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We explore the prospects for constraining cosmology using gravitational-wave (GW) observations of

neutron-star binaries by the proposed Einstein Telescope (ET), exploiting the narrowness of the neutron-

star mass function. This builds on our previous work in the context of advanced-era GW detectors. Double

neutron-star (DNS) binaries are expected to be one of the first sources detected after ‘‘first-light’’ of

Advanced LIGO. DNS systems are expected to be detected at a rate of a few tens per year in the advanced

era, but the proposed ET could catalog tens, if not hundreds, of thousands per year. Combining the

measured source redshift distributions with GW-network distance determinations will permit not only

the precision measurement of background cosmological parameters, but will provide an insight into the

astrophysical properties of these DNS systems. Of particular interest will be to probe the distribution of

delay times between DNS-binary creation and subsequent merger, as well as the evolution of the star-

formation rate density within ET’s detection horizon. Keeping H0, �m;0 and ��;0 fixed and investigating

the precision with which the dark-energy equation-of-state parameters could be recovered, we found that

with 105 detected DNS binaries, we could constrain these parameters to an accuracy similar to forecasted

constraints from future CMBþ BAOþ SNIa measurements. Furthermore, modeling the merger delay-

time distribution as a power-law ( / t�) and the star-formation rate density as a parametrized version of

the Porciani and Madau SF2 model, we find that the associated astrophysical parameters are constrained to

within �10%. All parameter precisions scaled as 1=
ffiffiffiffi
N

p
, where N is the number of cataloged detections.

We also investigated how parameter precisions varied with the intrinsic underlying properties of the

Universe and with the distance reach of the network (which is affected, for instance, by the low-frequency

cutoff of the detector). We also consider various sources of distance-measurement errors in the third-

generation era and how these can be folded into the analysis.
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I. INTRODUCTION

The era of advanced gravitational-wave (GW) detectors
is approaching quickly. The previous decade has seen
significant improvements in the sensitivity of GW interfer-
ometers, leading to the construction and operation of two
Laser Interferometer Gravitational-wave Observatory
(LIGO) ([1] detectors in the USA, GEO-600 in Germany
[2], Virgo in Italy [3] and TAMA-300 in Japan [4]. The
latter detector was designed as a test bed to develop new
technologies for the proposed underground, cryogenically
cooled KAGRA (formerly LCGT [5]) detector [6]. The
LIGO, Virgo and GEO-600 detectors have conducted joint
searches since 2007.

The most promising source for the first detection of
gravitational waves is the inspiral and merger of a
compact-object binary consisting of neutron stars (NSs)
and/or black holes [7]. The first joint search for compact-
binary coalescence signals during the LIGO S5 science run
and the Virgo VSR1 data did not result in direct detections
[8], nor did the ‘‘enhanced’’ detector search during the
LIGO S6 science run and the Virgo VSR2þ 3 data [9].
Furthermore, the upper limits placed on compact-binary

coalescence rates from the latter search remain two to 3
orders of magnitude above existing astrophysically pre-
dicted rates. However, the LIGO detectors are currently
being upgraded to their ‘‘advanced’’ configuration [10],
due for completion in �2015, for which the horizon
distance for NS-NS inspiral detection will be boosted
to �450 Mpc, giving an almost thousandfold gain in vol-
ume sensitivity of the detectors. The advanced detectors
are expected to detect double NS inspirals at a rate of
�40 yr�1, although this may vary by approximately 2
orders of magnitude in either direction [11].
Complementing AdLIGO will be a global network of

advanced detectors, including AdVirgo [12], KAGRA [6]
and possibly a third LIGO detector in India, LIGO-India
[13]. There are currently no prospects for a Southern
Hemisphere GW interferometer operating in the advanced
era. A global network comprising these detectors will help
turn the field from the search for the first detection into a
precise astronomical tool.
The GWs emitted by a compact-binary system directly

encode the redshifted masses and luminosity distance of the
system. Double NS (DNS) binary systems are commonly
referred to as self-calibrating standard sirens because their
distance is directly encoded in thewaveform, and a means of
determining their redshift would mean we could probe the
cosmic distance ladder and extract cosmological parameters
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[14–17]. While the phase evolution of the strain signal in a
single interferometer can give precise constraints on the
redshifted mass of the system, we require a global network
of detectors to constrain the sky location, orbital inclination
andGWpolarization so thatwe canbreak the degeneracies of
these angular factors with the luminosity distance.

Unfortunately, the redshift and intrinsic mass of the
systems enter the waveform only in a combination as the
redshifted mass parameter; hence, previous techniques for
performing GW cosmology using these standard sirens has
relied on the association of the GW source with an electro-
magnetic counterpart, which can provide an independent
redshift measurement [18–21]. In our previous paper, [22],
we studied a technique for probing the Hubble constant and
NS mass-distribution parameters using only the GWs de-
tected by an advanced-era network. This work relied on the
assumption, supported by observations, that the NS mass
distribution is sufficiently narrow, which means that we
already have a good idea of the intrinsic masses in the
system, and the measured redshifted mass parameter then
provides a narrow distribution of possible redshifts for each
observed source. Combining these redshift distributions
with the network-measured luminosity distance for a cata-
log of observed DNS systems provides constraints on the
underlying cosmological parameters, as well as the astro-
physical distribution of these systems. This technique (first
considered by Marković in Ref. [23] and extended in
Ref. [24,25]) relies onmeasurements of the redshifted chirp
mass (expected to be the best-determined parameter) and
luminosity distance for a catalog of detected systems.

In our previous analysis, the cosmological parameters
which we could constrain were restricted by the sub-Gpc
reach of an advanced-era network. We now extend this
technique to a third-generation network, which could have
a reach out to tens of Gpcs. Proposed third-generation
detectors aim for a broadband factor of 10 sensitivity
improvement with respect to advanced detectors and to
increase sensitivity in the range �1–10 Hz, compared to
the �10–20 Hz low-frequency cutoff of advanced detec-
tors. As a prototypical third-generation detector, we use the
Einstein Telescope, consisting of three overlapping 10 km
arm-length interferometers in a triangular configuration
[26–28]. Each interferometer may actually be two detec-
tors: a cryogenically cooled, underground detector with
good low-frequency sensitivity, and a high laser-power
detector with good high-frequency sensitivity [29].
Keeping H0, �m;0 and ��;0 fixed, we find that the sensi-

tivity provided by such a network will be large enough to
constrain the dark-energy equation-of-state parameters and
NS mass-distribution parameters, as well as the astrophys-
ical distribution of the systems. The latter will inform us
about the average time delay between the formation of
these compact-binary systems and their merger, as well
as the shape of the underlying star-formation-rate density.

Third-generation detectors are unlikely to be online
before the mid-2020s, but, if realized, the ambitious and

novel design for the Einstein Telescope will have far-
reaching scientific advantages. Such a detector could de-
tect as many as hundreds of thousands of DNS inspirals per
year, which, along with the distance reach of the detectors,
will permit precision GWastronomy. In this paper, we will
not consider other methods which have been proposed for
using GW observations as cosmological probes. In par-
ticular, we do not consider association of GW detections
with an electromagnetic (EM) counterpart, which has been
studied in Refs. [16,17], nor do we consider tidal-coupling
corrections to the phase evolution of the strain signal [30].
The latter method is also a GW-only technique with sig-
nificant potential, in that these phase-evolution corrections
break the mass-redshift degeneracy at 5 PN order and,
assuming the NS equation-of-state is well known, will
permit the distance-redshift relation to be probed. It may
also be possible to apply the method used by Ref. [31],
which was investigated in the context of future space-based
detectors, to third-generation ground-based detectors.
Their method relies on the measurement of cosmologically
induced shifts in the GW phase at 4 PN order.
This paper is laid out as follows. Section II describes the

characteristics of the Einstein Telescope, as well as pos-
sible third-generation networks and detection criteria. In
Sec. III, we discuss aspects of DNS systems, including the
mass distribution of the constituent NSs, and the redshift
distribution of DNS mergers. Section IV describes the
effect of the dark-energy equation-of-state parameter on
cataloged luminosity distances, while Sec. V describes
how we construct and analyze catalogs of detected DNS-
system inspirals. Results are shown in Sec. VI, followed by
our conclusions in Section VII.

II. DETECTOR CHARACTERISTICS
AND NETWORKS

A. The Einstein Telescope

The Einstein Telescope (ET) is a proposed third-
generation ground-based interferometer. A recent design
study has been carried out within the European Com-
mission’s FP7 framework [32] to evaluate the science
case for such a detector and to consider the technological
advances required for the science goals to be achieved.
Through this three-year design study, some favored de-
signs and configurations have emerged.
The aim for third-generation ground-based detector de-

signs is to achieve a broadband factor of 10 sensitivity
improvement with respect to advanced detectors and to
push the sensitivity down into the �1–10 Hz range. Early
designs examined the prospects for pushing conventional
techniques used in advanced detectors to their limits to
construct a third-generation interferometer [33]. This gave
the ET-B noise curve in Fig. 1. Beyond the extension of the
arm length to 10 km, several techniques were proposed to
suppress high- and low-frequency noise, including siting
the detector underground.
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Crucially, the techniques used to suppress high-
frequency noise are not necessarily compatible with the
suppression of low-frequency noise. Increasing the laser
power will reduce the photon shot noise which dominates
the high-frequency range, but this worsens the thermal
noise which dominates at low frequencies. The ‘‘xylo-
phone’’ design was proposed to address this issue.
Instead of having a single broadband instrument, the xylo-
phone design comprises a high-power, high-frequency
interferometer (ET-HF) and a cryogenic low-power, low-
frequency interferometer (ET-LF) [34]. ET-LF would be
an underground instrument, and limited at low frequencies
by gravity-gradient noise, while ET-HF would be
colocated and co-oriented with ET-LF but surface-sited.
ET-HF would employ high-power lasers to suppress high-
frequency photon shot noise.

The initial xylophone design gave the ET-C curve [34] in
Fig. 1, which was refined to give the ET-D xylophone
design [29]. We will use the ET-D noise curve in the
ensuing analysis.

Current and advanced-era ground-based interferometers
are right-angled interferometers, since an arm-opening
angle of 90� maximizes their sensitivity. However, if
both GW polarization states are to be measured at a single
site, then two or more colocated nonaligned interferome-
ters are required. Furthermore, at least three colocated
interferometers are required to construct a null stream,
i.e., a sum of individual interferometer responses which
is insensitive to GWs and can be used to identify noise
transients in the data stream.

Taking these goals into account, the design requiring the
shortest total length of tunnels is a triangular configuration
with three identical interferometers positioned at each ver-
tex of the triangle, an arm-opening angle of 60� and rotated

relative to each other by 120� [26–28]. A triangular con-
figuration also provides redundancy, since polarization con-
straints are still possible with only two vertices operational.
In the following, we consider three ET-D interferome-

ters in the triangular configuration, which we denote as a
‘‘single ET.’’ More than one ET would be very optimistic,
so we complement our single ET with a network of indi-
vidual third-generation right-angled interferometers (also
with ET-D sensitivity) to permit source distance determi-
nation. While different locations are being mooted, we
choose the Virgo location as the reference ET site [35].

B. Signal-to-noise ratio

The optimal matched filtering signal-to-noise ratio of a
GW detection is given by

�opt ¼ 2

�Z 1

0
df

j~hðfÞj2
ShðfÞ

�
1=2

; (1)

where ShðfÞ denotes the detector’s noise power spectral
density. In the quadrupolar approximation, the Fourier
transform of the signal amplitude of GWs from an inspiral-
ing binary system takes the following form [36,37]:

j~hðfÞj ¼ 2c

DL

�
5G�

96c3

�
1=2
�
GM

�2c3

�
1=3
�
�

4

�
f�7=6: (2)

The function � is defined by

� � 2½F2þð1þ cos2�Þ2 þ 4F2�cos2��1=2; (3)

where 0<�< 4, and
Fþ� 1

2ð1þcos2�Þcos2�cos2c �cos�sin2�sin2c ;

F�� 1
2ð1þcos2�Þcos2�sin2c þcos�sin2�cos2c

(4)

are the interferometer’s strain responses to the different
GW polarizations.
Following Ref. [25], we can write the matched filtering

signal-to-noise ratio in a single detector as

� ¼ 8�
r0
DL

�
Mz

1:2 M�

�
5=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðfmaxÞ
q

; (5)

where Mz ¼ ð1þ zÞM is the redshifted chirp mass,

r20 �
5

192�

�
3G

20

�
5=3

x7=3
M2�
c3

;

x7=3 �
Z 1

0

dfð�M�Þ2
ð�fM�Þ7=3ShðfÞ

;

�ðfmaxÞ � 1

x7=3

Z 2fmax

0

dfð�M�Þ2
ð�fM�Þ7=3ShðfÞ

; (6)

and 2fmax is the wave frequency at which the inspiral
detection template ends [38]. The intrinsic chirp mass,
M, is given in terms of the component masses by,

M ¼
�

m1m2

ðm1 þm2Þ2
�
3=5ðm1 þm2Þ: (7)

The phase evolution of the strain signal in a single inter-
ferometer can constrain Mz to subpercent precision [39].
In order to measure the luminosity distance,DL, we require
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FIG. 1 (color online). Comparison of the different noise curves
for AdLIGO (high-power zero-detuning) [40], the initial Einstein
Telescope noise curve based on conventional techniques, ET-B
[33], the initial xylophone noise curve, ET-C [34], and the im-
proved, more realistic xylophone noise curve, ET-D [29]. These
noise curves are for one 10 km right-angled interferometer.
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a network of separated detectors to break the waveform
degeneracy between DL and � [see Eq. (2)]. Distance-
measurement errors in a third-generation network will be
discussed in Sec. VID.

The signal-to-noise ratio (SNR) of a detected system
will vary between the individual network sites, as a result
of the different ShðfÞ’s and angular dependencies.
However, following Refs. [25,38], we assume the network
SNR of a detected system is given by the quadrature
summation of the individual interferometer SNRs,

�net¼
ffiffiffiffiffiffiffiffiffiffiffiX
k

�2
k

s
¼ 8

DL

�
Mz

1:2M�

�
5=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

ðr0;k�k�kðfmaxÞÞ2
s

;

(8)

where r0;k, �kðfmaxÞ and�k encode the distance, frequency

and angular sensitivities of the kth detector. A comparison
of the characteristic distance sensitivities of some second-
and third-generation detectors is shown in Table I.

C. Network antenna patterns

The angular dependence of the SNR is encapsulated by the
variable �. The sky location and binary orientation can be
deduced from the network analysis; however, in our analysis,
wewill use onlyDL andMzmeasurements.We calculate the
probability density function for � [25] numerically using
Eq. (3) by choosing cos�, �=�, cos� and c =� to be un-
correlated and distributed uniformly over the range ½�1; 1�.

It is unlikely that more than one ETwill be constructed. A
more likely network configuration will involve a single ET
with single third-generation right-angled detectors at other
sites. In the interest of verisimilitude, we take into account
possible detector locations for such a third-generation

network. Table II contains the locations and arm-bisector
orientations of various current and planned detectors.
To write down the antenna pattern function as a function

of the detector position,1 we use the notation and formal-
ism of Ref. [43].
For a GW source at coordinates ð�;�Þ on the sky, with

polarization angle c and a detector with opening angle 	
at latitude 
 and longitude � and such that the bisector of
its arms points at an angle �, counterclockwise from East,
the antenna pattern functions are

Fþ
F�

 !
¼ sin	

cosð2c Þ sinð2c Þ
� sinð2c Þ cosð2c Þ

 !
a

b

 !
; (9)

where,

a ¼ 1
16 sinð2�Þ½3� cosð2
Þ�½3� cosð2�Þ� cos½2ð�þ �Þ�
þ 1

4 cosð2�Þ sin
½3� cosð2�Þ� sin½2ð�þ �Þ�
þ 1

4 sinð2�Þ sinð2
Þ sinð2�Þ cosð�þ �Þ
þ 1

2 cosð2�Þ cos
 sinð2�Þ sinð�þ �Þ
þ 3

4 sinð2�Þcos2
sin2�;
b ¼ cosð2�Þ sin
 cos� cos½2ð�þ �Þ�

� 1
4 sinð2�Þ½3� cosð2
Þ� cos� sin½2ð�þ �Þ�

þ cosð2�Þ cos
 sin� cosð�þ �Þ
� 1

2 sinð2�Þ sinð2
Þ sin� sinð�þ �Þ:

(10)

As a reference, we use a network comprising three 60�
ET-D sensitivity interferometers at the Virgo location (a
single ET), plus right-angled interferometers at the LIGO-
Livingston and LIGO-India locations. The characteristic
distance reach of all of the interferometers in the network is
taken as 1591Mpc, corresponding to ET-D sensitivity [29].
This is the sensitivity of a 10 km right-angle interferome-
ter. We account for the different detector arm-opening
angles in the antenna pattern functions.
The network SNR given by Eq. (8) also depends on

�ðfmaxÞ, which describes the overlap of the signal power
with the detector bandwidth [25]. The frequency at the end
of the inspiral (taken to correspond to the innermost stable
circular orbit) is at

fmax ¼ 785 Hz

1þ z

�
2:8 M�

M

�
; (11)

where M is the total mass of the binary system [36]. The
maximum binary-system mass could conceivably be
�4:2 M�.

2 The ET horizon distance for a system with a

TABLE I. The characteristic distance sensitivities [as given by
evaluating Eq. (6)] of some advanced-detector configurations
and various design studies for the third-generation Einstein
Telescope.

Detector r0=Mpc

AdLIGOa
80

AdLIGOb
110

AdLIGOc
119

AdVirgod 85

ETe 1527

ET-Bf
1587

ET-Cg
1918

ET-Dh
1591

aLow-power zero detuning [40]
bHigh-power zero detuning [40]
cNS-NS optimized [40]
dRef. [41]
ePolynomial noise-curve approximation [42]
fConventional technology [32]
g3rd-generation technology, xylophone configuration [32]
h3rd-generation technology, xylophone configuration (updated
and more realistic) [32]

1We do not consider modulation of the antenna patterns due to
the rotation of the Earth. We justify this in Sec. VI F.

2Both neutron stars in the binary system would need to have
masses 2 above the distribution mean at the maximum consid-
ered � and , where �NS 2 ½1:0; 1:5� M�, NS 2 ½0; 0:3� M�.
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total mass of �4 M� is �25 Gpc [16]. In the �CDM
cosmology, this corresponds to a redshift of �2:9, and
from Eq. (11), this gives fmax � 134 Hz. Given the

ET-D noise-curve [29],
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðfmax ¼ 134HzÞp

* 0:98.
Extending the redshift reach out to z� 5 still givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðfmax ¼ 87 HzÞp

* 0:96. Thus, we feel justified in
adopting �ðfmaxÞ ’ 1 for all interferometers in the ensuing
analysis.

Using these expressions, we were able to numerically
estimate the probability distribution for the effective �,

�eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX
k

�2
k

s
; (12)

where the sum is over all detectors in the network. We use
this�eff distribution to choose SNRs for each source in the
catalog via Eq. (5) and then impose a detection criterion.
As a reference, we adopt the detection criterion that the
network SNR must be greater than 8.

III. DNS SYSTEMS

A. Neutron-star mass distribution

For a full discussion of our assumptions and modeling
details of the NS mass distribution in DNS systems, see
our previous work (Ref. [22], and references therein). We
provide here a brief summary of the main assumptions
pertinent to the present study.

To lowest order, the GW signal depends on the two
neutron-star masses through the chirp mass, M. We
assume that the distribution of individual neutron-starmasses
is normal, as suggested by analysis of Galactic DNS systems
[45,46] and population synthesis studies (see, e.g.,
Refs. [37,47,48]). For NS � �NS, this should also lead to
an approximately normal distribution for the chirp mass.

We use a simple ansatz for the relationship between the
chirp-mass distribution parameters and the underlying
neutron-star mass distribution. The chirp mass distribution
is modeled as normal,

M � Nð�c; 
2
cÞ;

with mean and standard deviation

�c 	 2ð0:25Þ3=5 �NS; c 	
ffiffiffi
2

p ð0:25Þ3=5 NS; (13)

where�NS andNS are the mean and standard deviation of
the underlying neutron-star mass distribution.

A recent study by Ozel et al. [49] has found that DNS
data are consistent with both pulsar and companion having
been drawn from the same underlying distribution of
masses. The literature indicates an underlying neutron-
star mass distribution in DNS systems with NS &
0:15 M� [45,46,49].3 Hence, we anticipate that Eq. (13)
will be appropriate for generating data sets, and we use this
in the ensuing analysis. The assumption throughout is that
for the volume of the Universe probed by our global net-
work, the neutron-star mass distribution does not change.
Further population synthesis and observational studies

in the following decade will help to shed further light on
the nature of the NS mass distribution. The assumption of a
unimodal (for DNS systems) Gaussian distribution is an
approximation, and if future studies show this to be inap-
propriate, then a more suitable ansatz could be readily
incorporated within the framework described in this paper.

B. Merger-rate density

In this analysis, we aim to probe not only the back-
ground cosmology and NS mass-distribution parameters,
but the astrophysical properties of the binary NS popula-
tion. To this end, we now consider the factors contributing
to the coalescence of a binary NS system.
Following several population synthesis studies (e.g.,

Refs. [37,50]) and Ref. [51], we define the merger rate
per comoving volume as

_nðtÞ ¼
Z t

t

�
dPm

dt
ðt� tbÞ d�


dt
ðtbÞdtb; (14)

where � is a mass efficiency, defined as the number of
coalescing DNS binaries per unit star-forming mass [37].
dPm=dt is the probability density distribution of a DNS
binary merging at a time (t� tb) after formation, and
d�
=dt is the star-formation rate (SFR) density at cosmo-
logical time tb.
Star formation, and the efficiency of double compact-

object formation from the progenitor system, may be sen-
sitive to the host-galaxy morphology and environment
(e.g., metallicity). Furthermore, the distribution of delay

TABLE II. A reproduction of the GW-interferometer geographical locations and arm-bisector orientations from Schutz [43]. We
include updated IndIGO information [44].

Detector Label Longitude Latitude Orientation

LIGO-Livingston, LA, USA L 90�46027:300 W 30�33046:400 N 208.0�(WSW)

LIGO-Hanford, WA, USA H 119�24027:600 W 46�27018:500 N 279.0�(NW)

Virgo, Italy V 10�3001600 E 43�3705300 N 333.5�(NNW)

KAGRA (formerly LCGT), Japan J 137�1004800 E 36�1500000 N 20.0�(WNW)

LIGO-India, India I 76�260 E 14�140 N 45.0�(NE)

3Indeed, Ozel et al. [49] indicates that the DNS mass distribu-
tion is peculiar, since it cannot be explained via electron-capture
or core-collapse supernovae mechanisms; rather, its narrow dis-
persion may be a result of the evolutionary path of these systems.
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times between star formation and the corresponding DNS-
system coalescence may have contributions from several
different evolutionary paths. However, we are interested
here only in a third-generation GW-interferometer net-
work’s ability to constrain various astrophysical and cos-
mological parameters [22]. As such, we consider a single
component star-formation distribution, delay-time distri-
bution and mass efficiency, deferring considerations of the
other dependencies to a future study. We now discuss the
various terms in Eq. (14) in more detail.

1. Mass efficiency, �

We use values for � obtained from the population syn-
thesis calculations of Ref. [50]. Smoothed histograms of
the mass efficiency are shown in Fig. 4 of that paper, with
modes at �10�5 M�1� for DNS systems formed in both
elliptical and spiral conditions. However the distribution of
� ranges over several orders of magnitude, with
10�7 M�1� & � & 10�3 M�1� . We adopt � ¼ 10�5 M�1�
as the reference value for our analysis.

2. Merger-delay distribution, dPm=dt

Massive stars in high-mass binary systems evolve into
DNS systems on much shorter time scales than typical
galaxy evolution or Hubble time scales, such that
dPm=dt is essentially determined by the initial orbital
separation, a, of the DNS system [52]. The evolutionary
time delay between the progenitor formation and the
formation of the corresponding DNS system is typically
& 50 Myr [53] and is therefore negligible compared to the
gravitational-wave inspiral time scale, which scales as
�gr / a4. Assuming the number of binaries, N, born with

separation a scales as dN=da / a� [52], we obtain

dPm

dt
/ dN

d�gr
¼ dN

da

da

d�gr
/ tð��3Þ=4 ¼ t�: (15)

If DNS systems have the same orbital separation distribution
as normal-abundance main-sequence stars [54,55], then
� ¼ � ¼ �1. However, this scaling is not well-
constrained, and this is discussed in more detail in
Appendix A. Instead, we adopt the approach of allowing
� to be a free parameter which we attempt to fit from our
observations and ask with what precision this can be deter-
mined. We use the value � ¼ �1 for our reference model,
which is justified by current (albeit sparse) analysis of
Galactic DNS systems [56–58], and various population syn-
thesis calculations [50,53,59–62]. For normalization pur-
poses, we assume a minimum delay time of 50 Myr and a
maximum delay time equal to the cosmology-dependent age
of the Universe; these choices are discussed in Appendix A.

3. Star-formation rate density, d�
=dt
The star-formation rate density is also rather uncertain.

The SF2 model of Porciani and Madau [63] attempts to

factor in the uncertainties in the incompleteness of data
sets and the amount of dust extinction at early epochs. The
SF2 model has the form

d�

dt

ðzÞ 	 0:16�
�

expð
1zÞ
expð
2zÞ þ 22

�

� EðzÞ
ð1þ zÞ3=2 M�Mpc�3 yr�1; (16)

where

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m;0ð1þ zÞ3 þ�k;0ð1þ zÞ2 þ��ðzÞ

q
(17)

and 
1 ¼ 
2 ¼ 3:4. In this model, the SFR density re-
mains roughly constant at z * 2, which may be incompat-
ible with recent observations [64,65]. This is discussed in
more detail in Appendix B. To allow for some uncertainty,
we treat 
1 and 
2 as free parameters and explore how
precisely we can measure them. While this simple ansatz
does not cover all possible forms for the SFR density, using
it will provide an indication of what GW observations
could tell us. The framework is easily adaptable to more
complex SFR models.
We must also specify t
, the lower integration bound in

Eq. (14), which represents the time of the earliest period of
star formation. The highest redshift objects observed are a
long gamma-ray burst (GRB) with a photometric redshift
of �9:4 [66] and a candidate z� 10 galaxy [67]. We
therefore use z ¼ 10 as the earliest time of star formation.
Future observations, for instance with the James Webb
Space Telescope, may be able to probe back to the first
phases of galaxy formation at z� 15, and if objects are
found at that epoch, this assumption should be revised.
However, our results are fairly insensitive to this choice.

4. Calculating _nðzÞ
Equation (14) can be rewritten as a distribution in red-

shift using dt=dz ¼ �1=ðð1þ zÞEðzÞH0Þ

_nðzÞ ¼
Z z

10
�
dPm

dt
ðt� tbÞd�


dt
ðtbÞ dtbdzb

dzb

¼ 0:16�

H0

Z 10

z

dPm

dt
ðtðzÞ � tbðzbÞÞ

�
expð
1zbÞ

expð
2zbÞ þ 22

�

� dzb

ð1þ zbÞ5=2
: (18)

Evaluating this expression requires an expensive double
integral which created a bottleneck in our analysis.
However, because the priors on the cosmological parame-
ters are narrow (see Sec. VD), there is little variation in the
merger-rate density across this range, as shown in Fig. 2.
We therefore fixed the cosmological parameters at their
reference values for the cosmological time calculation,
which made the merger-rate density calculation con-
siderably faster. Although this throws away some of the
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cosmological information, it did not significantly affect the
results and made the analysis more tractable.

IV. COSMOLOGICAL MODELS

In our previous analysis [22], we considered only a flat
cosmology, but here we allow for curvature and an evolv-
ing equation of state (EOS) for the dark energy. From the
cosmological field equations, we have

_�þ 3

�
_a

a

��
�þ p

c2

�
¼ 0; (19)

where � and p are the density and pressure of a cosmo-
logical fluid, respectively, while a is the scale factor of the
Universe. Derivatives are with respect to physical time. For
a perfect fluid (p ¼ w�c2, where w is the EOS parameter),
this reduces to �

_�

�

�
¼ �3ð1þ wÞ

�
_a

a

�
: (20)

Hence,

�ðaÞ ¼ �ðatoday ¼ 1Þ � e�3
R

a

1
ð1þwÞðda0=a0Þ: (21)

The last decade has seen many proposals for w, with
different physical motivation. One approach attempts to
explain dark energy as a minimally coupled scalar field
(‘‘quintessence’’) slowly rolling down its potential such
that it can exert negative pressure. While it is possible to
have a constant EOS in this formalism, this requirement
places severe constraints on the potential, and so it is
natural to expect a time-varying EOS [68].

The simplest approximation is to assume a linear model
(wðzÞ ¼ w0 þ w1z), but this is only appropriate for local
studies due to the divergence at high redshift. The
Shafieloo-Sahni-Starobinsky ansatz [69] models the EOS
evolution as a ‘‘tanh’’ form which ensures w ¼ �1 at early
times andw ! 0 at low z. This ansatz prevents the crossing
of the ‘‘phantom divide’’ at w ¼ �1, desirable since

phantom fluids cannot be explained by a minimally
coupled scalar field [68]. The ansatz we adopt in this
work is the Chevallier-Polarski-Linder ansatz [68,70]

wðaÞ ¼ w0 þ wað1� aÞ; wðzÞ ¼ w0 þ wa

�
z

1þ z

�
:

(22)

This ansatz was adopted by the Dark Energy Task Force
[71] and has several desirable features. It depends on only
two free parameters, it reduces to the linear model at low z,
and it is well-behaved at high redshift, tending to w0 þ wa.
Using this EOS,

��ðzÞ ¼ ��;0 � ð1þ zÞ3ð1þw0þwaÞ � e�3waðz=1þzÞ: (23)

For different global geometries of the Universe, the
luminosity distance, DL, is given by

DLðzjCÞ ¼ ð1þ zÞ �F ðzjCÞ;
where

F ðzjCÞ ¼

8>>>>>><
>>>>>>:

DHffiffiffiffiffiffiffi
�k;0

p sinh

� ffiffiffiffiffiffiffiffiffi
�k;0

p DcðzjCÞ
DH

�
; �k;0 > 0;

DcðzjCÞ; �k;0 ¼ 0;

DHffiffiffiffiffiffiffiffiffi
j�k;0j

p sin

� ffiffiffiffiffiffiffiffiffiffiffiffi
j�k;0j

q
DcðzjCÞ
DH

�
; �k;0 < 0;

(24)

in which DH is the Hubble scale (c=H0) and C ¼
fH0;�m;0;��;0;�k;0; w0; wag is the set of cosmological

parameters describing the large-scale characteristics of
the Universe.
The comoving radial distance, DcðzÞ, is given by

DcðzÞ ¼ DH

Z z

0

dz0

Eðz0Þ ; (25)

where EðzÞ is given by Eq. (17). The redshift derivative of
the comoving volume is given generally by

dVc

dz
¼ 4�DH

DLðzÞ2
ð1þ zÞ2EðzÞ : (26)

V. MAKING AND ANALYZING DNS CATALOGUES

We refer the reader to our previous study [22] for full
details of our calculation, but we summarize the main
details here.

A. Distribution of detectable DNS systems

The two system properties wewill use in our analysis are
the redshifted chirp mass, Mz, and the luminosity dis-
tance, DL. We assume that only systems with an SNR
greater than a given threshold will be detected. We can
write down the distribution of the number of events per unit
time in the observer’s frame with M, z and effective �
[25,37],
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FIG. 2 (color online). Merger-rate densities computed for the
reference cosmology (solid line) and for cosmological parame-
ters chosen randomly from within the prior range (red crosses).
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d4N

dtd�dzdM
¼ dVc

dz

_nðzÞ
ð1þ zÞP ðMÞP�ð�Þ: (27)

The 1=ð1þ zÞ factor accounts for the redshifting of the
merger rate [37].

Converting this to a distribution in Mz, DL and � and
integrating over � to find the distribution of detectable
systems (i.e., systems above SNR threshold) gives

d3N

dtdDLdMz

���������>�0

¼ dz

dDL

dVc

dz

_nðzÞ
ð1þ zÞ2 �P

�
Mz

1þ z

��������DL

�

�C�

�
�0

8

DL

r0

�
1:2 M�
Mz

�
5=6
�
; (28)

where the form of (dz=dDL) will depend on the curvature
of the Universe [see Eq. (24)].

To calculate the number of detected systems
(given a set of model parameters, ~�), we integrate over
this distribution, which is equivalent to integrating
the distribution over redshift and chirp mass, i.e.

N� ¼ T � R1
0

R1
0 ð d3N

dtdzdMÞdzdM, where T is the duration

of the observation run.4

B. Creating mock catalogs of DNS-binary
inspiraling systems

The model-parameter space we investigate is the
7-dimensional space of ½w0; wa; �NS; NS; �; 
1; 
2�. To
generate a catalog of events, we choose a set of reference
parameters, motivated by previous analysis in the litera-
ture. For our reference cosmology, we adopt H0 ¼
70:4 km s�1 Mpc�1, �m;0 ¼ 0:2726, ��;0 ¼ 0:728, w0 ¼
�1:0 and wa ¼ 0:0 [72]. The reference parameters of the
neutron-star mass distribution are �NS ¼ 1:35 M� and
NS ¼ 0:06 M� [45]. We have previously discussed the
delay-time distribution and SFR density in Sec. III B. We
adopt a power-law merger-delay distribution with refer-
ence power-law index � ¼ �1:0, and we take the SFR
density to be given by the SF2 ansatz [63], with 
1 ¼ 3:4
and 
2 ¼ 3:4.

These reference parameters are used to calculate an
expected number of events,5 and the number of observed
events, No, is drawn from a Poisson distribution (assuming
each binary system is independent of all others) with that
mean. Monte Carlo acceptance/rejection sampling is used
to draw random redshifts and chirp masses from the dis-
tribution in Eq. (27) for each event. The DL and Mz are
then computed from the sampled M and z.

For these reference parameters, which give a local
merger-rate density of �2� 10�7 Mpc�3 yr�1, and
assuming detected systems must have a network SNR
greater than 8, we find that the expected number of detec-
tions in 1 yr is �105.6

C. Likelihood statistic

In the measurement-parameter space of redshifted chirp
mass and luminosity distance, the measured number of
detections in a given bin will be a Poisson random variate
with a model-dependent mean. If we take the continuum
limit of this, such that bin sizes are infinitesimally small
and contain either 0 or 1 events, then we can formulate the
likelihood of a catalog of discrete events,

L ð ~~�j ~�;H Þ ¼ e�N�

YNo

i¼1

rð ~�ij ~�Þ; (29)

where
~~� ¼ f ~�1; ~�2; . . . ; ~�No

g is the vector of measured

system properties, with ~�i ¼ ðMz; DLÞi for system i. No

is the actual number of detected systems, while N� is the

number of DNS inspiral detections predicted by the model

with parameters ~�. Finally, rð ~�ij ~�Þ is the rate of events
with propertiesMz and DL, evaluated for the ith detection
under model parameters ~�, which is given by Eq. (28). The
trial cosmological parameters are used to calculate a
model-dependent redshift from the cataloged luminosity
distance, and, in turn, this redshift is used to infer a model-
dependent intrinsic chirp mass from the cataloged value of
Mz. These values of Mz, DL, as well as the model-
dependent values of z and M are inserted into Eq. (28)
to compute the likelihood.
In our previous study, we employed a modified like-

lihood statistic which marginalized over the local merger-
rate density of DNS systems. This approach reflects our
current lack of knowledge of this quantity, estimates of
which vary over several orders of magnitude. We adopt the
same approach in this analysis, to eliminate the depen-
dence on poorly known scaling factors. This includes the
mass efficiency parameter, �, which is a quantity derived
from population-synthesis studies and can vary over sev-
eral orders of magnitude.
The modified likelihood statistic is

~Lð ~~�j ~�;H Þ / N�ðNoþ1Þ
�

YNo

i¼1

rð ~�ij ~�Þ: (30)

4We found that, for the purposes of the calculation, assuming
the NS mass distribution was a �-function, centered at the mean
given by the trial parameters, allowed at least a tenfold speedup
in the calculation. See Appendix B for further details.

5The observation time, T, is assumed to be 1 yr, and the mass
efficiency is assumed to be � ¼ 10�5 M�1� (as mentioned
earlier).

6This reference local merger-rate density is roughly 5 times
smaller than the realistic value quoted in Abadie et al. [11], but
20 times larger than the pessimistic estimate. Whilst we could
scale our merger-rate density calculations to match the realistic
value of 10�6 Mpc�3 yr�1, our modified likelihood statistic
makes our analysis insensitive to such scalings. A rescaling to
the realistic local merger-rate density of Ref. [11] would lead to
an expected detection rate of approximately half a million
sources.
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We note that we have not included a prior on the scaling
factors in the above, which is equivalent to using an
improper flat prior over the range ½0;1�. This reflects our
current lack of knowledge of the mass efficiency.

D. Calculating the posterior probability

We use a weakly informative prior on the model pa-
rameters, so that it does not prejudice our analysis. As a
prior on �NS, we take a normal distribution with parame-
ters� ¼ 1:35 M�,  ¼ 0:13 M�. This is motivated by the
posterior predictive density estimate for a neutron star in a
DNS binary system given in Ref. [45].

Given that ETwill most likely not be operational until the
mid-2020s, wemust considerwhat constraints conventional
observational cosmology can put on cosmological parame-
ters. In the recent study by Zhao et al. [17], the authors
investigated how the dark-energy EOS could be probed by
ET observations of DNS systems to provide distance mea-
surements, complemented by electromagnetic measure-
ments of the associated short gamma-ray burst (sGRB) to
provide the redshift. They estimated that a combination of
the Planck cosmic microwave background (CMB) prior,
JDEM BAO results, and future Type Ia supernova observa-
tions could provide cosmological constraints by the ET era
of

��m;0¼3:46�10�3; ��k;0¼5:91�10�4;

�H0¼0:336; �w0¼0:048; �wa¼0:184: (31)

Hence, we assume that H0, �m;0 and �k;0 are precisely

known quantities, with values of 70:4 km s�1 Mpc�1,
0.2726 and �0:0006, respectively. As a prior on w0 and
wa, we adopt the constraint that wðzÞ<�1=3 at all red-
shifts. Hence, we use uniform priors on the EOS parame-
ters with w0 <�1=3 and w0 þ wa <�1=3 and lower
bounds set low enough so as not to affect the posterior
probability distribution. We also adopt uniform priors for
all other parameters under investigation.

E. Bayesian analysis and an adaptive Markov
chain Monte Carlo technique

Bayes’ theorem states that the posterior probability
distribution of the parameters ~� describing a hypothesis
model H and given data D is given by

pð ~�jD;H Þ ¼ LðDj ~�;H Þ�ð ~�jH Þ
pðDjH Þ ; (32)

where LðDj ~�;H Þ is the likelihood (the probability of
measuring the data, given the model H with parameters
~�), �ð ~�jH Þ is the prior (any constraints already existing
on the model parameters) and finally pðDjH Þ is the
evidence (this is important in model selection, but in the
subsequent analysis in this paper can be ignored as a
normalization constant).

Markov chain Monte Carlo (MCMC) techniques pro-
vide an efficient way to explore the model-parameter
space. An initial point, ~x0, is drawn from the prior distri-
bution and then at each subsequent iteration, i, a new point,
~y, is drawn from a proposal distribution, qð ~yj ~xÞ, and the
Metropolis-Hastings ratio evaluated,

R ¼ �ð ~yÞLðDj ~y;H Þqð ~xij ~yÞ
�ð ~xiÞLðDj ~xi;H Þqð ~yj ~xiÞ

: (33)

A random sample is drawn from a uniform distribution,
u 2 U½0; 1�, and if u < R the move to the new point is
accepted, and we set ~xiþ1 ¼ ~y. If u > R, the move is
rejected, and we set ~xiþ1 ¼ ~xi.
The MCMC samples can be used to carry out integrals

over the posterior

Z
fð ~xÞpð ~xjD;H Þd~x 	 1

N

XN
i¼1

fð ~xiÞ: (34)

The 1D marginalized posterior probability distributions in
individual model parameter follows by binning the chain
samples in that parameter.
The trick to using this technique efficiently is to choose

an appropriate proposal distribution. In our analysis, we
employ an adaptive MCMC procedure, which utilizes an
‘‘in-flight’’ estimation of the sampled chain’s covariance
matrix to construct an updating proposal distribution. This
covariance matrix is updated at each iteration, with a
certain chain memory [73–75]. We use several of the
procedures outlined in Ref. [75].
For the first 100 points in the chain, simple Gaussian

proposal distributions for each individual parameter are
used. These first 100 points are merely used to provide a
starting point for the covariance matrix evaluation, and so
the exact proposal distribution used in this stage is not
important. After the first hundred points are sampled, we
begin generating points via the adaptive procedure. For a
D-dimensional target posterior distribution, we suppose
that at the ith iteration, we have sampled at least H points,
where the fixed integer H is the memory parameter. We
then generate a D-dimensional vector of trial parameters,
~y, via a linear mapping of anH-dimensional vector of unit-

variance Gaussian random scalars, ~�,

~y ¼ C1=2 ~�; (35)

where C1=2 is the positive-definite square root of the
D�D covariance matrix evaluated using the previous H
points. The covariance matrix may be calculated by collect-
ing the previousH points in the chain into anH �Dmatrix
K, with each row representing one sampled point. Then,

C ¼ 1

H� 1
~KT ~K; (36)

where the centered matrix, ~K, is constructed by centering
each column of K around the means of the respective
parameters, calculated from the H samples.
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We then generate the trial parameter vector ~y via

~y�N ð ~x; c2dCÞ � ~xþ cdffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � 1

p ~KT ~�; (37)

where cd is a variable which depends only on the dimen-
sionality of the target distribution. This variable is used to
optimize the efficiency of the sampling process, and we use

the value of 	 2:4=
ffiffiffiffi
D

p
[75,76].

With a memory parameter which is less than the total
past history of the chain, this is denoted as the adaptive
proposal algorithm [73]. Since the proposal distribution is
updated constantly and relies on previous chain informa-
tion, this procedure is not Markovian, and does not have
the correct ergodicity properties for a MCMC algorithm
[73]. In principle, this can bias the reconstruction of the
target posterior; however, this bias is ignorable in many
practical applications and for well-behaved target posterior
distributions [73,74]. If the entire previous chain is used to
update the covariance matrix, then this algorithm is known
as the adaptive Metropolis (AM) algorithm [74]. The AM
algorithm does not suffer from the biases which can occur
in the adaptive proposal algorithm, and ergodicity is re-
tained.7 We use the AM algorithm in our work.

VI. RESULTS

A. Posterior recovery

An analysis using the full 105 observations expected in a
year of ET data is computationally prohibitive, so we use a
working reference sample of �4500 detections (corre-
sponding to a shorter observation time or a lower merger-
rate density) and extrapolate to the expected number of
detections, as discussed in Sec. VIC. For each analysis, we
ran 120 independent adaptive MCMC chains of 5000
points on the same data catalog. We then used the last
point from each chain to initialize a follow-up run of
another 5000 iterations. The first 2000 points from each
chain of the follow-up run were discarded as burn-in. This
procedure therefore generated 360 000 points, with an
average acceptance rate of �30%. The analysis of the
4500-event reference catalog took �3:5 hrs in total. Our
sampled points were analyzed using the COSMOLOGUI

package [77].

B. Marginalized posterior distributions

In Fig. 3, we show the recovered marginalized 2D
posterior distributions (with 68% and 95% confidence con-
tours) for the reference catalog. In Fig. 3(c), we observe a
correlation between the recovered dark-energy parameters.
This is easily explained by the fact that a given cataloged
luminosity distance may be consistent8 with a set of w0

and wa combinations, which will depend on the redshift of
the source. Since the majority of detected systems will be
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FIG. 3 (color online). Marginalized 2D posterior distributions for the reference catalog of 4500 detections. Only those 2D
distributions showing correlations between parameters are shown. The reference parameters are �NS ¼ 1:35 M�, NS ¼ 0:06 M�,
w0 ¼ �1, wa ¼ 0, � ¼ �1 and 
1 ¼ 
2 ¼ 3:4.

7In the AM algorithm, the covariance of the proposal distri-
bution is actually taken to be Cþ �ID, where ID is the
D-dimensional identity matrix. Choosing � > 0 allows for the
correct ergodicity properties of a MCMC algorithm to be re-
tained, and in practice, is useful if the covariance of the chain has
a tendency to degenerate. However, this parameter can be set
very small with respect to the size of the target space, and in
practice, can be set to zero.

8Here, by ‘‘consistent,’’ we mean within�1% of the reference
value.
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centered around z� 1, the w0 � wa correlation will be
dominated by these sources.9 In Fig. 3(a), a negative
correlation is observed between the recovered values for
w0 and �NS. For a given cataloged luminosity distance
and fixed wa, a low value of w0 will imply a low redshift in
that model. When this redshift is used to compute M
fromMz, we obtain a large value of the chirp mass, which
is consistent with a chirp-mass distribution (and hence a
NS-mass distribution) centered at larger values. Figure 3(b)
merely shows the combined information of Figs. 3(a)
and 3(c) (where the recovered wa values are negatively
correlated with the w0 values); therefore, the correlation
observed in Fig. 3(b) is positive.

A strong positive correlation is observed between the
SFR-density SF2 ansatz parameters, 
1 and 
2, as seen in
Fig. 3(d), while Fig. 3(e) shows a weak negative correlation
between � and 
1. These correlations correspond to keep-
ing the merger-rate density approximately constant. We
calculated which combinations of �, 
1 and 
2 were
consistent with a given merger-rate density, at a variety
of redshifts. We found that there was a strong positive
correlation in these points between 
1 and 
2, but the
correlation between � and 
1 changed sign as the redshift
increased. The greatest change occurred as the redshift was
increased from 0 to 1, where the correlation then reversed;

however, at z ¼ 4, the magnitude of the correlation was
still not as large as it was at z ¼ 0:1. This leads us to
believe that although the DL distribution of detected
sources is peaked around �6 Gpc, with a long tail to
�45 Gpc, the lower-distance sources dominate the
�� 
1 correlation, giving an overall negative correlation.
In Fig. 4, we show the marginalized 1D posterior dis-

tributions for the model parameters. The dotted lines in the
plots indicate the 68% and 95% confidence regions of the
marginalized distributions.10

C. Precision scaling with number of detections

We performed similar analyses on catalogs containing
various numbers of detections, culminating in a run with
105 detections. We can characterize the precision with
which we can measure the various model parameters by
the 95% confidence intervals. Recording these intervals
for all parameters for varying catalog sizes and dividing
by the reference sample intervals gave the results shown
in Fig. 5. This clearly shows that the precisions scale as
1=

ffiffiffiffiffiffi
No

p
as we would expect. Parameter measurement

0.058 0.059 0.06 0.061 0.062 0.063
0

0.2

0.4

0.6

0.8

1

σ
NS

1.33 1.34 1.35 1.36 1.37
0

0.2

0.4

0.6

0.8

1

µ
NS

−1.4 −1.2 −1 −0.8 −0.6
0

0.2

0.4

0.6

0.8

1

w
0

−1.5 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

wa

−1.3 −1.2 −1.1 −1 −0.9 −0.8
0

0.2

0.4

0.6

0.8

1

α
2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

β
1

FIG. 4 (color online). Marginalized 1D posterior distributions for the reference catalog of 4500 detections. Dotted lines indicate the
boundaries of the 95% and 68% confidence intervals. The reference parameters are �NS ¼ 1:35 M�, NS ¼ 0:06 M�, w0 ¼ �1,
wa ¼ 0, � ¼ �1 and 
1 ¼ 3:4.

9The correlation between the two dark-energy EOS parameters
can be reduced by rebinning the MCMC samples using the Wang
parametrization [78]. This simply involves a transformation from
the (w0; wa) parametrization to (w0; w0:5), where w0:5 ¼ w0 þðwa=3Þ.

10While these results were computed using the fast merger-rate
approximation, we also analyzed a catalog using the full merger-
rate density. The 95% confidence intervals of the marginalized
posterior distributions were consistent with our approximate
analysis, justifying the use of the approximation to compute
the rest of our results. No correlations between the merger-rate
density parameters and the dark-energy EOS parameters were
found, which supports our earlier statement that the dependence
of the merger-rate density on the underlying cosmological pa-
rameters is weak within the applied priors.
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accuracies for the 105-event catalog are shown in
Table III. We see that the measurement precisions of
the dark-energy EOS parameters are the same order of
magnitude as those forecast for CMBþ BAOþ SNIa
[17], as discussed in Sec. VD.

D. Including and accounting for errors

Distance measurements from a third-generation GW-
interferometer network will not be error-free. While a
network consisting of a single ET plus one other right-
angle interferometer can place constraints on a source’s
sky location and luminosity distance, the precisions of
these properties are improved to almost the 3-ET network
level by the inclusion of a second additional right-angle
interferometer [35]. The redshifted chirp mass is expected
to be very well-constrained ( & 0:5% error [39]), and
so we ignore measurement errors in this parameter. We
assume the error in the luminosity distance arising from
instrumental-noise scales as �1=� and include the ef-

fects of weak lensing as a further source of error. The
weak-lensing error on luminosity distance measure-
ments at z� 1 is approximately 5%, and we linearly
extrapolate this to all other redshifts [16,17,79,80].
While several techniques have been proposed to
reduce this weak-lensing error [e.g., Refs. [81,82] and
references therein], we assume no correction has been
done, corresponding to a worst-case scenario.
Errors on the distance-redshift relation from binary-

system peculiar velocities are much smaller than instru-
mental and weak-lensing errors at all but the lowest
redshifts, becoming comparable with these at z� 0:1
where the error is & 1% and decreasing sharply at higher
redshifts [Ref. [83] and references therein]. The lowest
redshift in our reference catalog is �0:05, where the
peculiar velocity errors will dominate, but only lead to an
error of& 2%. The sensitivity of the luminosity distance to
the dark-energy EOS parameters is very weak in this
redshift regime; hence, peculiar velocities are unlikely to
introduce significant parameter bias/inaccuracy, and we
ignore them here.
We also ignore the effect of detector calibration errors,

which, unlike statistical measurement uncertainties, would
not be mitigated by boosting the detection rate. Such
systematic biases have recently been studied in the case
of advanced-era detectors [84] and found to induce a
systematic shift in the estimated system parameters which
is a small fraction of the statistical measurement errors.
We ignore waveform-modelling errors in our analysis,
since current post-Newtonian models will only break
down close to the onset of the merger phase, and for the
neutron-star binaries considered in this analysis, this is at
frequencies where the instrumental noise is high and which
therefore do not contribute much to the overall signal-to-
noise ratio of the system. Furthermore, luminosity-distance
determination comes primarily from the network triangula-
tion which will not be significantly affected by modelling
uncertainties, and so the distance error will be dominated by
instrumental noise and weak lensing, as discussed earlier.
Similarly, the error in the distribution of possible source
redshifts arising from the measured redshifted chirp mass
will be dominated by the intrinsic width of the NS mass
distribution rather than the small error in the redshifted chirp
mass coming from instrumental noise and modelling
uncertainties.
We repeat the run of the working reference sample,

offsetting the cataloged luminosity distance by an amount
drawn from a Gaussian distribution, with mean at the true
distance, and standard deviation,

 ¼ DL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=�Þ2 þ ð0:05zÞ2

q
: (38)

The data collected for each event will actually be in the
form of posterior probability density functions (PDFs) for
the parameters, where previously we have assumed these
are �-functions at the true values. If the offset luminosity
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FIG. 5 (color online). 95% confidence intervals of the 1D
marginalized distributions relative to those of the 4500-event
reference catalog, shown as a function of the number of cata-
loged events. The same intrinsic parameters of the underlying
distributions are used to create the mock catalogs. The expected
�1=

ffiffiffiffi
N

p
relationship is overlaid on the plot.

TABLE III. 95% confidence intervals obtained from a catalog
of 105 detections, with reference parameters used to generate the
data. �X gives the width of the 95% confidence interval.

Parameter

Reference

value 95% confidence interval �X

NS=M� 0.06 [0.059688, 0.060254] 0.000566

�NS=M� 1.35 [1.347408, 1.351789] 0.00438

w0 �1:0 [� 1:036403, �0:949623] 0.0869

wa 0.0 [� 0:195630, 0.073602] 0.269

� �1:0 [� 1:026691, �0:961659] 0.0650


1 3.4 [3.318136, 3.605810] 0.288


2 3.4 [3.310287, 3.582895] 0.273

STEPHEN R. TAYLOR AND JONATHAN R. GAIR PHYSICAL REVIEW D 86, 023502 (2012)

023502-12



distances are assumed to be the true values with a
�-function posterior PDF, the chain does not move away
from its starting point. Hence, we must take these errors
into account in the likelihood calculation stage.

We can account for these errors in the analysis by
modifying the likelihood in Eq. (29) [85] to

Lð ~~�j ~�;H Þ ¼ e�N�

ZZ
. . .

Z �
p

�
~n ¼ ~s�X

i

~hið ~�iÞ
�

�YNo

i¼1

rð ~�ij ~�Þ
�
dk ~�1d

k ~�2 . . . d
k ~�No

; (39)

where, in our case, the number of parameters k ¼ 2, and ~s is
the detector output, which is a combination of No signals,
~hi, and noise, ~n. Equation (39) is an integral over all possible
values of the source parameters which are consistent with
the data. The first term inside the square bracket is the
computed posterior PDF for the detected population of
sources. Concern has been raised that the high event rate
of ET detections may lead to a confusion background.
However, the noise-power-spectral-density-weighted sig-
nals are short enough that there is not expected to be
significant overlap [16,39]. Hence, these detections should
be uncorrelated, with independent parameter estimates, and
so this first term reduces to the product of the posterior PDFs
for each detection.

If the posterior PDF for a given source has been obtained
via MCMC techniques, then the integral in Eq. (39) may be
computed by summing over the chain samples. Thus,
errors may be accounted for by making the following
replacement in Eq. (29):

rð ~�ij ~�Þ ! 1

N i

XN i

j¼1

rð ~�ðjÞ
i j ~�Þ; (40)

where N i is the number of points in the chain for the ith

source’s PDF, and �ðjÞ
i is the jth element of the discrete

chain representing this PDF. This technique does not as-
sume a specific form for the PDF and can be used in the
case of multimodal distributions.

We represent the DL posterior PDF for each source by a
chain of 50 points, drawn from a normal distribution with
standard deviation as in Eq. (38), and a mean equal to
the value in the data catalog, which in this analysis, as
discussed earlier, includes an error to offset it from the true
value. Results are shown in Table IV. We see that a signifi-
cant bias in the reconstructed model parameters still exists.
We suspected that this bias arose from using only 50 points
to evaluate the distance posterior PDFs. We therefore
repeated the analysis with an increasing number of points
sampled from the distance posterior PDF.11 With 100
points, all biases are corrected expect for that in NS, and
the ratio of the 95% confidence interval widths to the
reference widths is not significantly different from the
50-point case. This suggests that a larger number of points
in the error-averaging technique will be necessary to cor-
rect all biases, but this is not necessary to estimate
parameter-measurement accuracies in the presence of dis-
tance errors. Using 400 points sampled from the distance
posterior PDF, all biases in the parameter posterior distri-
butions appear to be corrected, in the sense that the refer-
ence parameters then lay within the 95% confidence
intervals of the 1D marginalized posterior distributions.
Overall, we find that the result of properly accounting

for instrumental and weak-lensing errors is that parameter-
measurement precisions are, at worst, approximately
halved. Thus, instrumental and weak-lensing induced
errors should not affect our general conclusions about
the science capabilities of a third-generation GW-
interferometer network. We carry out the remainder of
this study using catalogs which are generated and analyzed
without including errors.

TABLE IV. 95% confidence intervals derived from the reference sample (4500 detections), both in the case where distances are
measured precisely, and when distance errors are included and accounted for (using the error averaging technique described in the text,
with various numbers of points sampled from the distance posterior PDF). �X gives the width of the 95% confidence interval.

Parameter No errors Errors (50 points) Errors (100 points) Errors (400 points)

95% confidence

interval

95% confidence

interval �X=�Xref

95% confidence

interval �X=�Xref

95% confidence

interval �X=�Xref

NS=M� [0.058785, 0.061447] [0.066378, 0.071911] 2.07851 [0.063815, 0.069409] 2.10143 [0.059309, 0.064849] 2.08114

�NS=M� [1.339198, 1.358745] [1.329060, 1.354066] 1.27928 [1.335499, 1.361690] 1.3399 [1.335782, 1.359339] 1.20515

w0 [� 1:145894, �0:749671] [� 0:880092, �0:338642] 1.36653 [� 1:146052, �0:537588] 1.53566 [� 1:116809, �0:546566] 1.4392

wa [� 0:917590, 0.321901] [� 2:345082, �0:452114] 1.52722 [� 1:651230, 0.463072] 1.70578 [� 1:605299, 0.377340] 1.59956

� [� 1:207554, �0:879888] [� 1:215388, �0:863579] 1.07368 [� 1:208005, �0:874856] 1.01673 [� 1:198613, �0:890136] 0.941437


1 [2.730152, 4.036099] [2.851895, 4.260085] 1.07829 [2.729217, 4.038989] 1.00293 [2.771780, 4.069150] 0.99343


2 [2.842474, 4.059874] [2.954584, 4.274131] 1.08391 [2.863813, 4.080100] 0.999088 [2.887584, 4.100009] 0.995918

11The posterior distributions obtained via this analysis should
be considered estimates of the true distributions, since the long
likelihood computation time required by this error analysis
means that we did not collect as many samples as when errors
are ignored. We performed burn-in runs and then follow-up runs
to estimate the posterior distributions as well as feasible.
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E. Precision scaling with intrinsic parameters

We now investigate how the ability of ET to constrain the
parameters of the underlying distributions is affected by the
values of the intrinsic parameters themselves. This is simi-
lar to the kind of analysis performed in our previous study
with second-generation interferometers [22]. We perform
analyses of data catalogs generated with different intrinsic
parameter combinations; multiple runs are performed on
each parameter combination. We vary one parameter at a
time, fixing all others to the reference values.

Varying the intrinsic parameters with fixed SNR thresh-
old will alter the expected detection rate. This is illustrated
in Table V, where the model with reference parameters has
an expected detection rate of �105 yr�1. The expected

�1=
ffiffiffiffi
N

p
relationship is well established, as shown in

Fig. 5. Hence, we remove this number effect by generating
catalogs with the same number of events (4500 each in
order to compare against the reference catalog). Therefore,
we are testing how the cosmological, astrophysical and
intrinsic-mass distributions of coalescing DNS binaries
impact the precision of parameter recovery.
The results of these analyses are shown in Fig. 6. We see

that asNS is increased, the measurement precision of both
the NS mass distribution and dark-energy EOS parameters
decreases. We found a similar trend in Ref. [22]. This
makes sense, since if we have an intrinsically narrow NS
mass distribution, then we have a good idea of what the
intrinsic masses of the systems are, and the range of
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FIG. 6 (color online). The variation of measurement precision with different choices of the intrinsic parameters of the underlying
distributions. One parameter is varied at a time, and in the interest of testing how the precision of parameter recovery is affected by the
underlying distribution of events, all catalogs are generated with the same number of events (4500 to match the reference catalog).
Each point in each panel represents the average 95% confidence interval width of 3 realizations of the catalog.

TABLE V. The expected detection rates for different choices of intrinsic parameters of the underlying distribution are compared to
the reference expected detection rate. One parameter is varied at a time, with all other parameters kept fixed at their reference values.
The variation of the expected detection rate with the intrinsic value of NS is not shown, since this parameter is not used in the rate
calculation (see Appendix B).

�NS=M� N=Nref w0 N=Nref wa N=Nref � N=Nref 
1 N=Nref 
2 N=Nref 
1 ¼ 
2 N=Nref

1.31 0.952 �1:50 1.08 �0:50 1.02 �1:10 1.04 2.90 0.405 3.40 1.00 3.00 0.929

1.33 0.976 �1:25 1.05 �0:25 1.01 �1:00 1.00 3.00 0.475 3.60 0.696 3.20 0.966

1.35 1.00 �1:00 1.00 0.00 1.00 �0:90 0.958 3.10 0.561 3.70 0.595 3.40 1.00

1.37 1.02 �0:75 0.935 0.25 0.986 �0:60 0.810 3.20 0.671 3.80 0.514 3.60 1.03

1.39 1.05 �0:50 0.844 0.50 0.970 �0:50 0.757 3.40 1.00 4.00 0.394 3.80 1.06
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candidate redshifts produced from a measured redshifted
chirp mass will be narrow, improving the precision with
which we can recover cosmological parameters.

A variation in the intrinsic �NS (not shown) produces
accuracies comparable to the reference accuracies. Hence,
the impact of the intrinsic value of the NSmass-distribution
mean on parameter accuracies is predominantly through the
change to the expected detection rates, i.e., a larger mean,
on average, will lead to larger chirp masses, so that detec-
tions can be made from a larger volume [see Eq. (5)].

Increasing the value of the EOS parameter w0 increases
the precision with which we can recoverw0,wa and�NS. As
w0 is increased, while the intrinsic wa is fixed at zero, the
recovered posteriors for these parameters are squeezed by the
prior restrictions, w0 <�1=3 and ðw0 þ waÞ<�1=3. A
larger intrinsic w0 increases the horizon distance of detec-
tions, which permits greater sensitivity to the dark-energy
EOS parameters. Furthermore, a narrowed range of
cosmological parameters means that the range of candidate
redshifts is also narrowed, such that the precision of the
recovered NS mass-distribution mean (deduced from the
redshifted chirpmass) improves.We also notice these effects
when the intrinsicwa is increased with the intrinsicw0 fixed
at the reference value. However, the effect is less pronounced
in this case, since wa is a first-order correction to w0.

As the power-law index, �, is increased the average
delay between the formation of the massive progenitor
system and the merging of the final compact system in-
creases. This means that more systems formed at higher
redshifts survive to merge at lower redshifts, and hence the
merger-rate density is boosted to higher values at lower
redshifts. In addition, as � increases, the merger-rate den-
sity tracks the underlying SFR density to a lesser extent, so
it becomes more difficult to extract the details of the SFR
density. Hence, the 
1;2 distributions widen to reflect this

reduced sensitivity to the underlying SFR density.
When we keep the intrinsic values of 
1 and 
2 equal

(not shown), we find that varying these by�0:4 around the
reference value has a negligible impact on the measure-
ment precision of the parameters. A higher common 
1;2

value leads to a larger expected detection rate, but this is a
small effect.

Lowering the intrinsic value of 
1, with 
2 fixed, shifts
the distribution of events to lower distances and changes the
shape of the underlying merger-rate density. This distribu-
tion is consistent with a wider range of � values than the
reference distribution, since the sensitivity of the merger-
rate density to � is reduced at lower redshifts. This causes
the marginalized �-posterior distribution to widen. The
same is true when the intrinsic value of 
2 is increased.

F. Varying the SNR threshold

We also generated catalogs for different SNR thresholds
defining the detectability of merging systems. Multiple
catalogs were analyzed for each SNR threshold, but once

again, the number of events was fixed at 4500 to match the
reference catalog (see Fig. 7). An increase in the SNR
threshold is equivalent to the characteristic distance reach
of the detectors decreasing. Hence, we would expect the
sensitivity of the data to varying dark-energy EOS parame-
ters, which have a greater influence at larger redshifts, to be
reduced. A reduced characteristic reach would also result
from a larger low-frequency cutoff, fl, in the detector’s
noise power spectral density. In the recent mock ET data
challenge, Regimbau et al. [39] found that confusion be-
tween two or more signals rarely affected the analysis
performance when fl ¼ 25 Hz. Standard algorithms cur-
rently employed for LSC-Virgo analyses cannot handle
templates longer than a few minutes; however, multiband
filter methods are being developed which will allow fl to
be pushed below 25 Hz. In Fig. 8, one can see that with
fl ¼ 25 Hz, the effective SNR threshold is raised from the
reference value of 8 (with fl ¼ 1 Hz) to �12:4.
From Fig. 9(a), we see that as the SNR threshold is

increased, with the number of cataloged events fixed, the
accuracies of 
1 and 
2 degrade sharply. At higher SNR
thresholds (or, equivalently, at lower distance reaches), the
sensitivity of the merger-rate density to varying 
1;2 is

reduced, hence the wider posterior distributions. The mea-
surement precision of� increases slightly as the SNR thresh-
old is increased from 6–12. One might expect � to show the
same trend as
1 and
2, since an increasing SNR threshold
pushes the events to lower redshifts where the sensitivity of
the merger-rate density to � is reduced. However, we see in
Fig. 10 that the merger-rate density, for various choices of �
(but all other parameters fixed), is relatively featureless
beyond�2:5. The distribution of the merger-rate density in
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FIG. 7 (color online). We show the variation of the expected
detection rate as the SNR threshold, �0, is raised. This can also
be interpreted as lowering the characteristic distance reach of the
network. Since � scales as 1=DL [see Eq. (5)], and the difference
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enough values of �0, the comoving detection volume (and hence
detection rate) would scale as 1=�3

0. This is approximately valid

for �0 * 15.
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the redshift window of �2:5–7 could be approximately
linearly scaled to satisfy a large range of �.12 Therefore,
given that our likelihood statistic is insensitive to linear
scalings of the merger-rate density [see Eq. (30)], the signifi-
cant number of high-redshift detections in a �0 ¼ 6 catalog
will widen the � posterior distribution, while most � infor-
mation is found in the redshift window �1–2, where the
merger-rate density has more features.

In Fig. 9(b), we see that the measurement accuracy ofw0

and wa is slightly reduced for higher SNR thresholds; this
is a small effect and is expected with a catalog shifted to
lower redshifts, where distances are less sensitive to vary-
ing dark-energy EOS parameters. The accuracy of w0 only
varies by �� 5%, since we remain sensitive to detections
at tens of Gpcs even with an SNR threshold of 12.
However, wa shows a stronger variation since it is a higher
order correction to the EOS parameter, and distances
become sensitive to this parameter at higher redshifts
than they do to w0. We also see that the measurement
precision of �NS and NS is increased slightly as we
move to larger SNR thresholds. This small effect is proba-
bly due to the fact that a lower redshift range in the data
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12The same argument did not apply when 
1;2 was varied, since
this not only shifted the distribution to lower redshifts but altered
the shape of the merger-rate density in a way which could not be
equated with a linear scaling in any redshift window.
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catalog will mean that the redshifted chirp mass is closer to
the intrinsic chirp mass.

Although this suggests that a greater distance reach will
improve the precision of cosmological parameter recovery,
we have so far ignored distance errors. In fact, instrumental
and weak-lensing errors impart an interesting redshift evo-
lution to the w0 sensitivity, which we approximate as [86]

�wðzÞ �
��������@w0

@DL

���������DL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=�Þ2 þ ð0:05zÞ2

q
: (41)

In Fig. 11, we see that the sensitivity of the luminosity
distance to the cosmological parameter w0 is greatest at
z� 1, since w0 has a very weak intrinsic impact on DL at
low redshifts and distance errors dominate at higher red-
shifts. Increasing a detector’s distance reach will raise the
fraction of high-redshift cataloged events. We calculate the
effective measurement precision of w0 from our reference
catalog by adding the �w0 values from each event in

quadrature, i.e., 1=�w0;eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPð1=�w0;iÞ2

q
. This is re-

peated for various lower and higher SNR threshold values.
We perform these calculations for catalogs containing the
same number of events (4500 to match the reference
catalog) and for catalogs with the number of events scaled
by the ratio of the expected detection rate for each
SNR threshold to the reference threshold (which in this
analysis is 8). The results are shown in Table VI, where we
see that for catalogs with the same number of events,
lowering the SNR threshold actually worsens the precision
of w0 recovery since the distribution of events is weighted
to higher redshifts, where distance errors degrade the pre-
cision. Increasing the SNR threshold reduces the number
of events at high redshift and hence mitigates the degrada-
tion of precision due to distance errors (see Fig. 11).
However, this effect slows down with increasing SNR
threshold. For catalogs with numbers of events scaled to
match the expected detection rate for each SNR threshold,
we see that the increased number of events associated with
a lower SNR threshold is enough to compensate for deg-
radation of precision from higher redshift events. However,
this loss of precision means that lowering the SNR thresh-

old does not lead to the 1=
ffiffiffiffi
N

p
or 1=�3=2

0 improvement in

parameter measurement precision which one would
naively expect.
Finally, we address the issue of having assumed that

Earth motion does not modulate the antenna patterns of the
detectors. The time spent ‘‘in band’’ by an inspiraling event
scales as [39]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1  2  3  4  5  6  7  8  9  10

ar
bi

tr
ar

y 
un

its

z

α=-1.5

α=-1.0

α=-0.5

ρ0=6
ρ0=8
ρ0=12

Merger-rate density with varying α
Redshift distribution of detections

FIG. 10 (color online). We show the redshift distribution of the
DNS merger-rate density for various choices of the power-law
index of the delay-time distribution, � (all other parameters are
fixed at their reference values). The merger-rate density is
relatively featureless beyond z� 2:5, making it difficult for
our analysis (which is insensitive to linear scalings of the
merger-rate density) to discriminate between values of � in
this range. Overlaid on this figure, we show the redshift distri-
bution of detections for various SNR thresholds.
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FIG. 11 (color online). The redshift dependence of the sensi-
tivity of the luminosity distance to w0. This parameter has a very
weak intrinsic impact on DL at low redshifts, while distance
errors from instrumental noise and weak-lensing dominate at
higher redshifts. This results in a redshift ‘‘sweet spot,’’ where
these effects are minimized for lines of constant SNR. We also
plot the individual �w0 values calculated for the reference
catalog events.

TABLE VI. The events from catalogs with different SNR
thresholds are used to compute an effective w0 precision, by
adding the �w0 values of each event in quadrature. This analysis
is performed for catalogs with the same number of events, and
for catalogs with the numbers of events scaled to match the
expected detection rate for each SNR threshold.

�w0;eff=10
�3

�0;net f ¼ N=Nref (No ¼ Nref) (No ¼ f� Nref)

6 1.64 8.08 6.33

8 1.00 6.82 6.82

12 0.399 5.33 8.35

20 0.0936 4.00 13.1

30 0.0271 3.38 20.6
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�� 5:4

�
Mz

1:22 M�

��5=3
f�8=3
l days: (42)

Hence, a detector with a low-frequency cutoff of 1 Hz (as
we have assumed) could have events in band for as long as
�5 days. In this case, a correct treatment of the antenna
pattern modulation would be needed. However, if we in-
crease fl to �8 Hz, then the maximum time spent in band
is less than 30 minutes, and ignoring the antenna pattern
modulation is reasonable. In Fig. 8, we see that a low-
frequency cutoff of 8 Hz is equivalent to raising the SNR
threshold to�9, and from Fig. 9, we see that the precision
of parameter recovery is within �� 10% of the reference
precisions for an SNR threshold of 9. Therefore, our ap-
proximate treatment of the network antenna patterns would
seem reasonable.

VII. CONCLUSIONS

We have built on our previous work [22] which explored
the capabilities of an advanced (i.e., second-generation)
GW-interferometer network to constrain aspects of the
NS mass distribution in DNS systems, as well as the
Hubble constant. The technique we employed used only
information obtained via analysis of the GWs detected in
such a network. In this paper, we extended the analysis to a
possible third-generation network, consisting of the
proposed Einstein Telescope, and complemented by
third-generation right-angled interferometers at LIGO
Livingston and LIGO-India. The target for the Einstein
Telescope is a broadband factor of 10 sensitivity increase
with respect to advanced detectors, but to also extend the
low-frequency sensitivity of ground-based GW interfer-
ometers below 10 Hz. The current design for a single ET
consists of three overlapping interferometers, arranged in
an equilateral configuration with arm-opening angles of
60� [26–28]. Each interferometer will consist of a cryo-
genically cooled, underground low-frequency detector, and
a high laser-power, high-frequency detector in a xylophone
configuration—these two detectors work in tandem to
suppress noise over the entire band [29,34]. Current pro-
jections for funding and construction of ET place ‘‘first
light’’ sometime in the mid-2020s.

The sources of interest in this paper are inspiraling
double NS systems, which could be observed at rates of
�40 yr�1 by advanced detectors [11], and rates of
Oð105–106Þ yr�1 may be achieved by a third-generation
network [16,28,39]. These sources are commonly referred
to as self-calibrating standard sirens, since their distance
from us is directly encoded in the emitted GWs. Combined
with a method of redshift determination, these sources can
be used to probe the distance-redshift relation and hence
extract constraints on background cosmological parame-
ters which are independent of the cosmic distance ladder
[14–17].

Our method of cosmography using only GWs relies on
the narrowness of the distributions of masses of NSs in
these DNS systems. Recent analysis indicates that this
mass distribution is indeed narrow, with a Gaussian mean
of �1:35 M� and standard deviation of 0:06 M�, which
may be a product of a distinct evolutionary path [45,46,49].
Using a measurement of a source’s redshifted chirp mass,
we can therefore obtain a narrow candidate redshift distri-
bution. A narrower intrinsic NS mass distribution will
obviously mean the precision of redshift determination
increases. We can combine these with GW-interferometer
network determinations of the luminosity distance to con-
strain cosmological parameters.
We used a Bayesian theoretical framework to assess the

capability of a third-generation network to measure
cosmological and astrophysical parameters. We performed
7-dimensional adaptive MCMC analysis on the cata-
logs of detections, using reference parameters H0 ¼
70:4 km s�1 Mpc�1, �m;0 ¼ 0:2726, �k;0 ¼ �0:0006,
w0 ¼ �1, wa ¼ 0, �NS ¼ 1:35 M� and NS ¼ 0:06 M�.
Keeping H0, �m;0 and ��;0 fixed, we found that the

measurement precisions of the dark-energy EOS parame-
ters possible with a 105-event catalog were of the same
order of magnitude as forecasted constraints from future
CMBþ BAOþ SNIa measurements [17]. Furthermore,
the power-law index of the merger delay-time distribution,
�, and the parameters of the underlying star-formation-rate
density were constrained to within �10%. Accounting
for measurement errors degraded precisions by a factor
of & 2, while increasing the network SNR threshold re-
quired for detection from 8 to 9 (which is equivalent to
considering only the �30 minute section of inspiral above
8 Hz) changed the precisions by only �10%.
We also investigated how the precision of parameter

recovery scaled with the values of the intrinsic parameters
themselves, keeping the number of detected events fixed to
factor out pure number-of-event effects. Varying the intrin-
sicNS showed a linear scaling of parameter precision, with
narrower intrinsic NS mass distributions favoring tighter
parameter constraints. The precisions of the merger-rate
density parameters did not appear to be affected in this
case. Increasing the intrinsic w0 and wa had the effect of
increasing their measurement precision, as well as that of
�NS. This was probably due to the fact that largerw0 andwa

give detections out to greater distances, where the sensitiv-
ity to these parameters is higher. Tighter cosmological
constraints implies narrower candidate redshift distribu-
tions from the cataloged distances, which improves �NS

precision. Increasing the intrinsic value of �meant that the
merger-rate density tracked the underlying SFR density to a
lesser extent and hence worsened the precision of SFR-
density parameter recovery. As we changed the shape of the
underlying SFR density to favor closer detections, the
measurement precision of�worsened, since the sensitivity
of the merger-rate density to � is lower at lower redshifts.
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Finally, we varied the criterion for a network detection,
which we denoted by a threshold value of the network
signal-to-noise ratio. This could also be interpreted as
varying the characteristic distance reach of the network,
which, in turn, could be caused by varying the detector’s
low-frequency cutoff. Varying the SNR threshold between
6–12 caused a slight decrease in w0 and wa precision, as
catalogs with lower distance events will be less sensitive to
these cosmological parameters. However, catalogs with,
on average, closer events will provide better NS mass-
distribution parameter precision, since the redshifted chirp
mass will be less offset with respect to the intrinsic chirp
mass. Increasing the SNR threshold, and hence decreasing
the characteristic distance reach of the network, caused a
significant decrease in SFR-density parameter precision,
since the merger-rate density is less sensitive to the SFR-
density parameters at lower redshift.

While the sensitivity of distances to the dark-energy
EOS will obviously be intrinsically weak at low redshifts,
distance-measurement errors begin to dominate at higher
redshifts. We found that for a fixed number of events in a
catalog, lowering the SNR threshold actually worsened the
precision of w0 recovery since events are weighted to
higher redshifts, where distance errors degrade the mea-
surement precision. The larger expected detection rate
associated with lower SNR thresholds is enough to reverse
this effect, but means that lowering the SNR threshold (or
increasing the network’s distance reach) does not lead to
the great improvement in parameter measurement preci-
sion which one would naively expect.

We have not considered association of GW detections
with an EM counterpart, either through precise sGRB
[16,17] or host-galaxy association. The latter technique
may only be possible with �0:01% of detectable GW
events [31]. However, the technique we have used has
been shown previously [22] to be well complemented by
precision redshift information. In particular, we found that
if redshift information (measured to much greater precision
than the luminosity distance) is available for �10% of a
GW-event catalog, then measurement precisions of pa-
rameters were more than doubled.

This paper completes our proof-of-principle study of
this GW-only cosmographic technique. We have shown
the significant potential for a third-generation network
including the Einstein Telescope to place interesting con-
straints on the NS mass distributions in DNS systems, the
dark-energy EOS, the average delay between the formation
of the DNS-system progenitors and the final merger and
the underlying SFR density in the Universe. Over the
following decade, tighter constraints will be derived for
the NS mass distribution, delay-time distribution of DNS
systems, and the SFR density, which can be readily incor-
porated within this technique. We intend to test this tech-
nique in the upcoming ET mock data challenge, as well as
study the ability of this technique to discriminate between

NS mass distributions from different metallicity progeni-
tors, different delay-time distributions resulting from dif-
ferent formation paths and possibly multimodal NS mass
distributions. Unshackling GW cosmography from its re-
liance on EM counterparts will be an important step in
establishing DNS systems as physical distance indicators
and contribute to GW analysis becoming a precision as-
trophysical tool.
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APPENDIX A: DNS MERGER-RATE DENSITY

Here, we provide a more detailed discussion of the
astrophysics of DNS mergers and justification for the
ansatz we employ for the merger-rate density.

A. Merger-delay distribution, dPm=dt

Assuming the number, N, of DNS binaries born with
separation a follows dN=da / a� [52], the merger-delay
distribution is

dPm

dt
/ dN

d�gr
¼ dN

da

da

d�gr
/ t�=4t�3=4 ¼ t�: (A1)

An early suggestion by Piran was to consider newly formed
DNS binaries as having the same orbital separation distri-
bution as normal-abundance main-sequence stars [54,55].
For normal-abundance main-sequence binary systems, the
distribution of periods has been found to be flat in lnðPÞ
(where P is the binary period) [55], or lognormal [87,88].
If we follow Ref. [54], and ignoring the progenitor
ellipticity distribution, then the initial DNS orbital separa-
tion distribution will be flat in lnðaÞ (where a is the semi-
major axis of the binary orbit). Therefore, � ¼ �1 and
dPm=dt / t�1.13

13The caveats here are that ellipticity can have a significant
effect on inspiral time scales, and it is not obvious that DNS
systems should have the same orbital separation distribution as
main-sequence binaries, since the two supernovae the systems
survive would likely modify it. Furthermore, the distribution
functions for progenitor evolutionary time scales and merger
time scales are not independent. The evolutionary time scale
depends on the mass of the progenitor system components, and
the gravitational inspiral time scale depends on the chirp mass of
the system. Strictly speaking, the joint probability consideration
should be considered [53]; however, we ignore this subtlety here.
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The catalog of DNS systems in Ref. [56] is used by
Refs. [57,58] to estimate the merger-delay distribution of
observed systems; it approximately follows ð1=tÞ, but
there appears to be an excess of systems below an inspiral
time of 100 Myr. Selection effects having to do with the
difficulty of detecting binary pulsars in close orbit, due to
the large and rapidly varying Doppler shift, may signifi-
cantly affect the reconstructed merger-delay distribution
below a few hundred Myr. The authors comment that with
such a small sample of systems (� 6), it is difficult to
make predictive conclusions about this distribution, but
that it is the best one can presently dowith the observations.

Population synthesis calculations in Refs. [50,53] appear
to show the cumulative merger-delay distribution being
approximately linear in lnðtÞ (in which case, the PDF varies
as �t�1), while the studies in Refs. [59–61] show that a
ð1=tÞ PDF is an appropriate approximation over several
orders of magnitude of the delay-time. Furthermore, the
population synthesis calculations of Ref. [62], in their
study of the formation rates of short- and long-GRBs,
indicate an approximate ð1=tÞ delay-time distribution for
NS-NS and NS–black-hole systems.

Population synthesis calculations have also proposed
previously unconsidered DNS-formation channels; specifi-
cally, Ref. [89] suggests a formation channel via a double
common-envelope phase between two low-mass helium
stars, such that the subsequently formed NSs would not
have had time to accrete matter and be recycled. These
DNS systems would be under-represented in Galactic
pulsar surveys, since they would be observable as radio
pulsars for a much shorter time scale than recycled pulsar
systems. Hence, DNS coalescence rate calculations based
on the observed Galactic pulsar sample need to take into
account any observational biases. Another of these new
formation channels involves a stage of hypercritical
common-envelope accretion from a low-mass helium giant
to the firstborn NS, resulting in a population of tight,
short-lived binaries (with merger time scales & 1:0 Myr)
which may contribute significantly to the total number of
coalescences [90].

In the 2004 study of merging DNS systems as the source
of sGRBs by Ando [91], the merger-delay distribution is
modeled as a power law (� t�), and the calculated GRB
rate densities are found to be relatively insensitive to the
lower cutoff time necessitated by such a parametrization,
but considerably sensitive to �. The characteristic upper
inspiral time scale is also of interest; several known DNS
systems are calculated to have inspiral times exceeding
10 Gyr (Refs. [56,92] and references therein). If these are
representatives of a class of DNS systems resulting from a
different evolutionary path than the lower time scale sys-
tems, then this evolutionary path need not be considered
for detectable GW sources.

With the above considerations in mind, in the present
study, we adopt a power-law merger-delay distribution for

DNS systems, with a reference index of �1. This is sup-
ported by the existing (albeit sparse) observational data on
the gravitational inspiral times of Galactic DNS systems
and the prevalence of power-law delay distributions found
in population synthesis studies. For normalization pur-
poses, we adopt a lower delay time of 50 Myr, since the
massive progenitor system (containing components with
masses between �8–20 M� for NS-NS system formation)
may require an evolutionary time scale of * 50 Myr.14

Taking this as a lower delay time avoids considerations of
the (possibly significant) DNS-formation channel with the
extra mass-transfer episode (which creates a peak in the
delay-time distribution around �20 Myr, and corresponds
to a population of tight, short-lived DNS systems [90]). We
model only DNS systems formed via the classical forma-
tion channel [59,93,94] for which the �t�1 delay-time
distribution is an appropriate approximation over several
orders of magnitude. The power-law index will have a
greater impact on merger-rate density calculations than
the lower cutoff time. We assume an upper inspiral time
scale equal to the cosmology-dependent age of the
Universe. For the present study, the power-law index in
this merger-delay distribution is labeled �.

B. Star-formation rate density, d�
=dt
The determination of the low-redshift SFR density has

been achieved via a wide variety of techniques, utilizing light
at different wavelengths. However, these measurements be-
come more difficult at higher redshifts since many of the
techniques successfully employed in the low-z Universe rely
on light at wavelengths which cannot be detected beyond z�
4. This leaves us with only a handful of available techniques
to probe the high-redshift star-formation history.15

The estimations of star-formation rates at high redshift
are obtained from measurements of UV luminosity func-
tions, which tells us how many galaxies emit light in the
UV- band in a given epoch. Excepting galaxies with the
largest SFRs (which likely suffer from significant dust
extinction), UV light has been shown to be a good tracer
of the SFR (Refs. [64,95] and references therein). Dust
extinction of UV light can be investigated, and hence
corrected for, via the measurement of the UV-continuum
slope, which has been shown to be well-correlated with
dust extinction in the local Universe (Ref. [64] and refer-
ences therein). A systematic study of the high-redshift SFR
density was undertaken in Ref. [64] using Hubble Space
Telescope data. Correcting their UV luminosity density

14This evolutionary time scale is an approximate main-
sequence lifetime for a 8 M� star, burning �10% of its core
hydrogen,
and obtained via the simple scaling relationship, �evol �
104ðM=M�Þ�2:5 Myr.
15See Ref. [64] for references of low-z techniques for probing
the SFR density, as well as the non-UV techniques possible at
z� 2–4.
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calculations for dust extinction, and converting this to an
estimate of the SFR density, yielded significant evolution of
the SFR density between 0< z & 6. The SFR density is
shown to rise out to z� 2–4, followed by a decrease out to
z� 6. This decrease is shown to continue out to z� 8:5 [65].

Given that only a handful of techniques exist to
probe the high-redshift star-formation history, we will
have to wait until further studies are carried out, or new
techniques are developed, to complement the analyses in
Refs. [64,65]. In our present study, we are only interested
in a sensible model of the redshift evolution of the SFR
density, which we can parametrize for a Bayesian inference
analysis. Several of the studies (Refs. [57,58,91]) men-
tioned in Sec. III B 2, as well as several other studies which
attempt to fit GRB densities to delayed SFR-density mod-
els (e.g., Ref. [96]), employed the SF2 model of Porciani
and Madau [63]. Of the three models considered in the
aforementioned paper, the SF2 model attempts to factor in
the uncertainties in the incompleteness of data sets and the
amount of dust extinction at early epochs. As such, the SFR
density remains roughly constant at z * 2. Its form is,

d�

dt

ðzÞ 	 0:16�
�

expð3:4zÞ
expð3:4zÞ þ 22

�

� EðzÞ
ð1þ zÞ3=2 M�Mpc�3 yr�1; (A2)

where

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m;0ð1þ zÞ3 þ�k;0ð1þ zÞ2 þ��ðzÞ

q
: (A3)

Obviously, if studies in the following decade confirm the
SFR-density trends found in Refs. [64,65], we would not
attempt to fit any ET data with the SF2 model. This model
would need to be updated with a more realistic parametri-
zation. But for now, we adopt the SF2 model as a useful
ansatz. For the present study, we parametrize the SF2 ansatz
by making the factors of 3.4 in the numerator and denomi-
nator of Eq. (A2) variables, labeled
1 and
2, respectively.

APPENDIX B: A FASTER CALCULATION OF THE
EXPECTED DETECTION RATE

The expected detection rate of inspiraling NS-NS
binaries is given by

ND ¼ T �
Z 1

0

Z 1

0

4�DcðzÞ2DH

EðzÞ
_nðzÞ

ð1þ zÞ
� P ðMÞC�

�
�0

8

DLðzÞ
r0

�
1:2 M�

ð1þ zÞM
�
5=6
�
dzdM:

(B1)

In our previous study [22], we found that a simple
parametrization of the expected detection rate provided a
good approximation to the slower multidimensional inte-
gration necessitated by Eq. (B1). However, we now want to
extend our model-parameter space to a larger number of
dimensions, for which the simple ansatz method becomes
cumbersome. We found in our previous analysis that the
standard deviation of the NS mass distribution had very
little impact on the expected detection rate. Changing NS

from 0:02 M� to 0:12 M� led to a change in the expected
detection rate of & Oð1%Þ.
Although the precision with which we are able to con-

strainNS scales with the number of detections as 1=
ffiffiffiffi
N

p
, it

is the distribution of detectable systems rather than their
number that provides information on NS. If we approxi-
mate the Gaussian chirp mass distribution by a �-function
centered on the mean of the chirp mass distribution, we can
replace Eq. (B1) by a 1D integral

ND ¼ T �
Z 1

0

4�DcðzÞ2DH

EðzÞ
_nðzÞ

ð1þ zÞ
� C�

�
�0

8

DLðzÞ
r0

�
1:2 M�

ð1þ zÞ�M

�
5=6
�
dz: (B2)

This integration can be solved at least an order of
magnitude faster by standard routines and gives results
consistent with the full 2D integration procedure. We
also checked this faster method against the ansatz parame-
trization method, finding that the method used in our
previous analysis was sufficiently accurate.
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