary cosmology and it is expected that—
unlike in Minkowski space-time—Goldstone modes
may acquire a mass radiatively.

These points are relevant in the discussion of the fate of
Goldstone bosons in de Sitter space-time discussed below.
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III. GOLDSTONE BOSONS IN DE SITTER
SPACE-TIME

We consider the Oð2Þ linear sigma model minimally
coupled in a spatially flat de Sitter space-time with metric
given by

ds2 ¼ dt2 � a2ðtÞd~x2; aðtÞ ¼ eHt; (3.1)

defined by the action (the different notation for the fields as
compared to the previous section will be explained below)

L ¼
Z

d4x
ffiffiffiffiffiffi
jgj

q �
1

2
g��@� ~� � @� ~�� Vð ~� � ~�Þ

�
;

~� ¼ ð	1; 	2Þ; (3.2)

where

Vð ~� � ~�Þ ¼ �

8

�
	2

1 þ	2
2 �

�2

�

�
2
: (3.3)

We follow the method of Ref. [54] to obtain the conser-
vation law associated with the global Oð2Þ symmetry:
consider a space-time dependent infinitesimal transforma-
tion that vanishes at the boundary of space-time

	1ð ~x; tÞ ! 	1ð ~x; tÞ � �ð ~x; tÞ	2ð ~x; tÞ;
	2ð ~x; tÞ ! 	2ð ~x; tÞ þ �ð ~x; tÞ	1ð ~x; tÞ;

(3.4)

under which the change in the action is given by

�L ¼
Z

d4x
ffiffiffiffiffiffi
jgj

q
@��ð ~x; tÞJ�ð ~x; tÞ; (3.5)

where

J�ð ~x; tÞ ¼ ig��½	1@�	2 �	2@�	1� (3.6)

upon integration by parts assuming a vanishing boundary
term,

�L ¼ �
Z

d4x
ffiffiffiffiffiffi
jgj

q
�ð ~x; tÞJ�;�ð ~x; tÞ; (3.7)

from which upon using the variational principle [54] we
recognize that the current (3.6) is covariantly conserved

J�;�ð ~x; tÞ ¼ 1ffiffiffiffiffiffijgjp @�ð
ffiffiffiffiffiffi
jgj

q
J�Þ

¼ _J0 þ 3HJ0 � 1

a2ðtÞ r � ð	1r	2 �	2r	1Þ
¼ 0; (3.8)

where the dot stands for d=dt. This covariant conservation
law can be seen to follow from the Heisenberg equations of
motion for the fields,

€	a þ 3H _	a � r2

a2ðtÞ	a þ 2

�
dVð
2Þ
d
2

�
	a ¼ 0;

a ¼ 1; 2; 
2 ¼ 	2
1 þ	2

2:

(3.9)

It is the second term in (3.8) that prevents a
straightforward generalization of the steps leading to
Goldstone’s theorem as described in the previous section.
Fundamentally it is this difference that is at the heart of the
major discrepancies in the corollary of Goldstone’s theo-
rem in the expanding cosmology as compared to
Minkowski space-time.
It is convenient to pass to conformal time

� ¼ � e�Ht

H
; að�Þ ¼ � 1

H�
; (3.10)

and to rescale the fields

	1ð ~x; tÞ ¼ �ð ~x; �Þ
að�Þ ; 	2ð ~x; tÞ ¼ �ð ~x; �Þ

að�Þ (3.11)

in terms of which the covariant conservation law (3.8)
becomes

@

@�
J 0ð ~x; �Þ þ ~r � ~J ð ~x; �Þ ¼ 0; (3.12)

where

J 0ð ~x; �Þ ¼ i½��0 � ��0�; (3.13)

~J ð ~x; �Þ ¼ �i½� ~r�� � ~r��; (3.14)

where 0 � d=d�.
In terms of the rescaled fields the action becomes (after

dropping a total surface term)

L ¼
Z

d3xd�

�
1

2

�
�02 � ðr�Þ2 þ �02 � ðr�Þ2

þ a00

a
ð�2 þ �2Þ

�
�V ð�2 þ �2;�Þ

�
; (3.15)

where

V ð�2 þ �2;�Þ ¼ �

8

�
�2 þ �2 � a2ð�Þ�

2

�

�
2
: (3.16)

Therefore, although the Noether current (3.13) and (3.14) is
conserved and looks similar to that in Minkowski space-
time, the Hamiltonian is manifestly time dependent; there
is no time translational invariance and no energy conser-
vation and no spectral representation available—all of
these are necessary ingredients for Goldstone’s theorem
to guarantee massless excitations.
The Heisenberg equations of motion are

�00 � r2�þ
�
2
dV ðr2Þ
dr2

� a00

a

�
� ¼ 0; (3.17)

�00 � r2�þ
�
2
dV ðr2Þ
dr2

� a00

a

�
� ¼ 0; (3.18)

where r2 ¼ �2 þ �2. Using these Heisenberg equations of
motion it is straightforward to confirm the conservation
law (3.12) with (3.13) and (3.14).
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Now making an �-dependent shift of the field �

�ð ~x; �Þ ¼ �0að�Þ þ �ð ~x; �Þ; (3.19)

the action (3.15) becomes

L ¼
Z

d3xd�

�
1

2

�
�02 � ðr�Þ2 þ �02 � ðr�Þ2

� 1

�2

�
M2

�

H2
� 1

2

�
�2 � 1

�2

�
M2

�

H2
� 1

2

�
�2

�

þ �

2�3

�0J

H3
�þ �

2�

�0

H
�3 þ �

2�

�0

H
�2�

� �

8
�4 � �

8
�4 � �

4
�2�2

�
; (3.20)

where M�;�, J are the same as in the Minkowski space-

time case given by Eq. (2.18). The Heisenberg equations of
motion for the spatial Fourier modes of wave vector k of
the fields in the noninteracting (� ¼ 0) theory are given by

�00
~k
ð�Þ þ

�
k2 � 1

�2

�
�2
� � 1

4

��
�~kð�Þ ¼ 0; (3.21)

�00
~k
ð�Þ þ

�
k2 � 1

�2

�
�2
� � 1

4

��
�~kð�Þ ¼ 0; (3.22)

where

�2
�;� ¼ 9

4
�M2

�;�

H2
: (3.23)

We will focus on the case of ‘‘light’’ fields, namely,
M2

�;� � H2 and choose Bunch-Davies vacuum conditions

for which the two linearly independent solutions are
given by

g�;�ðk;�Þ ¼ 1

2
i��;�þð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi���

p
Hð1Þ

��;�
ð�k�Þ; (3.24)

f�;�ðk;�Þ ¼ 1

2
i���;��ð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi���

p
Hð2Þ

��;�
ð�k�Þ

¼ g��;�ðk;�Þ; (3.25)

where Hð1;2Þ
� ðzÞ are Hankel functions. Expanding the field

operator in this basis in a comoving volume V

�ð ~x; �Þ ¼ 1ffiffiffiffi
V

p X
~k

½a ~kg�ðk;�Þei ~k� ~x þ ay~k g
�
�ðk;�Þe�i ~k� ~x�;

(3.26)

�ð ~x; �Þ ¼ 1ffiffiffiffi
V

p X
~k

½b ~kg�ðk;�Þei ~k� ~x þ by~k g
�
�ðk;�Þe�i ~k� ~x�:

(3.27)

The Bunch-Davies vacuum is defined so that

a ~kj0i ¼ 0; bkj0i ¼ 0; (3.28)

and the Fock states are obtained by applying creation

operators ay~k , b
y
~k
onto the vacuum.

After the shift (3.19), the current (3.13) and (3.14)
becomes

J 0ð ~x; �Þ ¼ J 0
tlð ~x; �Þ þ i½��0 � ��0�;

J 0
tlð ~x; �Þ ¼ i½�0a�

0 � ��0a
0�; (3.29)

~J ð ~x; �Þ ¼ ~J tlð ~x; �Þ � i½� ~r�� � ~r��;
~J tlð ~x; �Þ ¼ �i�0a

~r�: (3.30)

The terms J 0
tlð ~x; �Þ, ~J tlð ~x; �Þ on the right-hand sides of

(3.29) and (3.30) are the tree-level contributions to the
conserved current as these terms create single-particle �
states out of the vacuum.
The interaction vertices are the same as those for the

Minkowski space-time case depicted in Fig. 1 but with the
replacements

�0 ! � �0

H�
; J ! � J

H�
: (3.31)

In Refs. [28,31,37] it is found that the tadpole contribu-
tions in Figs. 2, 3(d), and 3(e) are given by

h0j�2ð ~x; �Þj0iren ¼ 1

8�2�2

1

��

½1þ � � ��; (3.32)

h0j�2ð ~x; �Þj0iren ¼ 1

8�2�2

1

��

½1þ � � ��; (3.33)

where the renormalization regularizes ultraviolet divergen-
ces, and

�� ¼ M2
�

3H2
; �� ¼ M2

�

3H2
: (3.34)

The dots in Eqs. (3.32) and (3.33) stand for terms sublead-
ing in powers of ��;� � 1. In order to maintain a notation

consistent with the previous section we introduce

I �;� � 1

8�2��;�

: (3.35)

The tadpole condition now becomes

h�i ¼ 0 ) �a�0

2�2

�
J

H2
þ 3I� þ I�

�
¼ 0: (3.36)

A symmetry breaking solution corresponds to �0 � 0,
J=H2 ¼ �3I� � I�. At tree level

�2
0 ¼

�2

�
) J ¼ 0 ) M2

� ¼ 0; (3.37)

and using that a00=a ¼ 2=�2 the tree-level conservation
law becomes
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@

@�
J 0

tl þ ~r � ~J tl ¼ 0 ) �0að�Þ
�
�00 � 2

�2
�r2�

�
¼ 0; (3.38)

which is fulfilled by the Heisenberg equation of motion for
the � field (3.22) with M� ¼ 0, namely, �� ¼ 3=2.

It is illuminating to understand how the result (2.10) is
fulfilled at tree level. With the expansion of the � field
given by (3.27) and �� ¼ 3=2 introduced in J 0

tlð ~x; �Þ,
we find

Sð ~k;�;�0Þ ¼ �2�0að�ÞIm
�
g��ðk;�0Þ

�
g0�ðk;�Þ

þ g�ðk;�Þ
�

��
; (3.39)

and the long wavelength limit is given by

lim
k!0

Sð ~k;�;�0Þ ¼ �0að�0Þ: (3.40)

Again, we note that it is precisely the lack of time
translational invariance that restricts the content of
Eq. (3.40); while this equation is satisfied with M� ¼ 0
at tree level, there is no constraint on the mass of the single-
particle excitations from the general result (2.10). Thus
whether the Goldstone fields acquire a mass via radiative
corrections now becomes a dynamical question.

There are two roadblocks to understanding radiative
corrections to the mass, both stemming from the lack of
time translational invariance: (i) in general, there is no
simple manner to resum the series of one particle irreduc-
ible diagrams into a Dyson propagator, whose poles reveal
the physical mass, (ii) there is no Fourier transform in time
that when combined with a spatial Fourier transform would
allow one to glean a dispersion relation for single-particle
excitations. Obviously these two problems are related. In
Refs. [33,34,36] only the local tadpoles were considered,
this is a local mean field approximation and the space-time
local nature of the tadpole allows one to extract a mass.
However, while the mean field tadpole is the leading con-
tribution in the large N limit as discussed in the previous
section, for finite N the nonlocal diagram equivalent to
Fig. 3(f) is of the same order, and in Minkowski space-time
it is this diagram that cancels the tadpole (mean field)
contribution to the � mass. Thus for finite N the question
is whether the nonlocal self-energy contribution 3(f) can
cancel the tadpole contributions of Fig. 3(d) and 3(e) even
when these feature very different time dependence and 3(f)
does not have a time Fourier transform that renders it local
in frequency space.

It is at this point where the Wigner-Weisskopf method
introduced in Refs. [37,43] proves to be particularly useful.

A. Wigner-Weisskopf theory in de Sitter space-time

In order to make the discussion self-contained, we high-
light the main aspects of the Wigner-Weisskopf nonpertur-

bative approach to study the time evolution of quantum
states pertinent to the self-consistent description of
mass generation discussed in the previous sections.
For a more thorough discussion and comparison to results
in Minkowski space-time, the reader is referred to
Refs. [37,43]. Expanding the interaction picture state
j�ð�ÞiI in Fock states jni obtained as usual by applying
the creation operators on to the (bare) vacuum state (here
taken to be the Bunch-Davies vacuum) as

j�ð�ÞiI ¼
X
n

Cnð�Þjni; (3.41)

the evolution of the state in the interaction picture is given
by [43]

i
d

d�
j�ð�ÞiI ¼ HIð�Þj�ð�ÞiI; (3.42)

where HIð�Þ is the interaction Hamiltonian in the interac-
tion picture. In terms of the coefficients Cnð�Þ Eq. (3.42)
becomes

dCnð�Þ
d�

¼ �i
X
m

Cmð�ÞhnjHIð�Þjmi: (3.43)

It is convenient to separate the diagonal matrix elements,
that represent local contributions, from those that represent
transitions and are associated with nonlocal self-energy
corrections, writing

dCnð�Þ
d�

¼ �iCnð�ÞhnjHIð�Þjni

� i
X
m�n

Cmð�ÞhnjHIð�Þjmi: (3.44)

Although this equation is exact, it yields an infinite hier-
archy of simultaneous equations when the Hilbert space of
states jni is infinite dimensional. However, progress is
made by considering the transition between states con-
nected by the interaction Hamiltonian at a given order in
HI: consider the case when one state, say jAi, couples to a
set of states j�i, which couple back to jAi viaHI, to lowest
order in the interaction the system of equations closes in
the form

dCAð�Þ
d�

¼ �ihAjHIð�ÞjAiCAð�Þ

� i
X
��A

hAjHIð�Þj�iC�ð�Þ; (3.45)

dC�ð�Þ
d�

¼ �iCAð�Þh�jHIð�ÞjAi; (3.46)

where the
P

��A is over all the intermediate states coupled
to jAi via HI representing transitions.
Consider the initial value problem in which at time � ¼

�0 the state of the system is given by j�ð� ¼ �0Þi ¼ jAi
so that
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CAð�0Þ ¼ 1; C��Að� ¼ �0Þ ¼ 0: (3.47)

Solving (3.46) and introducing the solution into (3.45) we
find

C�ð�Þ ¼ �i
Z �

�0

h�jHIð�0ÞjAiCAð�0Þd�0; (3.48)

dCAð�Þ
d�

¼ �ihAjHIð�ÞjAiCAð�Þ

�
Z �

�0

�Að�;�0ÞCAð�0Þd�0; (3.49)

where2

�Að�;�0Þ ¼ X
��A

hAjHIð�Þj�ih�jHIð�0ÞjAi: (3.50)

In Eq. (3.46) we have not included the diagonal term as in
(3.45)3; it is clear from (3.48) that with the initial condition
(3.47) the amplitude of C� is of OðHIÞ; therefore, a diago-
nal term would effectively lead to higher order contribu-
tions to (3.49). The integro-differential equation (3.49)
with memory yields a nonperturbative solution for the
time evolution of the amplitudes and probabilities, which
simplifies in the case of weak couplings. In perturbation
theory the time evolution of CAð�Þ determined by
Eq. (3.49) is slow in the sense that the time scale is
determined by a weak coupling kernel �A, hence an
approximation in terms of an expansion in derivatives of
CA emerges as follows: introduce

Wð�;�0Þ ¼
Z �0

�0

�Að�;�00Þd�00; (3.51)

so that

�Að�;�0Þ ¼ d

d�0 Wð�;�0Þ; Wð�;�0Þ ¼ 0: (3.52)

Integrating by parts in Eq. (3.49) we obtainZ �

�0

�Að�;�0ÞCAð�0Þd�0

¼ Wð�;�ÞCAð�Þ �
Z �

�0

Wð�;�0Þ d

d�0 CAð�0Þd�0:

(3.53)

The second term on the right-hand side is formally of
higher order in HI. Integrating by parts successively yields
a systematic approximation scheme as discussed in
Ref. [43].

Therefore to leading order in the interaction we find

CAð�Þ ¼ e
�
R

�

�0

~Wð�0;�0Þd�0
;

~Wð�0; �0Þ ¼ ihAjHIð�0ÞjAi þ
Z �0

�0

�Að�0; �00Þd�00: (3.54)

Following Ref. [37] we introduce the real quantities
EAð�Þ; �Að�Þ as

ihAjHIð�0ÞjAi þ
Z �0

�0

�Að�0; �00Þd�00

� iEAð�0Þ þ 1

2
�Að�0Þ (3.55)

in terms of which

CAð�Þ ¼ e
�i
R

�

�0
EAð�0Þd�0

e
�ð1=2Þ

R
�

�0
�Að�0Þd�0

: (3.56)

When the state A is a single-particle state, radiative cor-
rections to the mass are extracted from EA and

�Að�Þ ¼ � d

d�
ln

�
jCAð�Þj2

�
(3.57)

is identified as a (conformal) time-dependent decay rate.
Extracting the mass.—In Minkowski space-time for

jAi ¼ j1 ~ki, a single-particle state of momentum ~k, E1 ~k

includes the self-energy correction to the mass of the
particle [37,43,46]. Consider adding a mass counterterm
to the Hamiltonian density, in terms of the spatial Fourier
transform of the fields, it is given by

Hct ¼ �M2

2

X
~k

� ~k�� ~k (3.58)

the matrix element

h1�~k jHctj1�~k i ¼ �M2jg�ð�Þj2: (3.59)

Hence it is clear that only the imaginary part of ~W can be
interpreted as a mass term, thus only the imaginary part of
�1 ~k

contributes to the mass. However, the nonlocal nature

of�1 ~k
also includes transient behavior from the initial state

preparation, thus a mass term must be isolated in the
asymptotic long time limit when transient phenomena
has relaxed. Last but not least, momentum dependence
can mask a constant mass term, which can only be identi-
fied in the long wavelength limit. In particular in
Refs. [37,43] it is shown that in Minkowski space-time
(see the Appendix)

Im
Z t!1

0
�1 ~k

ðt; t0Þdt0 ¼ �E1 ~k
; (3.60)

where �E1 ~k
is the second order correction to the energy of a

single-particle state with momentum ~k obtained in quan-
tum mechanical perturbation theory (see also the
Appendix).

2In Ref. [43] it is proven that in Minkowski space-time the
retarded self-energy in the single-particle propagator is given by
i�.

3These diagonal terms represent local self-energy insertions in
the propagators of the intermediate states, hence higher orders in
the perturbative expansion.
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The program of renormalized perturbation theory begins
by writing the free field part of the Lagrangian in terms of
the renormalized mass and introducing a counterterm in
the interaction Lagrangian so that it cancels the radiative
corrections to the mass from the self-energy. Namely,
the counterterm in the interaction Lagrangian is fixed
by requiring that E1 ~kð�0Þ ¼ 0, in the long time limit

�0 ! 0� and in the long wavelength limit. Therefore, as
per the discussion above, we extract the mass term from the
condition

E1 ~kð�0Þ ¼ h1 ~kjHIð�0Þj1 ~ki þ
Z �0

�0

Im½�1ðk;�0; �00Þ�d�00

¼ 0 (3.61)

in the long wavelength limit.
In Minkowski space-time, the condition (3.61) is tanta-

mount to requiring that the real part of the pole in the
propagator be at the physical mass [43] and is equivalent to
the counterterm approach described in Sec. II C. In the
Appendix we carry out this program and show explicitly
how the Wigner-Weisskopf approach reproduces the re-
sults in Minkowski space-time obtained in Sec. II and how
the mass is reliably extracted in the long time, long wave-
length limit.

We implement the same strategy to obtain the self-
consistent radiatively generated mass in de Sitter space-
time where Eq. (3.61) will determine the self-consistent
condition for the mass.

In the mass terms in the Lagrangian (3.20) we imple-
ment the counterterm method by introducing the renormal-
ized masses M2

�;� that include the radiative corrections,

and writing

� M2
�

2H2�2
�2� M2

�

2H2�2
�2�� M2

�

2H2�2
�2� M2

�

2H2�2
�2�Lct

(3.62)

leading to the counterterm Hamiltonian

Hct ¼ 1

2H2�2

Z
d3x½ðM2

� �M2
�Þ�2 þ ðM2

� �M2
�Þ�2�
(3.63)

included in the interaction Hamiltonian HIð�Þ, and rede-
fining

�� ¼ M2
�

3H2
; �� ¼ M2

�

3H2
: (3.64)

In what follows we assume that ��;� � 1; therefore the

leading order contributions arise from poles in ��;� as a

result of the strong infrared divergences of minimally
coupled light fields.

The contributions from diagrams like those of Figs. 3(a)
–3(c) are cancelled by the tadpole condition (3.36). For the
�� � fields, respectively, we find

h1�~k jHIð�Þj1�~k i¼
jg�ðk;�Þj2
H2�2

�
�

2

�
J

H2
þ3I�þI�

�
�M2

�

H2

�
;

(3.65)

where I�;� are given by Eqs. (3.35) with the redefined��;�

given by (3.64).
The nonlocal contribution is given by (see [37])

��ðk;�;�0Þ ¼ �2�2
0

H2��0 g
�
�ðk;�Þg�ðk;�0Þ

�
Z d3q

ð2�Þ3 g�ðq;�Þg
�
�ðq;�0Þ

� g�ðj ~q� ~kj;�Þg��ðj ~q� ~kj;�0Þ: (3.66)

For ��;� 	 0 the integral features infrared divergences in

the regions q	 0, j ~q� ~kj 	 0, which are manifest as poles
in ��;� [37]. These regions are isolated following the

procedure of Ref. [37] and the poles in ��;� can be

extracted unambiguously. To leading order in these poles
we find

��ðk;�;�0Þ ¼ �2�2
0

8�2H2ð��0Þ2 g
�
�ðk;�Þg�ðk;�0Þ

�
�
g�ðk;�Þg��ðk;�0Þ

��

þ g�ðk;�Þg��ðk;�0Þ
��

�
:

(3.67)

As discussed in detail in Ref. [37] the poles originate in the
emission and absorption of superhorizon quanta and arise
from the integration of a band of superhorizon wave vec-
tors 0 
 q 
 �ir ! 0 (see Ref. [37] for details).
As per the discussion in Minkowski space-time, a

vanishing mass for a Goldstone boson after radiative cor-
rection requires that the tadpole terms in (3.65) be exactly
cancelled by the nonlocal self-energy contribution in the
long time, long wavelength limit. In particular the poles in
��;� in (3.65) must be exactly cancelled by similar poles in

�� (3.67). Therefore, to leading order in ��;�, we can set

�� ¼ �� ¼ 0, namely, ��;� ¼ 3=2 in the mode functions

g�;� given by (3.24), whence it follows that to leading

order in ��;�

��ðk;�;�0Þ ¼ �2�2
0

8�2H2

jgðk;�Þj2jgðk;�0Þj2
ð��0Þ2

�
1

��

þ 1

��

�
� ½1þOð��;��Þ þ � � ��; (3.68)

where

gðk;�Þ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi���
p

Hð1Þ
3=2ð�k�Þ: (3.69)

Therefore, to leading order in poles in��;�,��ðk;�;�0Þ is
real and does not contribute to the radiatively generated �
mass.
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Therefore, to leading order in the poles in ��;�, the self-

consistent condition that determines the mass, Eq. (3.61)
becomes

h1�~k jHIð�Þj1�~k i ¼ 0: (3.70)

This observation is important: unlike Minkowski space-
time where the diagram [3(f)] cancels the local tadpole
contributions, in de Sitter space-time the similar diagram
cannot cancel the local contributions because the leading
infrared divergences yield a real contribution whereas the
tadpoles yield a purely imaginary contribution as befits a
mass insertion. Therefore, the self-consistent mass is ob-
tained solely from the local tadpole terms that determine
the mean field contribution. This validates the results of
[34,36] that rely solely on the mean field approximation
(which is exact only in the strict N ! 1 limit).

Assuming spontaneous symmetry breaking so that
Eq. (3.36) is fulfilled with �0 � 0, namely,

J

H2
¼ �3I� � I�; (3.71)

it follows that

M2
�

H2
¼ �

8�2

�
1

��

� 1

��

�
: (3.72)

For the � field we find the following contributions:

h1�~k jHIð�Þj1�~k i ¼
jg�ðk; �Þj2

H2�2

�
�

2

�
J

H2
þ 2

�2
0

H2

þ 3I� þ I�

�
�M2

�

H2

�
; (3.73)

where I�;� are given by Eq. (3.35), and for��ðk;�;�0Þwe
find

��ðk;�;�0Þ ¼ �2�2
0

2H2��0g
�
�ðk;�Þg�ðk;�0Þ

�
Z d3q

ð2�Þ3 ½9g�ðq;�Þg
�
�ðq;�0Þg�ðj ~q� ~kj;�Þ

�g��ðj ~q� ~kj;�0Þþg�ðq;�Þg��ðq;�0Þ
�g�ðj ~q� ~kj;�Þg��ðj ~q� ~kj;�0Þ�: (3.74)

Extracting the poles in ��;� the leading order result is

given by

��ðk;�;�0Þ¼ �2�2
0

8�2H2ð��0Þ2g
�
�ðk;�Þg�ðk;�0Þ

�
�
g�ðk;�Þg��ðk;�0Þ

��

þ9
g�ðk;�Þg��ðk;�0Þ

��

�
:

(3.75)

Again, just as for the � field above, to leading order in
the poles in ��;� we can set �� ¼ �� ¼ 0, namely,

��;� ¼ 3=2 in the mode functions g�;�, leading to

��ðk;�;�0Þ ¼ �2�2
0

8�2H2

jgðk;�Þj2jgðk;�0Þj2
ð��0Þ2

�
1

��

þ 9

��

�
;

(3.76)

where gðk;�Þ is given by Eq. (3.69).
The result is that to leading order in the poles, both ��;�

are real and do not contribute to the radiatively generated
masses but will contribute to the decay of the single-
particle excitations discussed below (see Sec. III D).
Therefore, assuming spontaneous symmetry breaking so

that the condition (3.71) holds, we find that

M2
�

H2
¼ ��2

0

H2
: (3.77)

Now identifying self-consistently the masses in the defi-
nition (3.64) with M�;�, and defining

" ¼
ffiffiffiffiffiffiffiffiffiffiffi
�

24�2

s
; �� ¼ "��; �� ¼ �

3

�2
0

H2
� "��;

(3.78)

Eq. (3.72) becomes

�� ¼ 1

��

� 1

��

(3.79)

with the (positive) solution

�� ¼ 1

2��

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

�

q
� 1�; (3.80)

the negative root would lead to an instability and an
uncontrollable infrared divergence in the loop integrals,
which would not yield a self-consistent solution.
Now we are in position to understand whether sponta-

neous symmetry breaking does occur. The condition
(3.71) is

�2
0

H2
¼ �2

�H2
� 3

8�2��

� 1

8�2��

� 0; (3.81)

which when written in terms of the definitions (3.78) and
using (3.80) becomes

F½��� � �� þ 1

2��

½7þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

�

q
� ¼ �2

3"H2
: (3.82)

The function F½��� and its intersection with �2=3"H2 is

displayed in Fig. 4.
As shown in Fig. 4, F½��� features a minimum at

��;min ¼ 1:906 � � � at which F½��;min� ¼ 4:77614 � � � ;
therefore, there are symmetry breaking solutions for

�2

3"H2
> 4:776 14 . . . : (3.83)

This condition can be written in a more illuminating
manner as
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TH < Tc; TH ¼ H

2�
;

Tc ¼ �

2:419 � � ��1=4
¼ �1=4v

2:419 � � � ;
(3.84)

where TH is the Hawking temperature of de Sitter space-

time4 and v ¼ �=
ffiffiffiffi
�

p
is the tree-level vacuum expectation

value (minimum of the tree-level potential). From
Eq. (3.79) it follows that

��

��

¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

�

q
2

(3.85)

and �� > 1:906 � � � ; therefore, in the broken symmetry

phase we find that

��

��

’ �� þ 1

2
for TH < Tc; (3.86)

in the spontaneously broken phase. At weak coupling, for
�2 � 3"H2 (but �2 � H2 for consistency) we find that

M � ’ j�j þ a�1=4H; M� ¼ b�1=4H; (3.87)

where a, b are positive constants.
For TH > Tc the unbroken symmetry solution �0 ¼ 0 is

the only solution of the tadpole condition (3.36). In this
case we find

M2
�

H2
¼ �

2

�
J

H2
þ 3I� þ I�

�
; (3.88)

M2
�

H2
¼ �

2

�
J

H2
þ 3I� þ I�

�
: (3.89)

Subtracting (3.89) from (3.88) we find

�� � �� ¼ 1

��

� 1

��

; (3.90)

if �� > ð<Þ�� the left-hand side is positive (negative) but

the right-hand side is negative (positive); therefore the only
solution is

�� ¼ �� ¼ �2

12"H2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
12"H2

�2

�
2

s
� 1

�
: (3.91)

Inserting this result in (3.89) we find for TH > Tc

M� ¼ M� ¼ �2

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:701

�
T2
H

T2
c

�
2

s
� 1

�
; (3.92)

as expected M� ¼ M� if the symmetry is unbroken.

B. A first order phase transition

Figure 4 shows that for TH < Tc there are two solutions
of the equation that determines symmetry breaking and the
question arises: which of the two solutions describes the
broken symmetry phase? The answer is gleaned by ana-
lyzing the weak coupling limit " ! 0 (� ! 0). In this limit
the left most intersection in Fig. 4 corresponds to the
solution

�ð�Þ
� ’ 12"

H2

�2
) M2

� ’ �

2�2

H4

�2
!�!0

0; (3.93)

whereas the right-most intersection corresponds to the
solution

�ðþÞ
� ’ �2

3"H2
) M2

� ’ �2; M2
� ’ "H2 ! 0: (3.94)

Obviously the solution �ðþÞ
� is the correct one since for

� ! 0 the expectation value ��0 ¼ �2, the loop correc-
tions vanish and the mass of the �, � fields should be the
tree-level ones, namely,M2

� ¼ �2,M2
� ¼ 0 respectively.

However, as "H2 increases beyond the critical value at
which �2=3"H2 ¼ F½��;min�, there is no available sym-

metry breaking solution and this occurs for a nonvanishing
value of �0 signaling a first order phase transition at
TH ¼ Tc given by (3.84). The value of the order parameter
at TH ¼ Tc is given by

�0c ’ 0:61
H

�1=4
: (3.95)

These results are in general agreement with those of
Ref. [36]. The first order nature of the phase transition
can also be understood within the context of the infrared
divergences: if the transition (as a function of coupling or
TH) were of second order, then at the critical point the

FIG. 4. F½��� vs �� and its intersection with �2=3"H2. The
function features a minimum at ��;min ¼ 1:906 � � � with

F½��;min� ¼ 4:77614 � � � . The value of ��ð��;minÞ ¼ 0:772 � � � .

4In comoving time t, the mode functions g�, g� are functions
of � ¼ �e�Ht=H and therefore periodic in imaginary time 
 ¼
it with period � ¼ 2�=H ¼ 1=TH . See [38].
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masses of both �, � fields must necessarily vanish, but the
vanishing of the masses would lead to strong infrared
divergences. Therefore a first order transition with a finite
mass (correlation length) and a jump in the order parameter
is a natural consequence of the strong infrared behavior of
minimally coupled nearly massless fields in de Sitter
space-time. The infrared singularities are self-consistently
relieved by the radiative generation of a mass at the ex-
pense of turning the phase transition into first order.

C. Large N limit

The above results can be simply generalized to theOðNÞ
case where the � fields form an OðN � 1Þ multiplet. Now
the tadpole condition becomes

h�i ¼ 0 ) �a�0

2�2

�
J

H2
þ 3I� þ ðN � 1ÞI�

�
¼ 0; (3.96)

and the �, � masses become

M2
�

H2
¼ �

2

�
J

H2
þ ðN þ 1ÞI� þ I�

�
; (3.97)

M2
�

H2
¼ �

2

�
2
�2

0

H2
þ J

H2
þ ðN � 1ÞI� þ 3I�

�
: (3.98)

In the strict N ! 1 limit these equations simplify to

�0

�
J

H2
þ NI�

�
¼ 0; (3.99)

M2
�

H2
¼ �

2

�
J

H2
þ NI�

�
; (3.100)

M2
�

H2
¼ �

2

�
2
�2

0

H2
þ J

H2
þ NI�

�
; (3.101)

with I�;� given by Eq. (3.34) and self-consistently ��;� ¼
M2

�;�=3H
2. Clearly, Eqs. (3.99) and (3.100) lead to con-

clude that the only symmetry breaking solution corre-
sponds to M2

� ¼ 0 but this is obviously in contradiction
with the self-consistent solution because of the infrared
singularity in I� / 1=M2

�. Therefore, the only available
solution of (3.99) that is also self-consistent and infrared
finite must be the unbroken symmetry solution �0 ¼ 0 that
results in equal masses for �, � fields. Thus in the strict
N ! 1, neglecting the 1=N corrections the OðNÞ symme-
try cannot be spontaneously broken because of the strong
infrared effects. This is the conclusion of Ref. [34].
However the analysis presented above for finite N, and,
in particular, for N ¼ 2 suggests that this conclusion holds
only in the strict N ! 1 limit but for any finite N there is
spontaneous symmetry breaking, along with infrared radi-
atively induced masses for the Goldstone fields without
contradicting Goldstone’s theorem, but the transition is
first order as a consequence of infrared divergences.

D. Decay of �, � particles

As discussed above the nonlocal self-energies
��;�ðk;�;�0Þ are real and do not contribute to the mass

to leading order in ��;�; however, they determine the

decay of single-particle states as described in Ref. [37].
We now focus on obtaining the decay amplitudes arising
from these contributions. Using the relations given by
Eqs. (3.77) and (3.78) to leading order in poles in ��;�,

the one-loop results (3.68) and (3.76) can be written as

�ð1Þ
� ðk;�;�0Þ ¼ 3�

8�2

jgðk;�Þj2jgðk;�0Þj2
ð��0Þ2

�
1þ ��

��

�
;

(3.102)

�ð1Þ
� ðk;�;�0Þ ¼ 27�

8�2

jgðk;�Þj2jgðk;�0Þj2
ð��0Þ2

�
1þ ��

9��

�
:

(3.103)

Thus formally the real part of the single-particles self-
energy are of Oð�Þ.
In Ref. [37] it was found that quartic self-interactions

with strength � yield two-loop self-energies that are also of
Oð�Þ as a consequence of infrared divergences that are
manifest as second order poles in �. Implementing the
‘‘infrared rules’’ obtained in Ref. [37] in the two-loop
diagrams for ��;� Figs. 5(a)–5(d), respectively, we find

the leading order two-loop contributions

�ð2Þ
� ðk;�;�0Þ ¼ 3�

16�2

jgðk;�Þj2jgðk;�0Þj2
ð��0Þ2

�
�
9

�2
�

þ 1

�2
�

þ 2

����

�
; (3.104)

�ð2Þ
� ðk;�;�0Þ ¼ 3�

16�2

jgðk;�Þj2jgðk;�0Þj2
ð��0Þ2

�
�
9

�2
�

þ 1

�2
�

þ 2

����

�
: (3.105)

From (3.55) we obtain the conformal time-dependent
single-particle decay rates (3.57)

FIG. 5. Two-loop contributions to �� (a),(b) and �� (c),(d).
Solid lines ¼ �, dashed lines ¼ �.
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1

2
��;�ðk;�Þ ¼

Z �

�0

��ðk;�;�0Þd�0

¼ �C�;�k
jHð1Þ

3=2ðzÞj2
z

Z z0

z

dz0

z0
jHð1Þ

3=2ðz0Þj2;
z ¼ �k�; (3.106)

with

C � ¼ 3

256

�
2

�
1þ ��

��

�
þ

�
9

�2
�

þ 1

�2
�

þ 2

����

��
;

(3.107)

C � ¼ 3

256

�
18

�
1þ ��

9��

�
þ

�
9

�2
�

þ 1

�2
�

þ 2

����

��
:

(3.108)

As discussed in Refs. [37,43] the decay � ! �þ � is a
consequence of emission and absorption of superhorizon
quanta; in the superhorizon limit z � 1, z0 	 1 the inte-
grals can be done simply [37], leading to the results for the
single-particle amplitudes in the superhorizon limit

jC�;�
1 ~k

j ’ e���;�ð�k�Þ;

��;�ð�k�Þ ¼ 2�

9�2
C�;�

�
H

kphysð�Þ
�
6
:

(3.109)

Possible caveats.—There are other two-loop diagrams
that have not been accounted for above. The generic form
of these diagrams are displayed in Fig. 6 (we have not
displayed specific �, � lines but just showed the generic
form of the diagrams) and can be interpreted as a renor-
malization of the internal propagator and the vertex. Both
of these diagrams are / ð��0=HÞ4 ’ �2�2

�; therefore, if

the ‘‘infrared rules’’ of Ref. [37] apply to these diagrams,
the two loops imply an infrared factor / 1=�2

�, 1=�
2
�,

1=����, in which case the overall coupling dependence

of these diagrams is / �2 and would be subdominant as
compared to the two-loop diagrams of Fig. 5. The possible
caveat in this argument is that the rules to obtain the
leading contributions in poles in � given in Ref. [37] do
not directly apply to the diagrams above because if the
bubble that renormalizes the propagator in the first diagram
dresses a line in which the wavevector is within an infrared
band 0< q<�ir ! 0, then both lines in this bubble are
within this band. This situation is not contemplated in the
rules provided in Ref. [37] that apply to the case when in a
loop integral only one of the lines carries momenta within
an infrared band whereas the other line carries a finite value
of the momentum (even if superhorizon) (see the argu-
ments in Ref. [37]). Thus in absence of a sound proof that
the diagrams in Fig. 6 are subleading, the result for the
damping rate �ðk;�Þ given by Eq. (3.106) should be taken
as indicative. Nevertheless the analysis of symmetry break-
ing and the emerging conclusions on the mass generation

of Goldstone bosons and the order of the transition are
not affected by this possible caveat on the damping
rate. Further study on the infrared aspects of diagrams in
Fig. 6 is certainly worthy but beyond the scope of
this article.

IV. CONCLUSIONS

Spontaneous symmetry breaking is an important ingre-
dient in the inflationary paradigm. In this article we have
studied SSB of continuous symmetry in an Oð2Þ model of
scalar fields minimally coupled to gravity in de Sitter
space-time, focusing, in particular, on understanding
whether Goldstone’s theorem implies massless Goldstone
bosons and trying to shed light on conflicting previous
results [34,36] that implemented a local mean field
approximation. We first revisited the general results of
Goldstone’s theorem in Minkowski space-time highlight-
ing the fact that it is through time translational invariance
that the conservation of the Noether theorem guarantees
massless Goldstone bosons. We emphasized that in
absence of time translational invariance Goldstone’s theo-
rem is much less stringent and does not rule out radiatively
generated masses for Goldstone modes. We followed with
an analysis of the implementation of Goldstone’s theorem
at one-loop level in Minkowski space-time by studying the
self-energies of Goldstone and Higgs-like modes; we
showed that at one-loop level the masslessness of the
Goldstone boson is a consequence of a precise cancellation
between local tadpole and nonlocal (in space-time) con-
tributions; and we analyzed in detail the implementation of
Goldstone’s theorem in the large N limit of an OðNÞ scalar
theory. These results paved the way towards a deeper
understanding of Goldstone’s theorem and its consequen-
ces in de Sitter cosmology.
Our conclusions are summarized as follows:
(i) In absence of a global timelike Killing vector,

Goldstone’s theorem does not imply massless
Goldstone bosons when a continuous symmetry is
spontaneously broken.

(ii) We implemented a nonperturbative Wigner-
Weisskopf method that allows one to obtain the
masses and decay widths of single-particle states
in a cosmological setting. Strong infrared behavior
associated with light particles minimally coupled to
gravity are treated in a self-consistent manner.

(iii) Whereas in Minkowski space-time at one-loop
level the masslessness of Goldstone modes in the
broken symmetry phase is a consequence of a

FIG. 6. Other two-loop contributions to ��;�.
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precise cancellation between tadpole and nonlocal
(absorptive) contributions to the self-energy, we
find that in de Sitter space-time no such cancella-
tion is possible. Goldstone modes acquire a self-
consistent radiatively generated mass resulting
from the buildup of infrared singularities in self-
energies. We find that in a weak coupling the mass

of the Goldstone modes is M� / �1=4H, where �
is the quartic coupling of the Oð2Þ theory.

(iv) We find a first order phase transition between the
broken and unbroken symmetry phase as a function
of TH ¼ H=2� the Hawking temperature of
de Sitter space-time. For the Oð2Þ model we find

SSB for TH < Tc ¼ �1=4v=2:419 . . . where v is the
tree-level vacuum expectation value. For TH > Tc

the symmetry is restored. The value of the order

parameter at TH ¼ Tc is �0c ’ 0:61H=�1=4. The
first order nature of the transition and concomitant
jump in the order parameter is a consequence of the
strong infrared behavior of correlation functions: if
the transition were second order both fields would
be massless at Tc leading to strong infrared singu-
larities. Thus radiatively induced masses relieve the
infrared singularities at the expense of a first order
transition and a jump in the order parameter. These
results are in qualitative agreement with those of
Ref. [36] and also confirm the validity of the local
mean field approximation since the nonlocal radia-
tive corrections do not contribute to the masses of
either Goldstone or Higgs-like modes but only to
their decay widths.

(v) In the strict N ! 1 limit of an OðNÞ scalar theory
there is no possibility of SSB in agreement with the
result of Ref. [34], but SSB is available for any finite
N. This result reconciles the conflicting conclusions
of Refs. [34,36].

(vi) The lack of a global timelike Killing vector pre-
vents the existence of kinematic thresholds; as a
result we find that Goldstone modes decay into
Goldstone and Higgs modes via the emission and
absorption of superhorizon quanta. We have ob-
tained the decay width of Goldstone modes in the
superhorizon limit—the amplitude of single-

particle Goldstone modes jC�
1 ~k
j ’ e���ð�k�Þ where

��ð�k�Þ / �ðH=kphysð�ÞÞ6.
Further questions.—The discussion in Sec. III on the

applicability and corollary of Goldstone’s theorem in an
expanding cosmology highlights the consequences of a
covariant conservation law in a time-dependent back-
ground geometry as contrasted with the strict conservation
law in Minkowski space-time and is general for any cos-
mological background. Our study focused on de Sitter
space-time wherein infrared divergences associated with
minimally coupled massless particles lead to the self-
consistent generation of masses for Goldstone bosons as

described above. There remains the very important ques-
tion of whether Goldstone bosons acquire a mass in other
cosmologies, for example, during the radiation dominated
stage, where the arguments on the time dependence of the
background are valid but there may not be infrared diver-
gences that lead to a self-consistent generation of mass as
in de Sitter space-time. A deeper understanding of this case
certainly merits further study as it may yield to novel and
unexpected phenomena in cosmology and is relegated to
future work.

ACKNOWLEDGMENTS

The author acknowledges support by the NSF through
Grant No. PHY-0852497.

APPENDIX A: WIGNER-WEISSKOPF APPROACH
TO GOLDSTONE’S THEOREM IN MINKOWSKI

SPACE-TIME

In Minkowski space-time and for a single-particle �

state of momentum ~k we need [see Eq. (3.54)]

~WðtÞ ¼ ih1�~k jHIðtÞj1�~k i þ
Z t

0
��ð ~k; t; t0Þdt0; (A1)

from which the total correction to the energy of a single-
particle state is obtained from the long time limit

E �
1 ~k

¼ h1 ~kjHIð0Þj1 ~ki þ
Z t!1

0
Im½��ðk; t; t0Þ�dt0; (A2)

Including the counterterm Hamiltonian in the interaction
as described in Sec. II C leads to the requirement that in the
long wavelength limit

E �
1 ~k!0

¼ 0: (A3)

The interaction Hamiltonian is read off from the vertices
in Eq. (2.17) including the mass counterterm

Hct ¼ 1

2
ðM2

� �M2
�Þ; M2

� ¼ �

2
J: (A4)

The contribution h1�~k jHIðtÞj1�~k i is recognized as the first

order shift in the energy.
The tadpole condition eliminates the contributions from

the tadpoles in Figs. 3(a)–3(c) because the matrix element
of the Hamiltonian between the vacuum and a single-
particle state vanish by dint of the tadpole condition. We
find

h1�~k jHIð0Þj1�~k i ¼
1

2!�ðkÞ
�
ðM2

� �M2
�Þ þ �

2
ðI� þ 3I�Þ

�
;

(A5)

where I�;� are given by Eq. (2.27). Upon using the tadpole

condition assuming spontaneous symmetry breaking it
follows that J ¼ �3I� � I� and (A5) becomes
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h1�~k jHIð0Þj1�~k i

¼ 1

2!�ðkÞ
�
�M2

� þ �
Z d3q

ð2�3Þ
�

1

2!�ðqÞ �
1

2!�ðqÞ
��

:

(A6)

The self-energy

��ðk; t; t0Þ ¼
X
��1�

~k

h1�~k jHIðtÞj�ih�jHIðt0Þj1�~k i

¼ X
��1�

~k

jh1�~k jHIð0Þj�ij2eið!�ðkÞ�E�Þðt�t0Þ; (A7)

where the intermediate states j�i ¼ j1�~q ; 1�~qþ ~k
i [see

Fig. 3(f)].
Carrying out the time integral in (A1) in the long time

limit we findZ t!1

0
��ðk; t; t0Þdt0

¼ i
X
~q

jh1�~k jHIð0Þj1�~q ; 1�~qþ ~k
ij2

!�ðkÞ �!�ðj ~qþ ~kjÞ �!�ðqÞ þ i�

� i�Eð2Þ
� þ ��

2
; (A8)

thus the imaginary part of the time integral yields the second

order energy shift �Eð2Þ
� and the real part yields half of the

decay rate �� a la Fermi’s golden rule. In the case of the �
field the imaginary part vanishes by kinematics.

The matrix element is computed straightforwardly and
we find

E 1 ~k¼� 1

2!�ðkÞ
�
M2

���

2

Z d3q

ð2�3Þ
�

1

!�ðqÞ�
1

!�ðqÞ

� ��2
0

!�ðj ~qþ ~kjÞ!�ðqÞð!�ðj ~qþ ~kjÞþ!�ðqÞ�!�ðkÞÞ
��
:

(A9)

To leading order in perturbation theory one can set
!�ðkÞ ¼ k in (A9) leading to vanishing of the integral in
the long wavelength limit andM� ¼ 0 from the condition
(A3). However, keeping the�mass self-consistently, in the
long wavelength limit (setting k ! 0 in the denominator
inside the integral) the bracket in (A9) becomes

�
� � �

�
k!0

¼ M2
� þ �2�2

0

4
jM�j

Z d3q

ð2�3Þ
� 1

!�ð ~qÞ!�ðqÞð!�ð ~qÞ þ!�ðqÞ � jM�jÞ ;
(A10)

thus the requirement (A3) leads to

M � ¼ 0: (A11)

It is straightforward to check that the result (A9) coin-
cides with (2.37) for the (off-shell) value k ¼ 0 in (2.37)
upon integrating q0 in the complex plane.
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