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This paper is concerned with string cosmology and the dynamics of multiple scalar fields in potentials

that can become negative, and their features as (early) dark energy models. Our point of departure is the

‘‘string axiverse,’’ a scenario that motivates the existence of cosmologically light axion fields as a generic

consequence of string theory. We couple such an axion to its corresponding modulus. We give a detailed

presentation of the rich cosmology of such a model, ranging from the setting of initial conditions on the

fields during inflation, to the asymptotic future. We present some simplifying assumptions based on the

fixing of the axion decay constant fa, and on the effective field theory when the modulus trajectory is

adiabatic, and find the conditions under which these assumptions break down. As a by-product of our

analysis, we find that relaxing the assumption of fixed fa leads to the appearance of a new metastable

de Sitter region for the modulus without the need for uplifting by an additional constant. A dynamical

systems analysis reveals the existence of many fixed point attractors, repellers and saddle points, which we

analyze in detail. We also provide geometric interpretations of the phase space. The fixed points can be

used to bound the couplings in the model. A systematic scan of certain regions of parameter space reveals

that the future evolution of the Universe in this model can be rich, containing multiple epochs of

accelerated expansion.

DOI: 10.1103/PhysRevD.86.023508 PACS numbers: 98.80.�k, 11.25.Mj

I. INTRODUCTION

String cosmology [1–4] has been undergoing a renais-
sance over the last decade, due in part to our increased
understanding of the landscape [5,6], advances in moduli
stabilization and string model building [7–9] and the con-
tinued successes of precision cosmology [10]. Theory and
experiment have found fruitful harmony in two main areas:
the early time accelerated expansion of the Universe and
generation of primordial density perturbations during in-
flation [11–17] and in the study of the current epoch of
cosmological acceleration [18,19] through theories of dark
energy and quintessence [20]. Recently, the ‘‘string axi-
verse’’ [21] has motivated the study of ultralight axion
fields that evolve on cosmological time scales [22–28]:
one should ask whether the axion dynamics in this scenario
can have other interesting or adverse effects on string
cosmology and model building.

Axions have been ubiquitous in theoretical physics since
they were first proposed to solve the strong CP problem
[29]. Ever since this time, they have presented many prob-
lems and possibilities to cosmologists [30–45] (for reviews
of axion cosmology, see [46,47]). Indeed, axions are the
major contender with weakly interacting massive particles
(WIMPs) as a main constituent of the dark matter (DM). If

both axions and WIMPs exist, it is natural that they should
share the DM burden [48].
In this paper we systematically explore the parameter

space and dynamics of the coupled axion-modulus system
originally proposed in [49], which is a phenomenological
extension of the axiverse to include effects on moduli. The
energy scales of this model cannot be argued so model
independently and elegantly to give rise to interesting
cosmology as in the axiverse alone. However we take a
phenomenological approach and use it to ask the questions:
can cosmological axion dynamics lead to cosmological
modulus dynamics? What are these dynamics? For what
parameter values does interesting phenomenology occur?
It is the purpose of this paper to answer these questions.
When dimensionally reduced and considered at low

energies, string theory furnishes us with extra degrees of
freedom, in addition to the �CDM concordance model
ingredients of general relativity, cold dark matter (CDM),
and the standard model of particle physics. In fact, cosmo-
logically relevant axions and moduli are the generic pre-
diction of string/M theory [50]. These extra degrees of
freedom can be viewed as a blessing or a curse. Extra
scalar fields with appropriately fine-tuned potentials in
the early universe are useful for inflationary model build-
ing, but they also lead to the cosmological moduli problem
and must be properly stabilized. Scalar fields can also serve
as dark matter, or dark energy. The simplest 6-parameter
version of concordance �CDM cosmology may soon be
observationally extended with the detection of neutrino
mass and mass splittings [51]. There are also observational
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hints from small-scale CMB experiments [52,53] that other
relativistic degrees of freedom can already be seen in
cosmology. The possibility that this may be string theory
related, for example, through models of early dark energy
[54,55], is an exciting one. Independently of string theory,
a multicomponent dark sector is natural in, and may be
strong evidence for, the top-down or anthropic view of
cosmology [48].

The landscape of string theory vacua can also be seen
as a blessing or a curse: it hampers the exact predictivity
of string theory, but it may yet explain the smallness of
the cosmological constant by providing a high enough
density of possible vacua ‘‘near’’ to a phenomenologically
acceptable one [6], and through eternal inflation provide a
mechanism for the scanning. In the model we will study,
the overall value of the vacuum energy is a free parame-
ter; it was shown in [49] that one can have this negative,
so that the Universe today is rolling toward collapse.
Harlow et al. [56,57] have argued that the existence of
terminal vacua is necessary for the existence of a global
arrow of time in eternal inflation, and studying their
phenomenology therefore seems pertinent. In all cases
what we gain from string cosmology is the potential to
ask deeper questions when models are embedded in a
UV-complete theory.

In our view, another bright side of the string landscape
comes from looking for the ‘‘why not?’’ features. The
axiverse is one such generic feature. Along with the moduli
of the landscape, we also get axions. We will save the
details of this scenario for later, for now all we need say
is that many of these axions should remain light, and thus
cosmologically active. Through their effects on structure
formation [23] it will be possible with next-generation

cosmological observations to constrain the existence of
these fields as a component of the dark sector energy
density at percent-level accuracy [26]. The axiverse raises
the possibility that string cosmology may be active at late
times and that we may be able to observe it. This has been
called the ‘‘low-energy frontier of particle physics’’ [58]. If
we can detect axions with high precision using cosmology,
might we also detect changes in their evolution caused by
the moduli?
As the simplest models start to be constrained, we can

begin to explore them more deeply. Naturally, one goes
from assuming that just one scalar field is active at late
times, to assuming that many are [59–61]. Already in
inflation, thought of as embedded in string theory, the
dominant paradigm is of an inflationary direction in a
multidimensional field space (e.g. [62–64]). It should
also be true that the light axions of the axiverse exist as a
flat direction in some much larger field space of their
brother axions and sister moduli. To look simply at many
axion fields and ignore their partner moduli is the most
conservative option: the axiverse should be general enough
to exist independently of the mechanism for moduli stabi-
lization. But we will show here that there are cases where
one cannot ignore the effects of the moduli, and so we
explore what these effects might be within a certain
parametrization.
This paper is organized as follows: In Sec. II we recall

the coupled axion-modulus system introduced in [49] and
comment on how the initial conditions appropriate for
acceptable late time phenomenology might arise. In
Sec. III we analyze the basic features of cosmology in
this model by looking at the scalar potential, before pre-
senting a systematic analysis of the dynamics using a

TABLE I. Symbols used in this paper.

Symbol Meaning Equation

fa Axion decay constant (1)

�a Axion potential energy scale (1)

� Energy scale of nonperturbative physics for axion potential (2)

B, D Modulus potential parameters (4)

�� Cosmological constant energy density (4)

� Value of the true vacuum energy (24)

� Axion field (3)

� Modulus field (4)

C Axion-modulus coupling constant (4)

�b Baryotropic fluid equation of state (6)

x, y, z, r, s, t Autonomous system variables (19)

Nefd Number of e-folds from beginning of model evolution until end of fluid domination � � �
N ae Number of periods of accelerated expansion � � �
�e Early dark energy (EDE) density (42)

M ¼ �2=fa (axion mass scale) (4)

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M2=D

p
(12)

~� ¼ ffiffiffi
6

p
=� (critical value of � above which modulus is destabilized) (13)

! ¼ ffiffiffiffiffiffiffiffiffiffi
B=D

p
(11)

� ¼ B��=D
2 ¼ t2z2=r4 (vacuum constraint). � > ð<Þ1=4 gives dS (AdS) (23)

MARSH et al. PHYSICAL REVIEW D 86, 023508 (2012)

023508-2



dynamical systems approach in Sec. IV. We discuss our
findings in Sec. V, and conclude in Sec. VI.

Our detailed presentation of the rich cosmology of our
model requires the use of many equations and symbols. As
a guide to the reader, in Table I we summarize the key
symbols and the equations where they are defined or first
used.

II. THE MODEL

A. The axiverse

All types of string theory and M theory contain multiple
axion fields [65,66]. These axions arise when antisymmet-
ric tensor fields are compactified on closed cycles; the
axion is the Kaluza-Klein zero mode and appears in the
gauge kinetic function. Axions then acquire a potential
when nonperturbative physics is turned on on the cycle,
for example, from wrapped D-branes, or from world sheet
or gauge theory instantons. The axion is a pseudo-Nambu-
Goldstone boson (PNGB) of a spontaneously broken
global symmetry. Many extensions of the standard model
of particle physics also contain more generic PNGBs [67].

The low-energy four-dimensional Lagrangian for an
axion, �, with periodic potential Uð�Þ is

L ¼ f2a
2
ð@�Þ2 ��4

aUð�Þ: (1)

The two scales in this Largrangian, the decay constant fa
and potential energy scale �a, both depend upon the
action, S, of the nonperturbative physics on the corre-
sponding cycle in the following way:

fa �
Mpl

S
; �4

a ¼ �4e�S: (2)

HereMpl is the (reduced) Planck mass and � sets the scale

of nonperturbative physics, for example, the QCD scale or,
in string theory, the geometric mean of the supersymmetry
(SUSY) breaking scale, MSUSY and the Planck scale,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MplMSUSY

p 1 [21]. The action in turn depends on the size

of the cycle, and herein we find the axiverse mechanism for
light axions. Although fa should be fixed at some high
scale fa � 1016 GeV [66], small variations in the sizes of
cycles and the exponential sensitivity of �a on S means
that the axion mass should distribute roughly evenly on a
logarithmic scale, leading to some ultralight, stable axions
for the cosmologist to play with.

We canonically normalize � ¼ fa�, and expand the
potential around the minimum:

L ¼ 1
2ð@�Þ2 � 1

2m
2
a�

2; m2
a ¼ �4

a

f2a
: (3)

B. The axiverse is more than just axions

As with everything in string theory, our low-energy
‘‘constants,’’ such as ma, are not really constant at all,
but depend upon moduli. In this case the modulus of
interest is that controlling the area of the cycle giving us
the axion. S depends on this area, and so we can choose to
identify S ¼ C� for some modulus field �, and coupling
C. Equation (2) then implies that axions and moduli are
coupled.
This modulus must be stabilized nonperturbatively [68].

Typical potentials are sums of exponentials (see, for ex-
ample, [7–9,22,69]). These considerations led, in [49], to
the following potential being studied for a coupled axion-
modulus system2:

Vð�;�Þ ¼ Be�2C� �De�C� þ 1
2M

2e�C��2 þ ��; (4)

where �� is the cosmological constant, added arbitrarily
in this model so that whatever value the potential takes
today can be made consistent with observations. We also
have M2 ¼ �4=f2a. The total Lagrangian is then of the
form:

L ¼ 1
2ð@�Þ2 þ 1

2ð@�Þ2 � Vð�;�Þ: (5)

There is one important caveat to this picture: by taking
fa fixed we are implicitly assuming small modulus varia-
tions. This greatly simplifies our system, since if we al-
lowed for the variation of fað�Þ this would change the
canonical normalization of the axion kinetic terms, and
introduce kinetic mixing between the � and � fields. This
effect could introduce new phenomenology in extreme
trajectories with large ��=�, for example the possibility
of chaotic behavior, but we defer study of this to a future
work.3 We make some comments on the effect on the
potential in Sec. V.
We assume that the axion and modulus fields evolve in a

spatially flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) background containing the bare cosmological
constant, ��, and a single fluid with baryotropic equation
of state Pb ¼ ð�b � 1Þ�b, where �b is a constant, 0 �
�b � 2. For radiation �b ¼ 4=3 or for dust CDM �b ¼
1. In standard cosmic time the evolution equations are

€� ¼ �3H _�� @V

@�
; €� ¼ �3H _�� @V

@�
;

_�b ¼ �3H�b�b; _H ¼ �1
2½�b�b þ _�2 þ _�2�:

(6)

1In [49] this mean was misquoted. A forthcoming erratum will
correct this. The argument and scales in that work should follow
from a higher scale of SUSY breaking.

2(i) The general form of the potential we study fits into the
class of models of ‘‘generalized assisted inflation’’ [70–72],
though we mainly emphasize its use for quintessence, rather
than inflationary, purposes. (ii) At large values of �, loop effects
will eventually cause the potential to rise again, as in [9,73]. We
do not consider such contributions. Our conclusions only depend
on having a sufficiently long, flat region of the potential before
these effects kick in, but we do not compute the scales of
parameters necessary for this.

3We thank John March-Russell for pointing this fact out to us.
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These are subject to the Friedmann constraint

3H2 ¼ �b þ �� þ �� þ ��; (7)

where we have assumed that we can define the following
distinct densities and pressures:

�� ¼ 1
2
_�2 þUð�;�Þ; P� ¼ 1

2
_�2 �Uð�;�Þ;

�� ¼ 1
2
_�2 þ VBð�Þ � VDð�Þ;

P� ¼ 1
2
_�2 � VBð�Þ þ VDð�Þ;

(8)

by splitting the potential as

Vð�;�Þ ¼ VBð�Þ � VDð�Þ þUð�;�Þ þ ��; (9)

where

VBð�Þ ¼ Be�2C�; VDð�Þ ¼ De�C�;

Uð�;�Þ ¼ 1
2e

�C�M2�2:
(10)

We note that the split in these cases between dark matter
and dark energy is somewhat arbitrary [74]. When scalar
fields begin oscillating, they redshift and cluster as dark
matter, with an individual equation of state w�� ! 0, but

the modulus term also has a vacuum expectation value
(VEV), behaving as a cosmological constant. Slow roll
and the inclusion of �� muddy the waters further. Also,
it is completely arbitrary in the presence of coupling to
place Uð�;�Þ in ��.

In the axiverse as presented in [21] all moduli were
assumed to be absolutely stabilized. The different sizes at
which they were stabilized led to the different masses for
the axions. Some were stabilized at larger values than
others in order to make some axions light, but the differ-
ences are not hierarchical. Assuming absolute stability
implied that the moduli were heavy and lived in their
global minimum. The axiverse has been concretely real-
ized in the moduli stabilization scheme of [22]. In the
scheme of [9], moduli were stabilized at hierarchically
different values, which allowed some moduli to remain
very light. In this picture the axion phenomenology is not
considered, and they are set to their vacuum values at zero.
This is perfectly well justified even for light axions if all we
are concerned with is the existence of a stable minimum for
the moduli and in calculating their masses at this mini-
mum, but if the axion evolution is our focus, then their
possible effects on the moduli cannot be ignored. In both
[9,22] only a handful of fields were considered, not the
hundreds motivated in the axiverse. Here we take inspira-
tion from the success of these models and apply to it the
spirit of optimism of the axiverse to look for phenomenol-
ogy in a larger arena of possibilities.

C. Cosmic overview

Here we give an overview of a scenario that may lead to
the realization of the initial conditions appropriate to our
model, and the picture of cosmic history that emerges.

We will assume that the Universe begins in an eternally
inflating de Sitter (dS) false vacuum. This vacuum decays
via tunneling and bubble nucleation [75] into the standard
phase of slow-roll inflation required to generate the pri-
mordial power spectrum. It must also be assumed that
initial conditions on the axion and modulus fields are laid
down prior to inflation. After slow-roll inflation ends, the
inflaton decays and reheats the Universe. We will consider
the toy model of a postinflation universe consisting only of
matter, radiation, and the axion and modulus field conden-
sates contributing a dark sector energy density as described
in [49].
In [49], initial conditions were such that the modulus

began at a large value�i and the axion massma ¼ M2e�C�

was cosmologically light, ma ¼ Oð1� 1010ÞH0. This
modulus initial condition was not at the local minimum
of the potential, h�ið�Þ. The axion initial condition �i is
set at the Peccei-Quinn (PQ) phase transition by sponta-
neous symmetry breaking [29,76]. There are two logical
possibilities for modulus evolution: there is a local modu-
lus minimum at �i, or there is not. If there is a minimum,
and the modulus is sufficiently heavy to overcome Hubble
friction, it will, like the inflaton before it, roll to the local
minimum, while the light axion frozen at �i prevents it
from reaching the global minimum. If there is no local
minimum, then the modulus will roll to yet larger values
until stopped by Hubble friction, only decaying to a local
minimum once one exists (see e.g. [77]).4 Under these
conditions, although the modulus and axion masses at the
global minimum could be large (e.g. string/Planck scale),
interactions instead freeze the modulus either in its local
minimum, or at �> �i. In both cases, the modulus must
evolve with the axion.
For these initial conditions to be possible the only re-

quirement is that the PQ phase transition and the switching
on of the appropriate instanton effects, which create the
axion condensate and form the coupled potential, happen
before the modulus finds its minimum. Certainly, during
slow-roll inflation there are scalar fields yet to find their
minima: the inflaton itself is one such field. It is not
unreasonable to assume that there are other moduli present
that also exist away from their minima. Indeed, this is the
case in any model of multifield inflation and is the string
interpretation of any quintessence model. This is also the
expectation for the postinflation, pre-hot-big-bang phase in
string cosmology, where the postinflation universe is domi-
nated by the yet-to-decay, matterlike moduli [22,41,80].
The requirement that inflation occurs after the PQ phase

transition, and that the reheat temperature does not restore
the PQ symmetry, is generic to almost all models with
axions as it is required to avoid a cosmological abundance

4These considerations are basically a statement of the
Brustein-Steinhardt problem [78] for this model. Related issues
are discussed in [79].
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of disastrous domain walls and the like [76]. In addition,
string axion models require a low-energy scale of inflation
[21], in part to avoid overproduction of axion isocurvature
perturbations.

After the radiation and matter dominated phases end, the
next stage in the evolution of the Universe again has a
number of possibilities depending on the axion and modu-
lus fields. The additional cosmological constant in the
potential, ��, can be regarded as the usual leftover con-
tribution to the vacuum energy. It has contributions which
reduce it over time after spontaneous symmetry breaking
(e.g. at the electroweak transition), positive contributions
from dS stabilized moduli and vacuum fluctuations of
quantum fields, and negative contributions from anti–
de Sitter (AdS) stabilized moduli (see e.g. [6]). The value
of this constant relative to the potential minimum in the
axion and modulus fields determines the fate of the
Universe.

If the axion and modulus fields are heavy and their field
values are small, such that they are oscillating about, or
slowly rolling into, their global minimum during the
present epoch, then the scenario will be much like any
other quintessence or axion dark matter scenario. The
value of the total cosmological constant in the bottom of
the potential must be small, and of the correct magnitude to
account for the observed accelerated expansion of the
Universe. However, if the fields are light enough and their
initial values large enough that they are on the plateau of
the potential, then the phenomenology can be quite differ-
ent. Here, the potential energy of the axion and modulus
are a small contribution, and the current accelerated ex-
pansion will be driven almost entirely by ��, as was the
case in [49].

However, as also described in [49], the axion-modulus
system is only quasistable: eventually axion oscillations
will decay and the modulus will find the global minimum.
Depending on the initial conditions and the parameters in
the potential it is possible to arrange for an acceptable
cosmology where the vacuum energy at the global mini-
mum is either positive, negative, or indeed zero. If the
vacuum energy is negative then the decay of the modulus
will trigger rapid cosmological collapse, rather than life in
a stable AdS state [75,81,82]. In the case where it is
positive, then a scenario such as explored in [83] will
ensue.

III. AXION-MODULUS DYNAMICS AND THE
COUPLED POTENTIAL

Before we begin our detailed dynamical systems analy-
sis in Sec. IV, we aim to give here some basic intuition
about the types of phenomena possible in a cosmology
with coupled scalar fields and an arbitrary vacuum energy.
In particular, we give examples of phenomena not explored
previously in [49]. The examples use arbitrary values of the
parameters and are for illustration only.

A. Local minima, the adiabatic trajectory,
and an effective potential

The form of the potential is such that there is just one
minimum, when the axion is at zero. However, for light
axions, most of cosmic history5 is spent away from this
global minimum. The form of the coupling between axion
and modulus then means that the moduli, too, will live
away from their global minimum and consequently moduli
must evolve during the course of cosmic history.
We find that the local minimum in the modulus direction

as a function of the axion background is

h�ið�Þ ¼ � 1

C
ln

�
1

2!2

�
1� �2

6
�2

��
; (11)

where

� ¼
ffiffiffiffiffiffiffiffiffiffi
3M2

D

s
; (12)

and !2 ¼ B=D. We plot this trajectory on the potential
surface in Fig. 1.
The existence of the global minimum at positive modu-

lus translates into the bound: !> 1ffiffi
2

p . We also find that

there is no local modulus minimum for large axion field
values:

�>

ffiffiffi
6

p
�

� ~� ) no modulus minimum: (13)

That is to say for large axion field values, the correspond-
ing modulus will become destabilized.6 The disappearance
of the minimum at large axion field values is precisely the
appearance of the ‘‘valley walls’’ in the potential, as de-
scribed in [49].
When the axion has a periodic potential, canonically of

the form Uð�Þ ¼ 1� cosð�Þ, then the axion has a maxi-
mum field value at � ¼ 	. Such a periodic field can spoil
the local modulus minimum when

�4

D
>

1

2
: (14)

Equations (13) and (14) show that if the natural scales in
the axion potential (either M2 or �4) arising from non-
perturbative physics, are of the same order or slightly
larger than the natural scales in the modulus potential (in
this case D), which are also nonperturbative, then destabi-
lization can occur even for small field values. Whether or
not this mild hierarchy of scales occurs in actual models of

5Here ‘‘most of cosmic history’’ is meant in redshift space. In
redshift space coincidence is said to occur for events within, say,
z ¼ 1 of us, which is of order billions of years. The coincidence
problem is in fact much more of a problem forward in time: why
are we not Boltzmann brains in thermal de Sitter space?

6The same is true when the variation of fa with � is taken into
account, but the condition must be found numerically.
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moduli stabilization is not the subject of this work, but we
see no a priori reason why it should not be possible.

If the axion initial conditions are such that field values
are large then the corresponding modulus has no potential
minimum in the early universe. If the axion undergoes
monodromy [83–85] the shift symmetry is broken and
large field values are natural. For smaller axion field values
this condition can still be satisfied for sufficiently large �2,
or if the bound of Eq. (14) is satisfied.

In the rest of this section we will be concerned with
situations where a local minimum for � does exist. In this
case where there is a local modulus minimum, there is still
interesting physics caused by the axion background. If the
modulus begins life at its local minimum in the frozen
axion background then the fractional change in the modu-
lus field during axion evolution from � ¼ �i to � ¼ 0 is

��

h�ið0Þ ¼ j�faj
fa;i

¼
lnð1� ð�i

~�
Þ2Þ

lnð 1
2!2Þ : (15)

This ratio blows up when �i ¼ ~�, where the modulus is
destabilized and the local minimum is at fa;i ¼ 0.

However, it remains Oð1Þ for �< ~�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2!2

q
. As we

will see, ! does not appear in our dynamical system
analysis and so can be picked arbitrarily large (correspond-
ing to stabilizing the modulus at larger and larger values)
and these results can be made insensitive to the approxi-
mation that fa is fixed. For the consistency of our assump-
tion that PQ symmetry is broken before inflation, we must
have fa larger than the inflationary energy scale, and it
must remain large enough that the symmetry is never

restored. Two comments are in order here. First, the modu-
lus will never roll out to truly infinite values because of
Hubble friction. Second, however, we may in general ex-
pect trajectories that go from a destabilized region on the
plateau of the potential into the global minimum to require
some fine-tuning in order not to break our assumption of
fixed fa. We will comment more on this later.
The ratio of modulus mass at the start and end of this

trajectory is

m�ðh�ið�iÞÞ
m�ðh�ið0ÞÞ ¼ 1�

�
�i

~�

�
2
: (16)

This ratio can become small as the bound of Eq. (13)
becomes saturated. When this bound is saturated, or nearly
saturated, and if other corrections to the modulus mass are
small,7 then an effective field theory obtained by integrat-
ing out the modulus based on its mass at the global mini-
mum may fail. The potential is anharmonic, and so if the
modulus is displaced far from its local minimum the mass
will not be given by this formula.
The ratio of Eq. (16) occurs also for the axion mass

along this trajectory, implying that in such a situation the
fields cannot change their relative masses during the course
of their evolution. If the modulus is heavier at the global
minimum, it will also be heavier in any local minimum.
This allows for consistency of the assumption above: if the
modulus minimizes first it should be a good approximation
in this case to consider the trajectory as being h�ið�Þ. We
will call this trajectory the adiabatic trajectory, i.e. the one
that the modulus follows if it is always heavy enough to
return to equilibrium sufficiently quickly as the axion rolls.
We can obtain an effective potential for the axion that

approximates the full effective field theory description by
substituting the adiabatic trajectory for the modulus back
into the potential of Eq. (4):

Veffð�Þ ¼ 1

2!2

�
1� �2

6
�2

��
B

2!2

�
1� �2

6
�2

�

�DþM2

2
�2

�
þ ��: (17)

This potential differs from the harmonic potential by be-

coming flat as � ! ~�. Beyond � ¼ ~� it should not be
used.
During this evolution the fields follow a curved trajec-

tory in field space, just like in multifield inflation, with the
axion and modulus both always moving to smaller values
and becoming heavier. Therefore the normal course of
cosmic evolution will not endanger late time stability.
However, as the bound of Eq. (13) becomes saturated we
should see that axions and moduli undergo significant
evolution in their masses while moving toward the global

FIG. 1 (color online). The potential of Eq. (4) near the global
minimum, for arbitrary parameters. In red (nonconstant curva-
ture), the adiabatic trajectory: the modulus minimum as a
function of � [Eq. (11)]. When � takes large values [defined
by Eq. (13)], the minimum at finite � is destroyed. In purple
(parabola), the naive trajectory: the axion potential at fixed � ¼
h�ið0Þ. For a heavy modulus the adiabatic trajectory will be
followed, which is shallower near the minimum than the naive
trajectory.

7For example, suitable decoupling occurs in the scenario of
[9].
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minimum. If the axion is light in the current epoch then this
evolution will still be occurring.

Again drawing the analogy to multifield inflation, even if
the evolution in the modulus direction is slight, a tight turn
in the field space trajectory may lead to observable features
in the axion power spectrum [86,87]. Such tight turns do
not appear possible in the potential we study, and we also
will not be considering the effect of inhomogeneous
perturbations.

We finally note here that if the amplitude of axion
oscillations were allowed to grow, such as in the scenario
explored in [25] where axion oscillations are amplified by
the Penrose process near a black hole, then this may also
lead to novel effects on the modulus sector and the vacuum
energy.

B. Dynamics in phase space and the equation of state

The value of the vacuum energy (which should not be
confused with the scale of the potential in Sec. II), � ¼
Vð0; h�iÞ, which includes the �� contribution, is a free
parameter in our model. Its sign controls the topology of
phase space [88]. We show this effect in our model in

Fig. 2, where we plot trajectories in f�; _�;Hg phase space
obtained by numerically solving the equations of motion
[Eqs. (6)]. With �> 0 the trajectories are confined to the
expanding branch, H > 0 (or if Hi < 0, the contracting
branch), and the phase space is disconnected. With
�< 0 it is possible for the total energy density to go to

zero, and so H ! 0 connecting the expanding and con-
tracting branches and making phase space connected.
WhenH ¼ 0 the evolution of the scale factor turns over,

such that with �< 0 the Universe expands and then con-
tracts to a big crunch despite, in these cases, having zero
curvature (see e.g. [89] and references therein). We plot the
evolution of the scale factor for �< 0 in Fig. 3.
The trajectories of Fig. 2 all begin at the local modulus

minimum, h�ið�iÞ, with stationary fields in a fluid domi-
nated universe, and �i takes various values between 0 and
~�. We begin at time t ¼ 0, a ¼ 1 during matter domina-
tion and look at the evolution toward the dark energy
universe of today. We have shown trajectories given by
evolution in the full potential (dashed lines), and in the
effective potential (solid lines). Those trajectories with
large initial axion field values in the full potential depart
from the evolution in the effective potential. This is be-
cause at large axion values the modulus is light and the
adiabatic assumption is no longer good enough. The scale
factor evolution for �< 0 is shown in Fig. 3 and a clear
difference is visible between evolution in the two poten-
tials, with the maximum size of the Universe being larger
when the full potential is used.
We investigate the accuracy of the adiabatic

approximation for �> 0 in Fig. 4, where we give
��=�ðtÞ ¼ 1� h�ið�Þ=� in percent. We see that at early
times the trajectories with large initial� depart by as much
as 25% from the adiabatic trajectory. All trajectories

FIG. 2. Phase space topology in f�; _�;Hg. Left panel:�> 0, with evolution to a minimumH. Right panel:�< 0, trajectories spiral
throughH ¼ 0 and the Universe collapses. Dashed lines are for evolution in the full potential, and solid lines in the adiabatic potential,
where the modulus remains always in its local minimum.
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undergo damped oscillations about the adiabatic trajectory
as the modulus mass increases over time.

We conclude this section by commenting on the effect of
the combined axion-modulus oscillations about the mini-
mum on the dark energy equation of state. With�> 0 and
at least one light field (conservatively, an axion of the
axiverse), the fields at or close to their initial values can
come to dominate the energy density as dark energy, yet
still be evolving toward, and oscillating about, the true
vacuum at late times. We show the effect of this on the
equation of state w���¼ð��þ��þ��Þ=ðP�þP����Þ
in Fig. 5, for the trajectories of Fig. 2 (left panel), again
comparing the cases of the effective potential and the full
potential.

In this evolution, the dark energy axion-modulus fluid is
already dominating the energy density at early times, t�
100, with w � �1. However, w is rising as the fields move

toward the minimum leading to large departures from
w ¼ �1. For large axion initial values in the full potential
this motion is delayed andw remains flatter for longer. In all
cases, as oscillations begin w rises so much as to halt
accelerated expansion altogether (w>�1=3). The positive
value of� in the true vacuummeans that at late timeswwill
relax to exactly�1 and that w is bounded to�1 � w � 1.
This bound does not hold for a negative potential [54],
indeed jw�j> 1 was observed for this potential in [49].

IV. DYNAMICAL SYSTEMS ANALYSIS

To delineate the regions of parameter space that may
give rise to acceptable and interesting cosmological phe-
nomenology we perform a dynamical systems analysis by
transforming the coupled axion-modulus system into au-
tonomous form. The axion and modulus fields and the
perfect baryotropic fluid evolve according to Eqs. (6),
subject to the Friedmann constraint Eq. (7).

A. Autonomous system

Following [90] we make the change of variables:

x �
_�ffiffiffi
6

p
H
; y � _�ffiffiffi

6
p

H
; z � 1

H

ffiffiffiffiffiffi
VB

3

s
;

r � 1

H

ffiffiffiffiffiffiffi
VD

3

s
; s � 1

H

ffiffiffiffi
U

3

s
; t � 1

H

ffiffiffiffiffiffiffi
��

3

r
:

(18)

The evolution Eqs. (6) can then be transformed into au-
tonomous form X0 ¼ fðXÞ, where X is the column vector
of compact variables and fðXÞ is the corresponding column
vector constituting the autonomous system equations:

0 500 1000 1500
0
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6
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10

t

a

FIG. 3. The evolution of the scale factor for �< 0, showing a
turnover and collapse of the Universe despite there being zero
curvature. Again, dotted lines are for evolution in the full
potential, while solid lines are in the adiabatic effective potential.
Bottom to top corresponds to increasing �i ! ~�. At large � the
Universe reaches a larger size when the full potential is used.
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15

20

t

FIG. 4 (color online). Comparing modulus evolution for mo-
tion in the full potential versus motion in the adiabatic effective
potential with �> 0. The modulus always begins in the local
minimum. Lines from bottom (light blue) to top (dark blue)
represent increasingly large axion initial field values. The modu-
lus departs by up to 25% from the adiabatic trajectory when the
initial value of the axion field is large.
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FIG. 5. The dark energy (DE) equation of state for �> 0.
Dotted lines are for motion in the full potential, solid lines for
motion in the adiabatic effective potential. Left to right lines have
increasing�i ! ~�. DE has come to dominate the energy density
around t ¼ 100, but later both theDE and total equation of state go
back above w ¼ �1=3 (horizontal line), temporarily halting
accelerated expansion. In the most extreme case of large �i in
the full potential this can happen even when the equation of state
today is very flat and close tow ¼ �1. The late time expansion is
asymptotically dS as the fields relax into the minimum.
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x0 ¼ �
�
H0

H
þ 3

�
x� �rs;

y0 ¼ �
�
H0

H
þ 3

�
y�

ffiffiffi
3

2

s
C½r2 � s2 � 2z2�;

z0 ¼ �
�
H0

H
þ ffiffiffi

6
p

Cy

�
z; r0 ¼ �

�
H0
H þ

ffiffi
3
2

q
Cy

�
r;

s0 ¼ �
�
H0

H
þ

ffiffiffi
3

2

s
Cy

�
sþ �xr; t0 ¼ �H0

H
t;

(19)

with

H0

H
¼�3

2
�bð1�x2�s2�y2�z2þr2� t2Þ�3x2�3y2;

(20)

where � was defined in Eq. (12).
Here, a prime denotes differentiation with respect to the

number of e-foldings N � lnðaÞ. The dimensionless den-
sity parameters �i � �i=3H

2 of the cosmic components i
can be expressed as

�� ¼ x2 þ s2; �� ¼ y2 þ z2 � r2; �� ¼ t2;

(21)

and furthermore, flatness imposes

�b ¼ 1� ðx2 þ s2 þ y2 þ z2 � r2 þ t2Þ: (22)

At this point some comments on the system (19) are in
order. Notice that due to the negative contribution from VD

in the modulus potential, trajectories are not confined to the
unit hypersphere in the full phase space. The set of phase
space variables fx; y; z; r; s; tg is of one dimension more

than the actual f�; _�;�; _�;Hg degrees of freedom. This is
because there is a relation that exists between the phase
space variables, which provides an additional constraint
and defines a surface on which the motion takes place, just
like the Friedmann constraint gives the topology of phase
space in [88]. The constraint is

t2z2

r4
¼ B��

D2
� �; (23)

which is a simple consequence of the definitions of the
variables and the form of the potential. Trajectories are
confined to live on this plane, defined by the choice of
initial conditions. There is a simple interpretation of this
that will help us visualize phase space: Choosing � corre-
sponds to a choice of sign for the vacuum energy, including
the bare cosmological constant. Combining Eqs. (4) and
(11) and � ¼ 0 to get the vacuum energy hVi ¼ �:

� ¼ D2

B

�
� � 1

4

�
: (24)

The Minkowski vacuum is given by � ¼ 1
4 , while � < 1

4 is

an AdS vacuum, and � > 1
4 is a dS vacuum (we show the

planes for three values of � in Fig. 6, which we will discuss

in more detail later), but we note that � does not set the
scale of the vacuum energy. This would be fixed observa-
tionally if we were to want the vacuum to give us the
correct H0, but this is not necessary: hVi can be much
less than this, but not greater.
Furthermore, this geometrical picture of surfaces in the

fz; r; tg subspace can give another view on the boundedness
of trajectories and topology of phase space discussed in
Sec. III in Fig. 2. The requirement of a flat universe
imposes the constraint:

x2 þ y2 þ s2 þ z2 � r2 þ t2 � 1: (25)

Clearly, the location of the hypersurface defined by satu-
ration of the bound moves as the variables evolve, however
we can picture its effect in the limit of heading to the
vacuum x ¼ y ¼ s ¼ 0. Now there is an additional surface
that intersects those of Fig. 6. If one were to plot it, one
would see that it intersects dS surfaces, with � > 1=4,
making an arc below which trajectories are confined, un-
able to reach coordinate infinity. For AdS surfaces, with
� < 1=4, the surface funnels outward, restricting trajecto-
ries to a region of their � surface, but not confining them to
finite values. This is another manifestation of our choice of
dynamical system variables: for a negative vacuum energy
it is possible forH ! 0, where the coordinates diverge and
trajectories on the potential become unconfined.
The plane defined by � ¼ 1

4 , which we will call the

Minkowski plane, therefore divides the phase space into

FIG. 6 (color online). Dynamical constraint surfaces in the
fz; r; tg subspace. The flat meshed (blue) surface corresponds
to the Z plane, which is the minimum of the potential. The
foremost curved (yellow) surface is the constraint for a dS
vacuum with � > 1=4. Next behind it is the Minkowski plane
(green) with � ¼ 1=4. Finally, the rearmost curved surface (red)
is the constraint for an AdS vacuum with � < 1=4. The bold
(red) line on the Z surface corresponds to the critical lineM. We
see that M crosses only dS planes and asymptotes to the
Minkowski plane at coordinate infinity, while the minimum
surface crosses all � planes on a line. The noncrossing of fixed
lineM with surfaces of � < 1=4 is another geometric illustration
of the instability of a negative potential to collapse.
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three: above the Minkowski plane, phase space is bounded,
and the collapsing and expanding universe branches (z, r, s,
t < 0 and z, r, s, t > 0 respectively) are separated; on the
Minkowski plane the asymptotic future lies at infinity, where
H ¼ 0; below the Minkowski plane, phase space is con-
nected and there are trajectories through infinity that join the
expanding and contracting branches. When the transition is
made from expansion to contraction andH changes sign, all
six variables x, y, z, r, s, t also change sign.

Choosing to work with a phase space of one higher
dimension is useful for our analysis of fixed points, since
it allows us to see what happens when one or more of these
variables can be approximated as vanishing relative to the
others, for example z and r vanish as the modulus goes to
large values, and t vanishes in the early universe. When
H ¼ 0 our variables diverge and so the system (19) cannot
be evolved through the transition between expanding (Hþ)
and contracting (H�) universes. It is actually possible to
construct a set of compact variables which remain finite at
H ¼ 0:

xQ �
_�ffiffiffi
2

p
Q
; yQ � _�ffiffiffi

2
p

Q
; zQ �

ffiffiffiffiffiffi
VB

p
Q

;

sQ �
ffiffiffiffi
U

p
Q

; tQ �
ffiffiffiffiffiffiffi
��

p
Q

;

(26)

where

Q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2 þ VD

q
: (27)

These variables are similar to those defined in [91]. Since
VD is positive definite, Q always remains well defined.
Defining a new independent variable ð0Þ ¼ 1

Q
d
dt one can

transform the evolution Eqs. (6) and (7) into autonomous
form. This alternative autonomous system is given in
Appendix B. These compact variables, XQ, are related to

our original compact variables X [Eqs. (18)] by

X ¼ XQr̂; r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
; (28)

where rwas defined in Eqs. (18).We have kept our variables
finite at H ¼ 0, at the expense of losing the intuitive de-
scription of the division of phase space provided by the
vacuum constraint Eq. (23), since the XQ system has the

minimally required dimensionality. For this reason we con-
tent ourselves with describing the axion-modulus system in
terms of the variables of Eqs. (18), and do not study the
transition at H ¼ 0 explicitly. We will occasionally make
use of theXQ variables to numerically show the evolution of

phase space trajectories.

B. Fixed points

The fixed (critical) points Xc of the autonomous system
(19) are extracted by satisfying X0 ¼ 0 and are listed,
along with their conditions for existence, in Table II.
Figures 7 and 8 show the evolution of the system near
some of these points. As mentioned earlier, the positive
(negative) roots in the fz; r; s; tg subspace correspond to
expanding (contracting) universes. In total there are 13
fixed points, four of which are imaginary and so are not
physical and are not listed in Table II. The energy densities
�i, the effective scalar field equation of state, weff ¼
ðP� þ P�Þ=ð�� þ ��Þ and conditions for acceleration

and stability of these fixed points are given in Table III.
A fixed point corresponds to an accelerating solution if

ð1�x2c�y2c�s2c�z2cþr2c� t2cÞ�bþ2x2cþ2y2c<
2
3: (29)

The stability of the fixed points may be determined by
expanding about them, setting X ¼ Xc þ 
X, with 
X
the perturbations of the compact variables defined by
Eqs. (18) considered as a column vector. To first order,
the perturbations satisfy 
X0 ¼ W � 
X, where the matrix
W contains the coefficients of the perturbation equations.
The stability of the fixed points thus depends upon the

TABLE II. The fixed points of the system (19) and the conditions for their existence. Rather than having an isolated fixed point,M is
formed of a continuous line of fixed points, called a critical line. This critical line intersects the � plane at a unique point z ¼ zM given
by Eq. (30).

xc yc zc rc sc tc Existence

A 0 0 0 0 0 0 All �, C, �b

B 0 0 0 0 0 �1 All �, C, �b

C � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p �y 0 0 0 0 �1 � y � 1

D 0
ffiffi
2
3

q
C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3C
2

q
0 0 0 C �

ffiffi
3
2

q
E 0

ffiffi
3
8

q
�b

C � 1
4C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�bð2� �bÞ

p
0 0 0 �b � 2

F 0 Cffiffi
6

p 0 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

6

q
0 C � ffiffiffi

6
p

G 0
ffiffi
3
2

q
�b

C 0 0 � 1
2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�bð2� �bÞ

p
0 �b � 2

I 0 Cffiffi
6

p 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

6 � 1
q

0 0 C 	 ffiffiffi
6

p

M 0 0 �z � ffiffiffi
2

p
z 0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p
All �, C, �b
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nature of the eigenvalues of the matrixW. The full stability
analysis is somewhat cumbersome and may be found in
Appendix A. Here, we give a general summary of the fixed
points and their stability, focusing on the intuitive physics
that the dynamical systems approach provides.

Of the nine fixed points listed in Table II, there are two
trivial solutions: Fixed point A corresponds to the fluid
dominated point where the kinetic and potential compo-
nents of the axion and modulus fields are negligible, while
fixed point B represents the �� dominated solution. Point
A is unstable in both expanding and contracting universes.
Recall the ultimate fate of the Universe is determined by
the value of � . In the presence of a dS vacuum (� > 1=4)
the stability analysis reveals that fixed pointB is associated
with three zero eigenvalues in the fz; r; sg subspace, while
the remaining directions are stable. We say that this is a
marginally stable solution in the sense that there is no
instability growing exponentially, although it could be
unstable to higher orders in the perturbation. To obtain
the strict stability of this solution we would have to go
beyond linear order in perturbation theory, which we do not

pursue as numerical integration of the autonomous system
confirms that this point is ultimately unstable: the asymp-
totic future in the presence of a dS vacuum is the stable
fixed point M, the global axion-modulus potential mini-
mum, which has a larger basin of attraction. The existence
of point B demonstrates the ability of a bare cosmological
constant to overdamp modulus motion for the modulus
beginning life high up on the plateau of its potential,
shielding us from the true vacuum and seeing only the
larger ��. In Fig. 7 we show this temporary ‘‘trapping’’
in fixed point B by plotting trajectories in the fzQ; tQg
subspace. While such a trapping may last for hundreds or
even thousands of e-foldings, the modulus will eventually
begin to roll when its mass overcomes the Hubble damping
and will relax into its minimum.
Rather than having an isolated fixed point, point M is

formed of a continuous line of fixed points, known as an
equilibrium manifold, which we call a critical line. The
emergence of this critical line is due to the fact that we are
working in one dimension more than is required. In one
dimension less, the line would degenerate to a unique
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FIG. 7 (color online). The evolution of phase space trajectories in the presence of a dS vacuum (� ¼ 0:276) obtained by integrating
Eqs. (B1). We set C ¼ 1, �b ¼ 1 and � ¼ 1:87. The compact variables zQ and tQ are related to z and t through Eq. (28). Left panel:

The temporary trapping of the zQ and tQ trajectories in fixed point B before the modulus begins to roll, finding its minimum at fixed

point M. Saturation of the bound C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 ð� � 1

4Þ
q

, Eq. (32), results in late-time modulus oscillations, which are seen in the figure as

trajectories spiraling into M. Right panel: tQ as a function of N, the number of e-foldings.

TABLE III. Properties of the fixed points given in Table II for an expanding universe. For M, the contribution from �� has been
included in weff .

�� �� �� �b €a > 0? weff Stability

A 0 0 0 1 Never 0 Unstable

B 0 0 1 0 Always �1 Marginally stable

C 1� y2 y2 0 0 Never 1 Unstable

D 0 1 0 0 C<
ffiffi
1
2

q
�1þ 4

3C
2 Unstable

E 0 3
4
�b

C2 0 1� 3
4
�b

C2 Never 3
4
�bð�b�1Þ

C2 Unstable

F 1� C2

6
C2

6 0 0 C<
ffiffiffi
2

p �1þ 1
3C

2 Unstable

G 3
2
�bð2��bÞ

C2
3
2

�2
b

C2 0 1� 3�b

C2 Never 3�bð�b�1Þ
C2 Unstable

I 0 1 0 0 C<
ffiffiffi
2

p �1þ 1
3C

2 Unstable

M 0 �z2 z2 þ 1 0 Always �1 Stable
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point, which is given by the intersection of M with the
� plane,

zM ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� � 1

p ; (30)

which clearly only exists for � > 1
4 . That is to say, the

absolute potential minimum defined by the stable fixed
point M is only a fixed point in the presence of a dS
vacuum and corresponds to the asymptotic future. If
� < 1

4 the global minimum is not a fixed point, and the

asymptotic future is cosmic doomsday in a big crunch as
will be discussed below. The global minimum is expressed
in terms of the autonomous system variables by substitut-
ing z ¼ zM in M. We finally note that the line M can
equally be derived as the intersection of the minimum
surface with the saturation of the flatness constraint in
the potential dominated regime, z2 � r2 þ t2 ¼ 1.

As well as confirming that M is stable for � > 1
4 , the

stability analysis reveals two bifurcation points that lie
along it:

z ¼
ffiffiffiffiffiffiffiffiffi
3

8C2

s
; and z ¼

ffiffiffiffiffiffiffiffiffi
9

8�2

s
: (31)

These bifurcation points are obtained by setting the quan-
tity under the square root in the eigenvalues �1;2 and �4;5 of

Eq. (A11) to zero and solving for z. For M to be a stable

node in the fy; z; rg subspace, z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=8C2

p
, otherwise it is a

stable spiral, while for point M to be a stable node in the

fx; sg subspace, z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=8�2

p
, otherwise it is a stable spiral.

The vacuum surface � , determined by B, �� and D,
dictates which side of the bifurcation points zM lies. We
have the conditions

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

2

�
� � 1

4

�s
; and C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
� � 1

4

�s
; (32)

which are derived by setting z ¼ zM in Eq. (31). The
stability analysis has elegantly revealed the conditions
for late-time oscillations of the axion and modulus fields:
violation of the � condition corresponds to axion oscilla-
tions, while violation of the C condition corresponds to
modulus oscillations. Figure 7 shows an example of late-
time modulus oscillations as the trajectories spiral into the
point zM. The time scale of the axion oscillations are
determined by �, C and also �i. If the vacuum is chosen
to be Minkowski, the conditions (32) simply become � �
0 and C � 0, which are never satisfied for the parameter
values considered in this work and so axion and modulus
oscillations are inevitable.

There is another plane which is of interest in the fz; r; tg
subspace, which defines the minimum of the potential itself

at h�i. At h�i, r ¼ ffiffiffi
2

p
z, which defines the plane, and the

critical lineM lives here. This plane, which we will callZ,

crosses the � plane on a line. Trajectories along this line
are those living in the minimum and leading to the asymp-
totic future, either at the crossing point of M in a dS
vacuum, or ultimately leading to collapse in an AdS vac-
uum. Trajectories crossing this line are modulus passages
through, or oscillations about, the minimum. Trajectories
in the full 6D space, however, never cross each other: these
are oscillations and static passages along the Z� � cross-
ing and are separated in the y direction. These surfaces are
shown in the expanding octant of the fz; r; tg plot in Fig. 6,
where we see the crossing of Z along a line in the dS,
Minkowski and AdS example � planes, M lying in the Z
plane, and crossing the dS plane at a point.
Fixed point C is the second critical line of the system,

corresponding to an axion-modulus kinetic dominated
(stiff fluid) solution. This critical line is the unit circle x2c þ
y2c ¼ 1 and is a symmetry of the autonomous system with
zc ¼ rc ¼ sc ¼ tc ¼ 0. This is the usual enhancement of
symmetry for massless scalar fields. In an expanding uni-
verse (where stability is ensured by negative eigenvalues of
W), this point is always unstable. For a collapsing universe,
a fixed point is stable if the eigenvalues of W are positive.
This is because the ‘‘time’’ variable N � lnðaÞ of the au-
tonomous system becomes a decreasing function of time.
Hence, critical line C is stable in a collapsing universe and
corresponds to the asymptotic future of any model with an
AdS vacuum. This is consistent with the pre-big bang
cosmology [2,13] late time attractor solutions. The particu-
lar fixed point alongC that the system will finally evolve to
will depend upon the initial conditions of the system.
Similarly to the phase space dynamics in the presence of a
dS vacuum, the only possibility to save us from this big
crunch cosmic doomsday is a temporary trapping in fixed
point B. This situation was seen in the examples of [49]
whenever �� domination sets in before collapse and is
achieved for large initial modulus values. This period of
dS inflation would only be temporary however and the
modulus will quickly relax into its AdS vacuum signaling
cosmological collapse and leading to eventual decompacti-
fication as described in [92]. This is demonstrated in the
example plot of Fig. 9: the growing kinetic energy of the
modulus as a ! 0 drives it to large values.
All other fixed points are unstable in the presence of an

AdS or dS vacuum. Points D and E correspond to dynami-
cal modulus stabilization at small modulus values, while I
corresponds to dynamical stabilization at large field values.
This is of course only a metastability, since these fixed
points are unstable. Point E is also a scaling solution, on
which the axion energy density vanishes (�� ¼ 0) and

the modulus energy density scales with the dominant
background fluid:

�� ¼ 9H2
i

4C2
�b

�
a

ai

��3�b

; w� ¼ 3

4

�bð�b � 1Þ
C2

: (33)
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Hence, the modulus tracks the dominant background fluid
and ��=�b remains constant.

Fixed point F represents a solution dominated by the
modulus kinetic energy and the potential energy of the
axion. On this solution, their relative energy densities
and effective equation of state remains fixed:

��

��
¼ 6

C2
� 1; weff ¼ 1

3C
2 � 1: (34)

The repulsive nature of fixed point F is illustrated in the
left panel of Fig. 8. The only fixed point which admits
a nonvanishing background fluid density with a sizable
contribution from both axion and modulus is G. Here,
the modulus energy density is dominated by its kinetic
contribution, while the axion remains frozen, its motion
suppressed by Hubble friction. Both the axion and modulus
track the evolution of the dominant background fluid

�� ¼ 9H2
i

2C2
�bð2� �bÞ

�
a

ai

��3�b

;

�� ¼ 9H2
i

2C2
�2
b

�
a

ai

��3�b

;

(35)

while giving a background density �b ¼ 1� 3�b=C
2.

This dynamical attractor is precisely the axion and modu-
lus tracking behavior that was described in [49]. It is in the
combined equation of state

weff ¼ 3�bð�b � 1Þ
C2

(36)

(rather than the individual equations of state) that we see
tracking as weff tries to follow the equation of state of the
dominant component. Tracking is finally destroyed as
axion oscillations begin, which is the cosmic trigger event
that restabilizers the modulus. We show evolution into this
fixed point in the right panel of Fig. 8.

As a particularly interesting fixed point, we choose to
discuss some additional phenomenology relating to fixed
point G. First we discuss accessibility of the fixed point.

Even in the unbounded coordinates of an AdS minimum,
approximate trapping in G requires variables other than
fy; sg to be approximately zero, and so flatness bounds us
with y2 þ s2 < 1, which defines a circle. This in turn
imposes a constraint on C as a function of �b for G to be
within this region:

C>
ffiffiffiffiffiffiffiffi
3�b

p
; physically accessible G: (37)

An interesting phenomenonwhen entering fixed points in
a multifield model is the possibility of multiple periods of
accelerated expansion [93]. When projected down to the
fy; sg subspace the condition forw<�1=3 in an expanding

universe becomes s >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þ�b�2=3

2��b

q
. The curve defined by satu-

ration of this bound has everywhere positive gradient, and
with a radiation fluid (�b ¼ 4=3) at y ¼ 0 gives s ¼ 1,
touching the circle defined by the flatness constraint.
Hence, in a radiation background, G can never give rise
to an epoch of accelerated expansion as trajectories spiral
into it.
A temporary trapping in point B, where there is a larger

value of cosmological constant than in the true vacuum,
could lead to a single period of accelerated expansion
during an otherwise radiation dominated era. In such a
case, the axion and modulus fields would pick up large
additional isocurvature fluctuations from this brief period
of inflation. This period would end when the fields move
toward their vacuum, and as such the global minimum
would have to be dS.
The situation forG in this regard is more interesting in a

matter dominated background, �b ¼ 1, and is pictured in
Fig. 10. Here we see that it is possible to have both a flat
universe and w<�1=3 in a fy; sg dominated phase.
Trajectories in the fy; sg subspace will spiral into G if the
eigenvalues of the stability matrix W (that point in the
fy; sg directions) have an imaginary part. The stability
analysis [see Appendix A, Eq. (A8)] reveals that this is
the case if
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FIG. 8 (color online). The evolution of phase space trajectories in the presence of a dS vacuum obtained by integrating Eqs. (19).
Left panel: Trajectories repelled from the unstable fixed point F and heading for the global potential minimum at M. We set � ¼ 1:0,
C ¼ 0:5, �b ¼ 4=3 and � ¼ 1:732. Right panel: Trajectories spiraling into the unstable fixed point G, before the modulus finds the
global potential minimum at M. We set � ¼ 1:0, C ¼ 10:0, �b ¼ 4=3 and � ¼ 10:0.

COSMOLOGY OF AXIONS AND MODULI: A DYNAMICAL . . . PHYSICAL REVIEW D 86, 023508 (2012)

023508-13



C3 � 8C2 þ 24> 0: (38)

For the parameter space of interest, C> 0, this bound is

satisfied for C< 2 and C> 3þ ffiffiffiffiffiffi
21

p � 7:6. For any C
between these two values, the eigenvalues are real and
trajectories will not spiral intoG but move in straight lines,
and so cannot cross w<�1=3. When Eq. (38) is satisfied
however, the trajectories in fy; sg can spiral toward G,
having the possibility of crossing the w<�1=3 bound,
perhaps multiple times. So, trajectories approaching this
fixed point can lead to multiple periods of accelerated
expansion during a matter dominated epoch. This phe-
nomenon is extremely tightly constrained: such an epoch
of acceleration must be less than 0.05 e-folds long [94].

C. Scanning parameter space

Since the systems of Eqs. (19) are first order and au-
tonomous, they are very quick to integrate numerically. We
exploit this nice property by performing a ‘‘scan’’ of the
model parameter space around regions of interest, selecting
particular scenarios to investigate more systematically. We
use our scans to further our qualitative understanding of the
phenomenology of the model and to locate and single out
specific novel features.
The autonomous system has eight different para-

meters which determine the subsequent motion of any
given trajectory in phase space: six initial conditions,
fxi; yi; zi; ri; si; tig and two parameters, fC;�g. To ensure
that this rather large parameter space is sampled in a
uniform and efficient way, we use the method outlined in
Appendix C.
We briefly describe this process for initial conditions

chosen to be close to fixed point A, i.e. beginning in the
fluid dominated phase with a nonvanishing background
fluid density, �bðinitialÞ. It is trivially generalized to the
case of any other fixed point. ForA, with only some loss of
generality, we make the simplifying assumption that the
axion and modulus fields begin frozen, xi ¼ yi ¼ 0. Then,
using the Friedmann constraint, Eq. (22), and the vacuum
constraint, Eq. (23), we have

s2i ¼ p� �
r4i
z2i

þ r2i � z2i ; (39)

initially. Here, p ¼ 1��bðinitialÞ. The initial conditions
are constrained to lie on this three-dimensional manifold,
which we will call M. Scanning the initial conditions of
the system then reduces to varying two initial conditions
evenly over M with the third constrained by the equation
for M. We choose to vary zi and ri, while still being
free to independently vary fC;�g. Since M has non-
constant curvature, it is not trivial to sample it in a
uniform way and so we use a statistical sampling method
which is presented in Appendix C. Choosing a value of
p � 0:01 [�bðinitialÞ � 0:99] is our definition of near to
fixed point A.
Before we present the results of our numerical scans, it

will further add to our intuition to briefly discuss the
change in topology of the initial condition manifold on
either side of � ¼ 1=4. If the vacuum is dS, � > 1

4 , the

surface area of the manifold above some value s ¼ smin is
finite. For � � 1

4 (AdS andMinkowski vacua), the manifold

is not bounded above smin and its surface area is infinite.
Suppressing the subscript i for brevity, this change in
topology is best illustrated by solving Eq. (39) at s ¼
smin for z. This generates two physically relevant roots as
a function of r which describe the curves where M
intersects the s ¼ smin plane. These two curves meet at a
point, rmax,

FIG. 9 (color online). Evolution of the modulus field in a
collapsing universe. As a ! 0 at t� 10�1 the kinetic energy
grows and dominates in fixed point C and the field value
diverges. Since this would happen to all scalar fields and hence
all moduli, this signals decompactification near a crunch. In this
example plot the units and parameter values are all arbitrary.
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FIG. 10 (color online). Constraints relevant to trajectories
approaching the quasistable fixed point G with a background
matter fluid, �b ¼ 1. The blue shaded region under the semi-
circle is the region allowed by the Friedmann constraint. The
hyperbola bounds accelerated expansion, with the red shaded
region having w>�1=3. The two points represent fixed pointG
for s > 0. For C>

ffiffiffi
3

p
these lie inside the allowed region. We

conclude that it is possible for trajectories approaching G to
cross the w ¼ �1=3 divide if they spiral as they do so, possibly
leading to multiple epochs of accelerated expansion.
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rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� s2minÞð1þ 2

ffiffiffi
�

p Þ
4� � 1

s
: (40)

One can also obtain equations for the two M-smin inter-
section curves as a function of z. These two curves meet at

zmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ðp� s2minÞ

4� � 1

s
: (41)

Equations (40) and (41) illustrate the change in topology of
M: for � ¼ 1=4, rmax, zmax ! 1, while for � < 1=4, rmax,
zmax 2 C. In both cases, the manifold never intersects the
s ¼ smin plane. Only for � > 1=4 is the surface area of the
manifold bounded above smin. This is another clear ex-
ample of the genuine change in the geometry of phase
space when the vacuum is chosen to be either dS or AdS.

We now begin to discuss the results and findings of our
numerical analysis. Our ability to perform scans of this
kind has many possible applications for investigating the
cosmological phenomenology of our model. Here we
choose to simply show some examples that illustrate the
capabilities of our technique. All models we present have a
dust background fluid, �b ¼ 1 and a dS vacuum. We run
two large simulations: FP-A and FP-G. For simulation
FP-A, we evolve 562 500 models, each chosen to begin
in fixed point A with �bðinitialÞ ¼ 0:99. We scan fC;�g
evenly in logarithmic space on a 25
 25 grid, and at each
point we use our initial condition algorithm to evenly
sample the space of fzi; ri; sig over M. For FP-A, we
evolve 506 100 models, each chosen to begin near to fixed
point G. Unlike simulation FP-A, we are not free to inde-
pendently vary the initial conditions and C since in fixed

point G, �b ¼ 1� 3=C2. Furthermore, yc ¼
ffiffiffiffiffiffi
3
2

1
C

q
and so

yi � 0. Hence, every time C and yi are changed, the shape
of the initial condition manifold also changes. Therefore
we absorb yi and�b into the parameter p of Eq. (39): p ¼
3
C2 � y2i . We then vary C logarithmically and yi linearly

across a 10
 15 grid and use our initial condition algo-
rithm to evenly sample the space of fzi; ri; sig over M for
each point, fC; yig, where M has a different shape. � is
varied 15 times on a logarithmic scale.

In both simulations, individual models are terminated
under two conditions: either they have settled into fixed
point M for more than 5 e-folds, or, they have run for a
total of more than 500 e-folds. The results are presented so
that at each point in fC;�g space, the average over all
trajectories on M is taken, or alternatively for each point
in fzi; rig space we could average over parameters fC;�g,
i.e. repeated points in any plane have their contour value
averaged.

1. The end of fluid domination

In Fig. 11 we plot in the fC;�g plane, for models from
the FP-A simulation, the number of e-folds, Nefd, from the

beginning of the evolution until the end of fluid domination
when �b < 0:5.
Before analyzing the figure in more detail, it is first

worth thinking about what we should expect from such a
number. The maximum across all models occurred for
Nefd � 5:3 while the minimum occurred for Nefd � 1:5.
It is simple to show from the Friedmann equation that a
�CDM cosmology beginning with �mðinitialÞ ¼ 0:9 will
reach �m ¼ �� ¼ 0:5 after Nefd � 1:5 e-folds. This is
because, in the absence of energy input, a cosmological
constant maximally decreases (1��m): this should be
the limiting case of our model when the fields are
frozen, which indeed it is. On the other hand, a model
beginning at matter-radiation equality at aeq � 10�3 has

ð1��mðinitialÞÞ �Oð10�9Þ, and depending on �m;0 has

6 & Nefd & 7.
In our model Nefd can be increased and approach this

limiting case in three ways. The fields can oscillate before
they overtake the fluid density, they will then scale like
matter, always remaining subdominant and the end of fluid
domination will be caused by the cosmological constant.
Secondly, they could enter a scaling solution, where they
also remain a fixed subdominant fraction of the energy den-
sity. Thirdly, they could roll to the minimum of the potential,
reducing the VEV due to the negative energy term in the
modulus only part of the potential.We see that ourmaximum
ofNefd approaches the limiting case, being slightly below it as
some time is taken for these dynamics to occur.
In Fig. 11 there is a clear correlation of Nefd with the

parameters. Smaller average Nefd occurs for low �, where
the axion mass is small preventing oscillations, and low C
where the scalar field energy density in scaling solutions is
large. Larger average Nefd occurs for large � and C where
oscillations can occur earlier and the energy density in
scaling solutions is smaller.

FIG. 11 (color online). Contour plot of the number of e-folds,
Nefd, when �b < 0:5 for a scan over parameter space of all
models beginning near fixed point A with �b ¼ 0:99 (the FP-A
simulation). Each point in fC;�g represents an average over the
initial condition manifold M.
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When considering models from FP-G we imposed a cut

for all C<
ffiffiffi
3

p
, where G is unphysical (the initial condi-

tions correspond to negative �b). The first difference
observed from fixed point A was a vertical cut giving
very low Nefd at small C. These models had initially very
small �b: the minimum of Nefd output from the code is
Nefd ¼ 0:005 which is our numerical step size in N, i.e. the
models began out of fluid domination. Since C sets the
initial �b for models beginning in G, the general trend of
increasing Nefd with C continued and was dominant, until
at large C and � it gave way to the effects described above
in the case of A. Axion oscillations lead to a decrease in �

to �< ~� and therefore spoiled G after some short time,
decreasing the overall scalar field density. In the case of an
AdS negative potential minimum, these regions whereG is
spoiled would be those that eventually collapse.

2. Multiple periods of accelerated expansion

Motivated by the fact that spiraling trajectories in phase
space may generate multiple periods of accelerated expan-
sion, we scan themodel parameter space for this feature.We
compute the number of periods of accelerated expansion,
N ae, by counting the number of times wtotal ¼

P
iwi�i <

� 1
3 along the model trajectory. Here, i labels the axion and

modulus fields and the dust fluid. If one, or both scalar fields
are oscillating about their minima, the averaged equations
of state �w� and �w� are used in the calculation of wtotal. The

average taken is a moving average and is recalculated every
0.005 e-folds as the trajectory advances in time. We define
the onset of coherent oscillations as the time when the field

velocity ( _� or _�) changes sign for the third time. This
ensures that we do not average any heavily or critically
damped oscillations. This definition is somewhat arbitrary
and so we should expect that N ae may be sensitive to the
definition of the averaging process. Furthermore, for re-
gions of parameter space where the fields are highly oscil-
latory (large C and �), sampling the trajectory every 0.005
e-folds may not be frequent enough to accurately average a
single oscillation. We also note that this sampling rate is
one-tenth of the length of a period of accelerated expansion
allowed by observation. Hence, computing N ae by taking
the moving average of w� and w� is not always the obser-

vationally relevant procedure.
With these limitations acknowledged, we consistently

apply our definition of N ae to every single model in our
simulations. From the FP-A simulation we found that of
our 562 500 models, 17 668 had N ae > 1. Of these, 676
models were terminated after 500 e-folds for not reaching
fixed pointM, so that the multipleN ae can be said to have
definitely occurred near to a fixed point or the local mini-
mum. We also found 54 models with the largestN ae ¼ 8.
Of the remaining models with N ae ¼ 1, 176 599 were
terminated for not reaching M after 500 e-folds, and
were thus still on the potential plateau trapped in B.
N ae may increase in the future for these models, but the

time scale is immense: situating them today, 500 e-folds
gives �t ¼ �N=H0 � 1012–13 yr.8 We stress that we
are not proposing any measure or figure of merit for fine-
tuning in this model, and as such the specific number of
models pertaining to each case does not have any (clear)
meaning.
When considering the distribution ofN ae against fC;�g

we took all models withN ae > 1 and averaged overM as
described above. We found some large regions of parame-
ter space with N ae ¼ 1 over all of M. We also saw that
there was a high density of largeN ae at larger values of C
and intermediate values of �, with one clear peak. We
show these locations schematically in Fig. 12.
Our results also showed an interesting correlation be-

tween three dependent (output) variables where it was
noticed that trajectories with large N ae occurred in those
cosmologies that at the exit from fluid domination (entering
the current epoch) contained only small values of �� and

j��j (it is consistent in this model to have �� < 0 since it

does not contain ��: the total energy density remains al-
ways positive). This, combined with the larger values of C
in these regions, as we will discuss below, suggests that
these models were likely in or near to G (or B) at this time
(again, see the schematic Fig. 12). Small values of j��j and
�� for light axions are those allowed by current data (we

discuss some bounds in Sec. VB) but it is also potentially
detectable with next-generation experiments [26,95]. Our

FIG. 12 (color online). Schematic summary of findings in
fC;�g space. C is the exponent in the modulus potential and
gives the coupling between axion and modulus. � is defined in
Eq. (12) and represents a ratio of scales between the axion and
modulus terms in the potential. They are the only two parameters
that appear in the dynamical system, Eqs. (19). The vertical and
horizontal lines for field oscillations are the conditions of
Eq. (32) for � � 0:3 dS vacuum [see Eqs. (23) and (24)], and
they move in the directions shown for increasing � . The regions
with N ae ¼ 1 periods of accelerated expansion over all initial
conditions only occurred for models from the FP-A simulation.

8The time scale for collapse out of B or G for similar
trajectories with an AdS minimum would be similar.
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scan suggests that such a cosmology could reasonably
expect to undergo multiple periods of accelerated expan-
sion in the future and may have in its past. We restate the
bound from above: Linder [94] showed that an intermediate
epoch of accelerated expansion in the matter era must have
lasted less than 0.05 e-folds.

Finally, our results showed that almost all models with

N ae > 2 had begun on trajectories with�> ~�, i.e. with a
destabilized modulus, and thus access toG (see below). We
reiterate that we have only analyzed the dS case in this
example: such allowable cosmologies may undergo a dif-
ferent cycle of N ae before collapse in the AdS case.

V. DISCUSSION

A. Phenomenology of fixed points

The analysis in Sec. IV showed the existence of many
fixed points, with various degrees of stability. Discussing
the possible phenomenological implications of all of these
would be a long and tedious process that we choose not to
engage in. However, we find it illuminating to discuss some
properties of fixed point G, both by way of example, and
since we find them to be particularly interesting.

The first thing to note about the fixed points is whether or
not they occur in the bowl of the potential or on the plateau.

We have that s=r ¼ �= ~�, so that if s=r > 1 the fixed point
is on the plateau where the modulus is destabilized. For
pointsG and F it is clear that they are on the plateau. Fixed
point B has s ¼ r ¼ 0, so the ratio is undefined and is
technically at infinite modulus value. Hence in [49] tempo-
rary trappingwas observedwith large initial field values and
a destabilized modulus, with exit from the fixed point
occurring as the axion field value decayed.

G is the only fixed point that allows for scaling solutions
where both axion and modulus track the dominant fluid
component. This was the tracking behavior observed in
[49]. This can be of particular use in alleviating fine-tuning
of axion initial misalignment angles in the following way.
Heavy axions require fine-tuning of their initial misalign-
ment angle if they are not to ‘‘overclose’’ the Universe by
causing matter-radiation equality to occur at too high a
redshift: they are outside the ‘‘anthropic window’’
[21,23,96,97]. However, by allowing for tracking in the
radiation era, the axion energy density will scale as 1=a4,
instead of remaining a constant. Eventually oscillations
will set in, since G is a saddle point, and the axion dark
matter will scale as 1=a3, however this will begin from a
lower energy density. The energy density is dumped into
modulus kinetic energy of overdamped motion. This scal-
ing will manifest as early dark energy (EDE), which we
discuss in the next section. The difference to more standard
tracking models is that the saddle point nature of G caused
by the axion mass provides a natural mechanism for exit
from tracking. Also in this model the tracking EDE field is
not required to be the same as the field responsible

for late time accelerated expansion, i.e. we have the addi-
tional ��.

B. Early dark energy

Temporary trapping in G during the radiation era is
phenomenologically attractive because, as also pointed
out in [49], it has the possibility of leaving observable,
and therefore constrainable, consequences as EDE. When
is this situation possible? First, the modulus must be desta-
bilized by axion initial misalignment, given by the bounds
of Eqs. (13) and (14). The modulus will roll out toward

� ! 1 until Hubble friction stops it (if in addition C<
ffiffiffi
6

p
then a temporary axion-modulus domination in F will
occur). Later, if the bound of Eq. (37) is satisfied, tracking
will begin. The effects of this will further bound C.
The axion-modulus EDE energy density contributes an

amount �e ¼ �� þ�� ¼ 3�b=C
2 during any period of

tracking. EDE phenomenology places upper bounds on�e

that translate simply to bounds on C:

C> 2��1=2
e : (42)

During the radiation era the scaling EDE will behave as
an extra effective relativistic species,�Neff , contributing to
the background expansion. The density contribution can
then be constrained by big bang nucleosynthesis (BBN)
and CMB bounds on Neff . For example, the BBN con-
straints of [98] allow for Neff ¼ 3:85� 0:26, consistent
with no change between BBN and the CMB. Taking the
central value, parametrizing the energy density as [99,100],
and assuming all the additional energy density to be in the
form of EDE allows for �e & 0:1:

C * 6:2 BBN �Neff only; ½98�: (43)

This large value of �e would, however, be in conflict
with the CMB (the agreement in [98] was forNeff only, and
neutrinos behave differently in perturbations than EDE due
to, for example, anisotropic stress). One of the main effects
of the presence a sizable �e on the CMB is to change the
location and amplitude of the acoustic peaks. The location
of the first peak is related to the size of the sound horizon at
decoupling which is given by

rsðaÞ ¼
Z a

0
da

d�

da
cs: (44)

Here, c�2
s ¼ 3ð1þ RÞ is the sound speed of the photon-

baryon fluid and RðaÞ ¼ 3
4
�b

��
is the photon to baryon ratio.

Using the Friedmann equation today (subscript 0) and at an
epoch during the radiation era when the Universe has
evolved to point G yields�

da

d�

�
2 ¼ H2

0

�
�m;0aþ��;0

1��e

�
: (45)

We will assume that the presence of two background
components, radiation, subscript �, and matter (dark and
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baryonic), subscript m, does not change the result�e ¼ 4
C2

during the radiation dominated era. Performing the integral
in Eq. (44) (similarly to [101]) from the last scattering
surface (lss) to the epoch of matter-radiation equality
(eq) gives

rs¼ 4

3H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0

�m;0�b;0

s
ln

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þRlss

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RlssþReq

p
1þ ffiffiffiffiffiffiffi

Req

p
3
5

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C2

s
rs0; (46)

where rs0 is the standard sound horizon. The location off
the first peak multipole is then

lpeak ’ 2	

rsH0

¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 4

p l0; (47)

where the standard peak multipole is

l0 ¼ 2	

rs0H0

’ 200: (48)

The qualitative behavior is clear: for smaller C, i.e., for
larger �e, the first peak occurs at a higher multipole.
Joudaki [102] performed simultaneous fits for �e and
neutrino species along with other extended cosmological
parameter sets and found maximum values for �e at the
95% confidence level of a few percent, with the absolute
limit being dependent on priors about the DE (w>�1: no
crossing of the phantom divide) or the neutrinos (Neff > 3
from the standard model). The central value for Neff in
these fits was around Neff � 3:6� 0:6. Taking the most
generous upper limit of �e < 0:042 gives

C * 9:8 CMB and �Neff ; ½102�: (49)

Currently, there is no detection of �e, but it will be
possible to detect with current and future CMB experi-
ments of Planck and CMBPOL [95]. Reference [95] reports,
for a fiducial Planck central value of �e ¼ 0:03 and mar-
ginalizing over their other extended DE parameters, an
error of 
�e

¼ 0:003. A 3
 measurement of�e translates

to a bound:

10:1 & C & 13:8 Planck forecast; ½95�: (50)

It is worth noting finally that the CMB and BBN bounds
need not both apply, since the fields do not have to have
entered the scaling solution at any particular era, and can
leave it. Of course there is also the caveat that these bounds
only apply to the extent that motion in and near G is
accurately described by the parametrizations used to derive
them ([102] used a modified version of the parametrization
of [55]), and that approximately stable evolution in G can
be maintained for long enough.

In Fig. 12 we show a schematic for the phenomenology
in different regions of fC;�g parameter space that the
results of this discussion and Sec. IVC have led us to.

C. The assumption of fixed fa,
and uplifting the potential

Throughout this work, as we have mentioned, we have
assumed that fa can be taken fixed and that the modulus
only effects the axion through exponentially scaling the
mass. This had the simplifying property of providing a
trivial metric on field space, with no change to the canoni-
cal kinetic terms. We can look at the validity of this
assumption by computing what the change in fa would
be along any particular trajectory. The assumption will be
approximately valid if

j�faj=fa;0 & 1; (51)

where fa;0 is the point on the trajectory deemed to be

‘‘today’’ and the difference is calculated from the last
relevant epoch. In the axiverse the scale of fa is fixed
around 1016 GeV by fixing the product S ¼ C�� 200.
This does not appear in our dynamical systems analysis,
since the scale of � only comes in via !, which the system
does not depend on.
As mentioned in Sec. III the change in fa will most

likely be large for any trajectories that begin on the plateau
of the potential and end in the bowl. This would require us
to compute corrections in moving, for example, between
fixed points B, G and the global minimum M. In the
vicinity of the fixed points, checking that fa remains
roughly fixed would require specifying ! and checking
on a case-by-case basis.
It is possible that trapping in G, or any fixed point with

nonzero y, for an extended period of time could lead to
large �fa=fa. We can estimate this effect as follows. For a
trapping of �N e-folds in G and setting C�i ¼ 200 to get
the correct fa for the axiverse in the early universe, factors
of C cancel and we have

��

�i

¼ ��fa
fa;0

¼ 3�b

200
�N ¼ Oð10�2Þ�N: (52)

This will always be small for any scenarios of interest,
since �N could only be large if G were driving inflation
but we have seen that G itself cannot be accelerated and
hence this is impossible. fa today will be only �N% away
from its initial value for small �N, and therefore predic-
tions based on trapping inG in any particular epoch should
be unaffected by our assumption of fixed fa. However, in
predicting the fate of the Universe, we emphasize again
that G is unstable and moving into M in the future (or in
the current epoch, as in [83]) may entail large changes
in fa.
While the dynamical effect of changing the kinetic terms

is hard to predict, it is simple to compute the change in the
potential caused by identifying fa ¼ 1

C� . The coupling

term in the potential becomes
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Uð�;�Þ ¼ �4

2
C2e�C��2�2: (53)

This has one very interesting property: the emergence of a
new, metastable (in the sense that it has a small barrier
that can be tunneled through, like the potentials of [7])
modulus minimum in the region of large �. This
metastable minimum can have a positive cosmological
constant, with no need for additional uplifting, i.e. with
�� ¼ 0. However, it is unstable in the axion direction and
could only usefully drive the current accelerated expansion
with an ultralight axion of mass ma & 10�33 eV. The
emergence of the new minimum at large � can be traced
to the extra term in @�U with opposite sign.

For the new minimum to emerge one requires �< 2=C
which makes S�Oð1Þ and pushes fa ! Mpl. This leads

to more fine-tuning if this minimum is to provide late time
acceleration since the small axion mass necessary for
stability then needs to be put in by hand from the non-
perturbative side, ruining the naturalness of the axiverse
scenario for light axions. We leave further study of the
properties of this fað�Þ scenario, particularly its possibility
of giving an alternative axion inflationary model, to a
future work.

VI. CONCLUSIONS

In this paper we have studied a rich model of the dark
sector, with many possible observational signatures such as
dark matter and dark energy, that extends and builds on
well- known work and tries to bring it into a broader
theoretical context. Some of our findings are summarized
in the schematic of Fig. 12.

Axions and moduli are intimately linked to the problem
of the cosmological constant. Polchinski argued some time
ago [5], and indeed it has been known since the earliest
days of string theory [65,103] that the lightness and pro-
fusion of axions is a natural of the theory, and is related to
the anthropic demand for a small cosmological constant.
Ultralight axion fields with the hierarchy of masses gen-
erated by exponential dependence on the internal geometry
of the compact space are observationally relevant as a
distinct form of dark matter. We have studied the cosmo-
logical evolution of axions when the energy scale of the
potential is allowed to be dynamically controlled by a
modulus of this geometry, instead of remaining fixed. If
both the potential of the axion and the modulus arise from
nonpertrubative physics at similar energy scales, then we
have shown that axion initial misalignment can leave the
modulus destabilized in the early universe and when the
axion is allowed to be cosmologically light this can lead to
significant evolution of the modulus throughout cosmic
history. This evolution allows for the possibility that the
vacuum energy can change sign through the course of
cosmic evolution, with today’s quasi-de Sitter expansion
being only temporary and the future evolution of the

Universe is a big crunch cosmic doomsday. We have
demonstrated the topological change in the allowed phase
space that such a possibility creates in two separate coor-
dinate systems.
By looking for fixed points of the dynamical system we

have shown that a modulus destabilized by a large axion
initial misalignment gives rise to a scaling solution where
excess energy density in the axion field is redshifted away
during the radiation era. One can always argue that a valid
model must cut off the fine-tuning on axion fields to values
where there is a stable modulus, and we have shown the
ratios of scales necessary for this. Alternatively, if destabi-
lization does occur and such a tracking behavior ensues
during cosmic evolution, then fine-tuning on the axion dark
matter is alleviated and in addition observational limits on
early dark energy place constraints on the couplings of the
model.
We have not discussed the possibility of fitting this

model to be cosmologically viable, which would require
fixing H0 and wðzÞ, among other things. Fits of this kind
would allow comparison to current and projected con-
straints on wðzÞ and distance measurements (see, e.g.
[20,104,105]), and in the context of this model trapped in
B orGwould allow predictions for future vacuum decay to
dS in M [83] or collapse [106,107]. It is worth noting,
however, that even small uncertainties in the curvature,�k,
can produce significant degeneracies and misestimations
of wðzÞ from distance measurements alone [108,109],
which highlights the need for more complete models, and
use of more experimental estimators, when discussing
nonstandard models of dark energy. We have also not
discussed perturbations, which would be necessary to com-
pare this model properly to large scale structure or CMB
measurements.
If the modulus in this model controlled a coupling of the

standard model, then predictivity of any model building
will demand for it to be stabilized, and observational
constraints will demand variations caused by axion evolu-
tion to be small, although potentially observable (see, e.g.,
[110,111]).9 Our analysis showed that this would lead to a
tuning on axion initial misalignment, in addition to any

related to dark matter density, if �i < ~�. If this bound is
violated and the modulus is destabilized, any low-energy
constants that depend on it will be stabilized by Hubble
friction and eventually scale according to the dynamics of a
fixed point. We have shown that trapping in such a fixed
point can reasonably maintain the axion decay constant,
fa, and so may also be expected to naturally maintain any
other constant with similar modular dependence.
Anthropically, the metastability of this state of affairs is

9Many analyses of this kind, however, fail to account for the
huge effect that variation in � would have on the standard model
contribution to the vacuum energy through vacuum bubbles, at
best greatly worsening fine-tuning, and at worst ruining most
anthropic explanations for the smallness of �.
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only as unnatural as a generic model allowing for a future
big crunch.

The future singularity allowed in the parameter space of
this model changes the asymptotic structure of spacetime
and may be relevant to holographic models, or ‘‘cosmol-
ogy/CFT’’ [112–115], although a rolling rather than tun-
neling to an AdS state in our model may trivialize any
specific holographic mapping. Allowing for long lived
unstable scalar potentials muddies the waters somewhat
in the question of fine-tuning in the landscape. The axi-
verse and supergravity [89,106,116,117] naturally allow
for scalar masses around H0, but string quintessence
models run up against many problems [118], although
for axions successful models do exist [85,119,120].10

However, if the landscape favors instabilities [122] and
as we have said they appear to be a necessary feature in
eternal inflation, it certainly seems pertinent to study their
cosmology. Could it be that the seemingly unlikely situ-
ation of many light axions pulling the moduli hither and
thither in ultimately collapsing universes in fact opens up a
whole new part of the ‘‘wasteland,’’ or that axion friction
can favor a large number of destabilized moduli and a
natural route to nontrivial quintessence? What types of
universe dominate the (admittedly controversially defined)
landscape volume: unstable, cosmological constant, cyclic
or quintessence? We have also seen that a coupling of
axions and moduli can allow for large variations of the
cosmological constant in the future, making multiple
epochs of accelerated expansion possible during the matter
dominated epoch in our past (observationally tightly con-
strained by [94]), or in the future evolution of the Universe.
Does this too effect our perception of fine-tuning in rela-
tion to dark energy?

In closing, we like to hope that the study of this model
will motivate string theorists to further consider late time
effects that the existence of ultralight axions can have on
diverse aspects of string cosmology, and demonstrate a
new and rich model in the dark sector to cosmologists.

ACKNOWLEDGMENTS

E. R.M. T. is supported by the University of Nottingham
and would like to thank Shuang-Yong Zhou, Francisco G.
Pedro and Paul Saffin for useful discussions. P. G. F.
acknowledges the support of the Oxford Martin School
and the Beecroft Institute for Particle Astrophysics and
Cosmology. E. J. C. would like to thank the STFC, the
Leverhulme Trust and the Royal Society for financial sup-

port. D. J. E.M. acknowledges the support of the STFC and
would like to thank Celia Escamilla-Rivera for useful
discussions about dynamical systems in cosmology;
Mustafa Amin and Subodh Patil for insights about scalar
fields and effective field theory; Sergei Dubovsky,
Francisco G. Pedro, John March-Russell, Nemanja
Kaloper, Paul Steinhardt and Juan Maldacena for useful
discussions about cosmology and the landscape; and
finally David Spergel and Princeton University
Astrophysics for hospitality while part of this work was
being completed.

APPENDIX A: STABILITYANALYSIS

In order to study the stability of the fixed points we
expand about these points, setting X ¼ Xc þ 
X, with

X the perturbations of the compact variables defined by
Eqs. (18) considered as a column vector. To first order, the
perturbations satisfy 
X0 ¼ W � 
X, where the matrix W
contains the coefficients of the perturbation equations. The
general solution for the evolution of these linear perturba-
tions can be written as

X ¼ a1q1e
�1N þ � � � þ a6q6e

�6N; (A1)

where the qn are the eigenvectors associated with the
eigenvalues �n of the matrix W. Thus, the stability of the
fixed points depends upon the nature of the eigenvalues.
The eigenvector of the corresponding eigenvalue deter-
mines the directions in phase space with which the eigen-
value is associated. We use the following classification
[123]:
(a) Stable node: �n < 0 for n ¼ 1; . . . ; 6.
(b) Unstable node: �n > 0 for n ¼ 1; . . . ; 6.
(c) Saddle point: �n < 0, �m > 0 (or �n > 0, �m < 0)

for n;m ¼ 1; . . . ; 6 with n � m.
(d) Stable spiral: The determinant of the matrix W is

negative and the real parts of the �n are negative.

For an expanding universe, a fixed point is an attractor
(stable) in the cases (i) and (iv), but it is not so in the
cases (ii) and (iii) (unstable). We use the notation �nfi; . . .g
for an eigenvalue �. The subscript n labels the eigenvalue
and the fi; . . .g denote the direction(s) in phase space with
which this eigenvalue is associated, which may be deter-
mined by the nth eigenvector.
The positive roots of the fixed points zc, rc, sc, tc given

in Table II lie in the expanding universe branch (Hþ), for
which z, r, s, t > 0. The negative roots lie in the collapsing
universe branch (H�), where z, r, s, t < 0. For a collapsing
universe, a fixed point is stable if the eigenvalues ofW are
positive. This is because the time variable N � lnðaÞ of the
autonomous system (19) becomes a decreasing function
of time.
The stability of the fixed points may be summarized as

follows:

10During the final stages of preparation of this manuscript a
very interesting model for natural, and indeed coupled, quintes-
sence in string theory was proposed in [121]. In particular, this
involved a modulus controlling the size of a four-cycle, which in
type IIB theory can have a C4 axion associated to it. The mass of
this axion will depend on the quintessence field, realizing our
model. In that work, the important constraints of fifth-force
experiments and SUSY breaking are also addressed.
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(i) Point A: This is the trivial solution corresponding to
fluid domination where the kinetic and potential
components of the axion and modulus fields plus �
are negligible. It exists for all C, � and �b. In Hþ,
the eigenvalues are

�1fxg ¼ �2fyg ¼ �3
2ð2� �bÞ;

�3fzg ¼ �4frg ¼ �5fsg ¼ �6ftg ¼ 3
2;

(A2)

so this is a saddle point in the full phase space.
Point A is unstable in the subspace of the fz; r; s; tg
directions and stable in the fx; yg subspace. In H�
this point remains unstable in the full phase space,
since for realistic fluids �b < 2.

(ii) Point B: The �� dominated asymptotic fixed point.
In Hþ, the eigenvalues are

�1fxg ¼ �2fyg ¼ �3; �3ftg ¼ �3�b;

�4fzg ¼ �5frg ¼ �6fsg ¼ 0:
(A3)

Notice this point has three zero eigenvalues in the
fz; r; sg subspace: We say this is a marginally stable
solution in the sense that there is no instability grow-
ing exponentially, although it could be unstable to
higher orders in the perturbation. To obtain the strict
stability of this solution wewould have to go beyond
linear order, which we do not pursue as we know this
point is ultimately unstable (see Sec. IVB).

(iii) Point C: Corresponds to the axion and modulus
kinetic dominated solution. For this point to exist,
�1 � y � 1. Rather than having an isolated fixed
point, point C is formed of a continuous line of
fixed points, known as an equilibrium manifold,
which we call a critical line. This critical line is
the unit circle x2c þ y2c ¼ 1 and is a symmetry of the
autonomous system with zc ¼ rc ¼ sc ¼ tc ¼ 0.
In both Hþ and H� the eigenvalues are

�1fzg ¼ 3� ffiffiffi
6

p
Cy; �2fx; yg ¼ 6� 3�b;

�3ftg ¼ 3; �4fx; yg ¼ 0;

�5fsg ¼ �6f0g ¼ 3�
ffiffiffi
3

2

s
Cy;

(A4)

where the� in �1 and �5;6 corresponds to the� of

yc ¼ �y. In general, if a nonlinear system has a
critical line, the Jacobian matrix of the linearized
system at a fixed point on the line has a zero
eigenvalue with an associated eigenvector tangent
to the critical line at the chosen point. Here, the
zero eigenvalue �4 lies in a direction tangent to the
x2c þ y2c ¼ 1 unit circle. This kind of nonlinear
system is a special subclass of the nonhyperbolic
system (whose linearized system has one or more
eigenvalues with zero real parts).
The stability of a particular fixed point on the line

can be determined by the nonzero eigenvalues,
because near this fixed point there is essentially
no dynamics along the critical line (i.e., along the
direction of the eigenvector associated with the
zero eigenvalue), so the dynamics near this fixed
point may be viewed in a reduced phase space
obtained by suppressing the zero eigenvalue direc-
tion. Then in Hþ, this point is unstable in the full
phase space since �3 > 0.
In H�, where stability corresponds to positive ei-
genvalues, it might appear that stability is only
guaranteed for certain values of y along the fixed
line. This is not so however, since both yc ¼ þy

and yc ¼ �y (with xc ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
) are fixed point

solutions in a collapsing universe and correspond to
the upper and lower halves of the unit circle, re-
spectively. This guarantees that every point along
the critical line is stable. Hence,C is the asymptotic
future of any model with an AdS vacuum. The
particular fixed point along C that the system will
finally evolve to will depend upon the initial
conditions.
We also note that �5;6 (which has a multiplicity of

2) is associated with only a single eigenvector,
pointing in the s direction: the matrix of linearized
perturbation coefficients is defective, i.e., it does
not have a complete basis of eigenvectors, and is
therefore not diagonalizable. As a result, the r
direction is not represented and we so we write
�6f0g. This is almost certainly a consequence of
the autonomous system having a higher dimension-
ality than required.

(iv) Point D: Modulus dominated fixed point, where

VB � VD. This points exists for C �
ffiffi
3
2

q
. In Hþ

the eigenvalues are

�1fy; zg ¼ 4C2 � 3�b; �2fy; zg ¼ 2C2 � 3;

�3fxg ¼ 2C2 � 3; �4ftg ¼ 2C2;

�5frg ¼ �5fsg ¼ C2:

(A5)

To be stable along the �1, �2;3 directions, which is

the subspace fx; y; zg, requires C<
ffiffiffiffiffiffiffiffiffi
3
4�b

q
and

C<
ffiffi
3
2

q
respectively. The fr; s; tg subspace is always

unstable and hence point D is unstable in the full
phase space. Point D remains unstable in the full
phase space of H�.

(v) Point E: A scaling solution where then axion energy
density vanishes and the modulus energy density
scales with the dominant background fluid with
VB � VD. This point exists for �b � 2. In Hþ the
eigenvalues are

COSMOLOGY OF AXIONS AND MODULI: A DYNAMICAL . . . PHYSICAL REVIEW D 86, 023508 (2012)

023508-21



�1;2fy; zg ¼ 3

4C

h
Cð�b � 2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�b � 2Þð9C2�b � 6�2

b � 2C2Þ
q i

;

�3fxg ¼ �3
2ð2� �bÞ; �4ftg ¼ 3

2�b;

�5frg ¼ �6fsg ¼ 3
4�b; (A6)

where the þ root in �1;2 is for �1 and the �
root is for �2. For �1;2 2 R, C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�3

b
�12�2

b

9�2
b
�20�bþ4

r
.

Furthermore, if this condition is satisfied, �2 is

negative 8 C; �b and �1 is negative if C>
ffiffiffiffiffiffi
6�b

8

q
.

When �1;2 has a imaginary part, the real part is

always negative. The fr; s; tg directions are always
unstable and fxg is stable for realistic �b. We see that
point E is unstable in the full phase space and
remains unstable in the full phase space of H�.

(vi) Point F: Fixed point dominated by the modulus
kinetic energy and potential energy of the axion-

modulus coupling. This point exists for C � ffiffiffi
6

p
. In

Hþ the eigenvalues are

�1;2fy; sg ¼ 3
2½12C2 ��b � 1� � 1

4


9C4 � 36C2 þ 36C2�b þ 36� 72�b þ 36�2

b � 8C4�b � 8C3 þ 8C3�b þ 48C� 48C�b

q
;

�3fxg ¼ 1
2C

2 � 3; �4ftg ¼ 1
2C

2; �5fx; rg ¼ 0; �6fzg ¼ �1
2C

2; (A7)

where the þ root in �1;2 is for �1 and the � root is for �2. We see immediately that point F is unstable in the full phase
space. In the presence of radiation (�b ¼ 4=3), there is a very finely tuned region of parameter space open to C for which
�1 and �2 may be real and negative. In the presence of dust, (�b ¼ 1) the quantity under the square root simplifies toC4 and
the conditions for which �1 < 0 and �2 < 0 are C<

ffiffiffi
3

p
and C<

ffiffiffi
6

p
respectively. InH�, point F is always unstable in the

full phase space.
(vii) Point G: A scaling solution where the axion and modulus track the dominant background fluid. This point exists

for �b � 2. In Hþ, the eigenvalues are

�1;2fy; sg ¼ 3

4C2
½C2ð�b � 2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð�b � 2Þð24�3

b � 24�3
bC� 48�2

b þ 24C�2
b þ 8C2�b þ C3�b � 2C3Þ

q
�;

�3fzg ¼ �3
2�b; �4ðxÞ ¼ 3

2�b � 3; �5ðtÞ ¼ 3
2�b; �6ðx; rÞ ¼ 0; (A8)

where the þ root in �1;2 is for �1 and the � root is for �2.
For an expanding universe, there is a small region of C
parameter space for both dust and radiation where �1;2 are
purely real and negative and a large region of C where �1;2

has a complex part with the real part negative. In these
regions, fy; sg are stable directions. �5 is always positive
however and so I is unstable in the full phase space ofHþ.
In H�, �3;4 are always negative and so I is unstable in the
full phase space of H�.

(viii) Point I: Modulus dominated fixed point, where
VD � VB. Notice that this point mirrors point F

and exists for C 	 ffiffiffi
6

p
. In Hþ the eigenvalues are

�3;4fx;sg¼1

4
C2�3

2
�

ffiffiffi
3

p
12



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2�6Þð3C2�18�8�2Þ

q
; (A9)

�1fy; rg ¼ C2 � 3�b; �2fy; rg ¼ 1
2C

2 � 3;

�5ftg ¼ 1
2C

2; �6fzg ¼ �1
2C

2; (A10)

where theþ root in �3;4 is for �3 and the� root is

for �4. InH
þ regardless of the value of �, the real

part of �3 can only be positive. These constrains

are due to the existence conditionC 	 ffiffiffi
6

p
. Hence,

the fx; sg subspace is always unstable. The con-
ditions for stability for �1;2 in the expanding case

are C<
ffiffiffiffiffiffiffiffi
3�b

p
and C<

ffiffiffi
6

p
, neither of which are

ever satisfied if this point is to exist and so fy; rg
are unstable directions. We see that for both Hþ
andH�, point I is unstable in the full phase space.

(ix) Point M: The critical line in the fz; r; tg subspace
corresponding to the global axion-modulus mini-
mum. The emergence of this critical line is due to
the fact that the autonomous system is of one
dimension too many. With the minimally required
number of autonomous system variables, the line
would degenerate to a unique point, given by
Eq. (30). M exists for all C;�b; �. It is important
to point out that M is only a fixed point in the
presence of a dS vacuum (� > 1=4) and corre-
sponds to the asymptotic future. If the vacuum is
AdS (� < 1=4) the global minimum is not a fixed
point, and the asymptotic future is cosmic dooms-
day in a big crunch. In Hþ the eigenvalues are

�1;2fy; z; rg ¼ �3
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 24C2z2

p
;

�3fz; r; tg ¼ �3�b;

�4;5fx; sg ¼ �3
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8�2z2

q
;

�6fz; r; tg ¼ 0;

(A11)
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where the þ root in �1;2 is for �1 and the � root is

for �2. The þ root in �4;5 is for �4 and the � root

is for �5. Here, the eigenvector associated with
�6 ¼ 0 points in a direction tangent to the fixed
line and so the stability of a particular fixed point on
the line can be determined by the nonzero eigen-
values, since near this fixed point there is essen-
tially no dynamics along the fixed line (i.e., along
the direction of the eigenvector associated with the
zero eigenvalue) and the dynamics near this fixed
point may be viewed in a reduced phase space
obtained by suppressing the zero eigenvalue direc-
tion. Then, 8 C, �b, � and for all points along the
fixed line, the real parts of the eigenvalues are al-
ways negative and M is stable. There exist two
bifurcation points along M:

z ¼
ffiffiffiffiffiffiffiffiffi
3

8C2

s
; and z ¼

ffiffiffiffiffiffiffiffiffi
9

8�2

s
: (A12)

Hence, for point M to be a stable node in the

fy; z; rg subspace, z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=8C2

p
, otherwise it is a

stable spiral, while for point M to be a stable

node in the fx; sg subspace, z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=8�2

p
, otherwise

it is a stable spiral.

APPENDIX B: Q-VARIABLE
AUTONOMOUS SYSTEM

With the compact variables defined by Eqs. (26), the
axion-modulus system may be written:

x0Q ¼ �
�
Q0

Q
�HQ

�
xQ �MsQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zQtQ�

q
;

y0Q ¼ �
�
Q0

Q
�HQ

�
yQ þ Cffiffiffi

2
p ½2z2Q � zQtQD�þ s2Q�;

z0Q ¼ �
�
Q0

Q
þ ffiffiffi

2
p

CyQ

�
zQ;

s0Q ¼ �
�
Q0

Q
þ 1ffiffiffi

2
p CyQ

�
sQ þMxQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zQtQ�

q
;

t0Q ¼ �Q0

Q
t;

(B1)

with

Q0

Q
¼ �HQ

2
½�bð1� x2Q � y2Q � z2Q � s2Q � t2QÞ

þ 2x2Q þ 2y2Q� �
ffiffiffi
1

2

s
zQtQyQ�; (B2)

and

HQ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� zQtQD�Þ

q
; (B3)

where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
B��

p
. Here, ð0Þ ¼ 1

Q
d
dt . If the Universe is

expanding, the sign of the square root in Eq. (B3) forHQ is

positive. If the Universe is contracting, the negative root
should be chosen.

APPENDIX C: SCANNING THE INITIAL
CONDITION MANIFOLD

The autonomous system (19) has eight different
parameters which determine the subsequent motion of
any given trajectory in phase space: six initial conditions,
fxi; yi; zi; ri; si; tig and two parameters, fC;�g. To ensure
that the entire space of initial conditions are sampled in an
efficient manner around a region of interest, we use the
method outlined in this Appendix.
We begin by acknowledging the Friedmann constraint

�bðinitialÞ ¼ 1� ðx2i þ y2i þ z2i � r2i þ s2i þ t2i Þ;
and the vacuum constraint � ¼ t2i z

2
i

r4i
. Suppressing the sub-

script i for brevity, the initial conditions are constrained to
lie on the three-dimensional manifold M:

s2 ¼ p� �
r4

z2
þ r2 � z2; (C1)

where p ¼ 1��b � x2 � y2. For given values of x and y,
the problem then reduces to varying two initial conditions
evenly over M, with the third constrained by Eq. (C1).
For example, if we were interested in scanning parameter
space near to fixed point A, we could, with only some loss
of generality, make the simplifying assumption that the
axion and modulus fields begin frozen, x ¼ y ¼ 0. For
trajectories starting near to fixed point A, we have p ¼
1��b � 0:01. We can then vary z and r, while still being
free to independently vary fC;�g. If on the other hand, we
were interested in scanning parameter space near to fixed
point G, since the fluid density and the value of y at the

critical point depends on C,�b ¼ 1� 3�b

C2 , yc ¼
ffiffiffiffiffiffiffiffi
3
2
�b

C

q
, we

are not free to independently vary C and fz; rg. Each time C
is changed, the equation forM also changes. This must be
taken into account when using the method that is discussed
below.
The value of � determines the topology of the initial

condition manifold, which has nonconstant curvature. If
the vacuum is dS, � > 1

4 , the surface area of the manifold

above some smin is finite. For � � 1
4 (AdS and Minkowski

vacua), the manifold is not bounded above smin and its
surface area is infinite. This change in topology is most
easily illustrated by considering the intersection of the
manifold M with the s ¼ smin plane. Solving Eq. (C1) at
s ¼ smin for z generates four roots, two of which are the
ones applicable for this problem:

f�ðrÞ
¼ 1ffiffiffi

2
p

h
pþr2�s2min

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ2pr2�2ps2minþr4�2r2s2minþs4min�4�r4

q i
1=2

:
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These two functions fþðrÞ and f�ðrÞ intersect at r ¼ rmax.
Equating them and solving for r gives the physically
relevant root:

rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� s2minÞð1þ 2

ffiffiffi
�

p Þ
4� � 1

s
: (C2)

Until these functions intersect at rmax we have f�ðrÞ<
fþðrÞ. Now, solving Eq. (C1) at s ¼ smin for r gives the
two relevant roots:

g�ðzÞ ¼
�
� z

2�

�
�zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 4�ðp� z2 � s2minÞ

q ��
1=2

;

which intersect at z ¼ zmax. Then, equating gþðzÞ and
g�ðzÞ and solving for z gives the physically relevant root:

zmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ðp� s2minÞ

4� � 1

s
: (C3)

Equations (C2) and (C3) illustrate the change in topology
of M: for � ¼ 1=4, rmax; zmax ! 1 and functions f�ðrÞ
and g�ðzÞ and become parallel at large r and z and never
meet; for � < 1=4, rmax, zmax 2 C and the functions f�ðrÞ
and g�ðzÞ diverge at large r and z. In both cases, the
manifold never intersects the s ¼ smin plane. Only for � >
1=4 is the surface area of the manifold bounded above smin.
For models where the vacuum is dS, if an smin is specified,
the initial conditions on z and r may then be varied from
some rmin, zmin to the maximum values given by Eqs. (C2)
and (C3).

Since M has nonconstant curvature, it is not trivial to
sample the manifold in a uniform way. To guarantee ap-
proximately uniform coverage, we project a grid of N
squares, each of which have the same area, A, in a
Cartesian coordinate system, onto M. Since M has non-
constant curvature, the projected shapes will be four-sided

polygons of unequal area. From the induced metric, ~gab, on
M we can compute the surface area of each polygon. The
components of ~gab read

~g11 ¼ 1þ 1

4s2

�
� 4�r3

z2
þ 2r

�
2
;

~g12 ¼ ~g21 ¼ 1

4s2

�
� 4�r3

z2
þ 2r

��
2�r4

z3
� 2z

�
;

~g22 ¼ 1þ 1

4s2

�
2�r4

z3
� 2z

�
2
:

The surface area ~Ai of each polygon i is then

~A i ¼
ZZ

A

ffiffiffi
~g

p
drdz;

where

~g ¼ det½~gab� ¼ ~g11~g22 � ~g212

¼ �2r8 þ 4�2z2r6 � 7�z4r4 þ 2z6r2 þ z6p

z4ðpz2 � �r4 þ z2r2 � z4Þ :

The limits of integration are the fr; zg boundaries of each
square in the Cartesian coordinate system. If these limits
lie outside of the manifold, the boundary functions, f�ðrÞ,
where M intersects smin are used instead.
The initial condition manifold is now divided into poly-

gons of different area. We randomly ‘‘throw’’ pairs of
initial condition coordinates fri; zig into each polygon on
M. The number of initial condition pairs that are thrown is
proportional to the area of each polygon: the larger the
polygon area, the more initial condition pairs are thrown.
Since the total number of points thrown onto the manifold
is large, this statistical method ensures an approximately
even sampling of the initial condition manifold.
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