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The typical scalar field theory has a cosmological constant problem. We propose a generic mechanism

by which this problem is avoided at tree level by embedding the theory into a larger theory. The metric and

the scalar field coupling constants in the original theory do not need to be fine-tuned, while the extra scalar

field parameters and the metric associated with the extended theory are fine-tuned dynamically. Hence, no

fine-tuning of parameters in the full Lagrangian is needed for the vacuum energy in the new physical

system to vanish at tree level. The cosmological constant problem can be solved if the method can be

extended to quantum loops.
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I. INTRODUCTION

There is no symmetry to prevent a term�g�� from being

added to the Einstein equation, where � is called the
cosmological constant and g�� is the metric tensor. If this

is done in a cosmological context, the natural scale for the
cosmological constant is ��m4

P, where mP is the Planck

scale, which disagrees with observation by approximately
120 orders of magnitude. This disagreement is the cosmo-
logical constant problem and it has been with us for some
time now (for reviews see, for example, Refs. [1–5]).
Ideally wewould like a cosmology where the cosmological
constant is zero to first approximation, but corrected by
some process to the small value observed today.

There have been many attempts to solve the cosmo-
logical constant problem in classical and quantum field
theory. Early examples include the use of extra dimen-
sions, where it was conjectured in Ref. [6] that theories
with �� 0 can be picked out by quantum corrections.
Application of the anthropic principle [7,8] and backreac-
tion arguments [9] have also been used to zero �. It was
argued that if wormholes exist then � can vanish [10].
This led to a long, sometimes controversial, discussion in
the literature [11–13]. A technically similar, but physi-
cally different solution was presented in Ref. [14], where
it was argued that � ’ 0 dominates the euclidean path
integral. It was argued in Ref. [15] that a stochastic model
of vacuum energy fluctuations treated as a nonequilibrium
process gives a natural explanation for the smallness of �.
Higher spin models have been introduced to solve the
cosmological constant problem [16], an approach that was
challenged [17], but more recently the objection has been
circumvented [18]. An interesting interpretation of cos-
mological constant problem given in Ref. [19] allows a

large � that can be made compatible with observation.
Somewhat closer to the spirit of the present paper are the
works on k-essence [20–28]. Finally, the relaxation of
boundary and hermiticity constraints on quantum fields
has been shown to have implications for the cosmological
constant problem [29].
Much work has also been done on the cosmological

constant problem in string and M-theory. In Ref. [30]
it was shown that the cosmological constant can be
neutralized by multiple 4-fluxes in M-theory, braneworld
solutions have been given in Refs. [31–33], and more
recently, a string theory landscape solution to the cosmo-
logical constant problem [34] has generated a considerable
amount of interest. In addition, various self-tuning mecha-
nisms, with and without extra dimensions, have been
considered [35–40]. Finally, a variety of applications of
quantum gravity and modifications of general relativity
have been used to address the cosmological constant
problem [41–44].
While this brief and incomplete summary does not cover

all the ideas put forward for solving the cosmological
constant problem, we hope it at least gives a flavor for
the ingenuity being expended toward finding a compelling
solution.
The work we will present here, on extensions of renor-

malizable particle physics models by embedding in larger
theories, makes technical progress that sheds light on the
nature of the cosmological constant problem. What re-
mains is to find how these extensions arise naturally in a
more fundamental theory.
We should point out that the method we propose here

does not contradict Weinberg’s no-go theorem [1]. The
correct counterpart to Weinberg’s equation (6.3) is our
equation ð@L=@’0Þ� ¼ 0, which is satisfied in our method.
However, a related equation ð@L0=@’0Þ� ¼ 0, due to differ-
ent physical interpretations of L and L0, does not need to
be satisfied. Similar comments apply to Weinberg’s equa-
tion (6.2). See below for full details.
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II. METHOD

For a generic scalar field theory, one reasonably expects
that an equilibrium field configuration is a solution of the
equations of motion. It is likely that the energy of such a
configuration is at its minimum, in which case the solution
corresponds to a vacuum state of the theory. The energy-
momentum tensor for such a solution is proportional to the
metric since such a relation is the only one possible given
the symmetry of the vacuum state. The coefficient of
proportionality is the cosmological constant. In order for
the cosmological constant to be zero, parameters of a
typical standard field Lagrangian have to be fine-tuned.
For a generic Lagrangian, such fine-tuning depends on the
equilibrium configuration, which makes the occurrence of
such a situation physically highly unlikely.

One possible way to ameliorate this problem is to
introduce extra fields (whose properties will be elucidated
below) in addition to fields of the type seen in the
standard model of particle physics. These standard fields
are chosen to be in a vacuum state. For each configuration
of the standard field, configurations of the extra fields
must be fine-tuned in such a way as to achieve the
vanishing cosmological constant without fine-tuning of
the Lagrangian. If this fine-tuning can be made techni-
cally natural, e.g., via dynamics, then we have solved the
cosmological problem. Since the introduction of the extra
fields changes the energy-momentum tensor, the Einstein
equations require that the space-time metric changes as
well. The original theory will be replaced by an embed-
ding theory with extra fields, and we require that a
suitable projection of the embedding theory gives the
original theory. Clearly, for a given physical theory, there
may be an infinite number of embedding theories. In view
of this, it might be instructive to select certain classes of
theories according to the presence of specific properties,
and to choose, based on certain criteria, the minimal
embedding theory. We now give a mathematical formu-
lation of the method outlined above.

Let M and N be manifolds, G the space of smooth
metrics on M, and � the space of smooth maps from M
to N. We choose a Lagrangian L: G�� ! R. These
objects define a theory S. Let T be the energy-momentum
tensor and E ¼ 0 the equation of motion for S.

Suppose Eðg;’Þ ¼ 0 has a solution ðg; ’Þ ¼ ðg�; ’�Þ,
where g� 2 G, ’� 2 �. For an arbitrary quantity Qðg;’Þ,
we defineQ� ¼ Qðg�; ’�Þ. Of special interest are solutions
for which ðM;g�Þ is an Einstein manifold, and we consider
only such solutions. It follows that ðT�Þij ¼ ��ðg�Þij,
where �� ¼ const, and we say that ðg�; ’�Þ is a vacuum
solution.

The quantity �� plays the role of the cosmological
constant. For a generic Lðg;’Þ, the requirement �� ¼ 0
leads to the dependence ofL on ðg�; ’�Þ. In such cases, the
theory S has the cosmological constant problem. The same

condition �� ¼ 0 also implies that ðM;g�Þ is a Ricci-flat
manifold.
Consider the case N ¼ N0 � N00, where N0 and N00 are

two manifolds. Let �0 and �00 be the spaces of smooth
maps fromM to N0 andM to N00. For an arbitrary quantity
Q defined on � ¼ �0 ��00, let Q0 ¼ Qj�0�f0g and Q00 ¼
Qjf0g��00 be the restrictions ofQ to�0 � f0g and f0g ��00,
where f0g is the space of zero functions. As a result, we
have the restricted Lagrangians L0: G��0 ! R and
L00: G��00 ! R and theories S0 and S00. Let T0 and T00
be the energy-momentum tensors and E0 ¼ 0 and E00 ¼ 0
the equations of motion for S0 and S00. We say that S0 and
S00 are the sub-theories of S and that S is the super-theory
of S0 and S00.
Suppose ðg�; ’�Þ is a vacuum solution of E ¼ 0. We

seek vacuum solutions ðg0�; ’0�Þ and ðg00� ; ’00� Þ of E0 ¼ 0 and
E00 ¼ 0 such that ’0� and ’00� are the restrictions of ’�. The
quantities g0� are g00� are obtained by solving the equations
of motion, not by restricting g� as the notation may
suggest.
We require �� ¼ 0. Solving the resulting equation

T� ¼ 0, we find that L depends on ðg�; ’�Þ. In general,
L0 depends on ðg0�; ’0�Þ andL00 depends on ðg00� ; ’00� Þ. If it is
possible to arrange for �� ¼ 0 for any vacuum solution of
E ¼ 0 in such a way that L0 does not depend on ðg0�; ’0�Þ
and L00 does not depend on ðg00� ; ’00� Þ, then we say that the
cosmological constant problems for S0 and S00 are solved by
the super-theory S.
We will show that the cosmological constant problem for

a given sub-theory S0 can always be solved by choosing an
appropriate super-theory. Among all possible super-theories,
it might be desirable to choose a certain super-theory, which
is the closest to the given sub-theory according to some
criteria. We call this a minimal super-theory.

III. SOLUTION

It is instructive to turn to a specific theory and show how
the general construction described in Sec. II proceeds. We
specify S by setting N0 ¼ R and N00 ¼ R, and choosing L
to be an arbitrary R-valued function of ’0, ’00, X0, X00, and
Y, where ’0 and ’00 are real scalar singlet fields and

X0 ¼ ri’
0ri’0; X00 ¼ ri’

00ri’00;

Y ¼ ri’
0ri’00:

(1)

The Euler-Lagrange equations are

ð@L=@’0Þ � rið2ð@L=@X0Þri’0 þ ð@L=@YÞri’00Þ ¼ 0;

(2)

ð@L=@’00Þ � riðð@L=@YÞri’0 þ 2ð@L=@X00Þri’00Þ ¼ 0

(3)

and the energy-momentum tensor is
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Tij ¼ �Lgij þ 2ð@L=@X0Þri’
0rj’

0 þ 2ð@L=@X00Þ
� ri’

00rj’
00 þ 2ð@L=@YÞri’

0rj’
00: (4)

We seek the solution ðg�; ’�Þ for which ðM;g�Þ is a Ricci-
flat manifold and ’0� ¼ const. Equations (2)–(4) give

L� ¼0; ð@L=@’0Þ� ¼0; ð@L=@’00Þ� ¼0;

ð@L=@X00Þ� ¼0; ð@L=@YÞ� ¼0: (5)

We chooseL0 to be an arbitrary R-valued function of ’0
and X0, and L00 to be an arbitrary R-valued function of ’00
and X00. The Euler-Lagrange equation are

ð@L0=@’0Þ � rið2ð@L0=@X0Þri’0Þ ¼ 0; (6)

ð@L00=@’00Þ � rið2ð@L00=@X00Þri’00Þ ¼ 0; (7)

and the energy-momentum tensors are

T0
ij ¼ �L0gij þ 2ð@L0=@X0Þri’

0rj’
0; (8)

T00
ij ¼ �L00gij þ 2ð@L00=@X00Þri’

00rj’
00: (9)

If ðg0�; ’0�Þ and ðg00� ; ’00� Þ are vacuum solutions of E0 ¼ 0 and
E00 ¼ 0, then

L 0� ¼ ð2mÞ�1ðm� 2ÞR0�; ð@L0=@’0Þ� ¼ 0; (10)

L 00� ¼ ð2mÞ�1ðm� 2ÞR00� ; ð@L00=@’00Þ� ¼ 0; (11)

where m ¼ dimM, and R0� and R00� are the scalar curva-
tures of ðM;g0�Þ and ðM;g00� Þ. If S0 and S00 are sub-theories
of S, then

L 0 ¼ Lj’00¼0;X00¼0;Y¼0; L00 ¼ Lj’0¼0;X0¼0;Y¼0: (12)

Without loss of generality, we assume that the functions
L, L0, L00 can be expanded in power series around the
point ð’0; ’00; X0; X00; YÞ ¼ ð0; 0; 0; 0; 0Þ. Equations (12)
imply

Lð’0; ’00; X0; X00; YÞ ¼ L0ð’0; X0Þ þ X

p�0;q�0;r�0
pþqþr�1

F0
p;q;rð’0; X0Þ

� ’00pX00qYr; (13)

Lð’0;’00;X0;X00; YÞ ¼L00ð’00;X00Þ þ X

p�0;q�0;r�0
pþqþr�1

F00
p;q;rð’00;X00Þ

�’0pX0qYr; (14)

where fF0
p;q;rg and fF00

p;q;rg are arbitrary functions.

Substituting Eq. (13) into Eq. (5), we find

L 0� þ
X

p�0;q�0
pþq�1

ðF0
p;q;0Þ�’00p

� X00q
� ¼ 0; (15)

X

p�0;q�0
pþq�1

ð@F0
p;q;0=@’

0Þ�’00p
� X00q

� ¼ 0; (16)

X

p�0;q�0
pþq�1

ðF0
p;q;0Þ�p’00p�1

� X00q
� ¼ 0; (17)

X

p�0;q�0
pþq�1

ðF0
p;q;0Þ�’00p

� qX00q�1
� ¼ 0; (18)

X

p�0;q�0

ðF0
p;q;1Þ�’00p

� X00q
� ¼ 0: (19)

Functions fF0
p;q;0g are constrained by Eqs. (15)–(18), func-

tions fF0
p;q;1g are constrained by Eq. (19), and functions

fF0
p;q;rg for r � 2 are not constrained by these equations. In

general, we assume that L0� � 0, ’00� � 0, X00� � 0.
Let kr be the number of nonzero functions among

fF0
p;q;rg for each r � 0. Equations (15), (17), and (18)

give ðk0Þ� � 2 and Eq. (19) gives ðk1Þ� ¼ 0 or ðk1Þ� � 2.
Since k0 � ðk0Þ� and k1 � ðk1Þ�, it follows that k0 � 2 and
k1 � 0.
Let k0 ¼ 2, which implies ðk0Þ� ¼ 2. There are three

cases to consider.
In the first case, ðF0

p1;q1;0
; F0

p2;q2;0
Þ � ð0; 0Þ, for some

fixed ðp1; q1; p2; q2Þ such that p1 � 1, p2 � 1, q1 � 1,
q2 � 1, ðp1; q1Þ � ðp2; q2Þ, so that

L ¼ L0 þ F0
p1;q1;0

’00p1X00q1 þ F0
p2;q2;0

’00p2X00q2

þ X

p�0;q�0;r�1

F0
p;q;r’

00pX00qYr: (20)

From Eqs. (15), (17), and (18), we find p1q2 ¼ p2q1 and

ðF0
p1;q1;0

Þ� ¼ s2ðs1 � s2Þ�1L0�’
00�p1� X00�q1� ; (21)

ðF0
p2;q2;0

Þ� ¼ s1ðs2 � s1Þ�1L0�’
00�p2� X00�q2� ; (22)

where either ðs1; s2Þ ¼ ðp1; p2Þ or ðs1; s2Þ ¼ ðq1; q2Þ.
Equation (16) becomes

s�1
1 ðF0

p1;q1;0
Þ�1� ð@F0

p1;q1;0
=@’0Þ� � s�1

2 ðF0
p2;q2;0

Þ�1�
� ð@F0

p2;q2;0
=@’0Þ� ¼ 0: (23)

Since ’0� is an arbitrary constant which satisfies only the
condition ð@L0=@’0Þ� ¼ 0, Eq. (23) implies

ð@F0
p1;q1;0

=@’0Þ� ¼ 0; ð@F0
p2;q2;0

=@’0Þ� ¼ 0: (24)

In the second case, ðF0
p1;0;0

; F0
p2;0;0

Þ � ð0; 0Þ, for some

fixed ðp1; p2Þ such that p1 � 1, p2 � 1, p1 � p2. The
corresponding expressions are obtained from Eqs. (21)–
(24) by setting ðq1; q2Þ ¼ ð0; 0Þ and ðs1; s2Þ ¼ ðp1; p2Þ.
In the third case, ðF0

0;q1;0
; F0

0;q2;0
Þ � ð0; 0Þ, for some fixed

ðq1; q2Þ such that q1 � 1, q2 � 1, q1 � q2. The corre-
sponding expressions are obtained from Eqs. (21)–(24)
by setting ðp1; p2Þ ¼ ð0; 0Þ and ðs1; s2Þ ¼ ðq1; q2Þ.
It is straightforward to proceed with a similar analysis

for k0 � 3.
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We require that’00 is a dynamical field and that’0 and’00
are coupled. If kr ¼ 0 for all r�1, these conditions imply
ðq1;q2Þ� ð0;0Þ and ðF0

p1;q1;0
;F0

p2;q2;0
Þ� ðconst;constÞ.

IV. EXAMPLES

In this section, we restrict our attention to four-
dimensional space-time manifolds, i.e., m ¼ 4. We define
dimensions

dð’0Þ ¼ 1; dð’00Þ ¼ 1; dðX0Þ ¼ 4;

dðX00Þ ¼ 4; dðYÞ ¼ 4
(25)

and the corresponding dimension dðQÞ of an arbitrary
polynomial Qð’0; ’00; X0; X00; YÞ as the maximal dimension
of its monomials. As a criterion for a minimal super-theory
S, we choose a requirement that dðLÞ takes its least pos-
sible value. For Eq. (13), we find

dðLÞ ¼ maxfdðL0Þ; d0g; (26)

d0 ¼ maxfdðF0
p;q;rÞ þ pþ 4ðqþ rÞ:p � 0; q � 0;

r � 0; pþ qþ r � 1; F0
p;q;r � 0g: (27)

We assume that dðL0Þ is fixed and thus we need to find the
least possible value for d0.

If k0 ¼ 2, kr ¼ 0, r � 1, then the least possible value for
d0 is achieved for

ðp1; q1Þ ¼ ð0; 1Þ; ðp2; q2Þ ¼ ð0; 2Þ; (28)

0 � dðF0
0;1;0Þ � 4; dðF0

0;2;0Þ ¼ 0; (29)

L ¼ L0 þ F0
0;1;0X

00 þ F0
0;2;0X

002; (30)

ðF0
0;1;0Þ� ¼ �2L0�X00�1� ; ðF0

0;2;0Þ� ¼ L0�X00�2� ; (31)

dðLÞ ¼ maxfdðL0Þ; 8g: (32)

If dðL0Þ> 4, then there does not exist F0
0;1;0 which satisfies

Eqs. (29) and (31). If 0 � dðL0Þ � 4, then

F0
0;1;0 ¼ �2ðL0 þ C0

1X
0ÞX00�1� ; F0

0;2;0 ¼ C0
2; (33)

where C0
1 and C0

2 are arbitrary constants. In Table I, we
have listed examples which give few smallest values for
min fdðL�L0Þg for the case k0 ¼ 2, kr ¼ 0, r � 1.

If k0 ¼ 2, k1 ¼ 1, kr ¼ 0, r � 2, then the least possible
value for d0 is achieved for

1 � p1 < p2 � 4; ðq1; q2Þ ¼ ð0; 0Þ; (34)

0 � dðF0
p1;0;0

Þ � 8� p1; 0 � dðF0
p2;0;0

Þ ¼ 8� p2;

dðF0
0;0;1Þ ¼ 4; (35)

L ¼ L0 þ F0
p1;0;0

’00p1 þ F0
p2;0;0

’00p2 þ F0
0;0;1Y (36)

ðF0
p1;0;0

Þ� ¼ p2ðp1 � p2Þ�1L0�’
00�p1� ;

ðF0
p2;0;0

Þ� ¼ p1ðp2 � p1Þ�1L0�’
00�p2� ;

(37)

dðLÞ ¼ maxfdðL0Þ; 8g: (38)

We find

F0
p1;0;0

¼ p2ðp1 � p2Þ�1ðL0 þ C0
1ð’0ÞX0Þ’00�p1� ; (39)

F0
p2;0;0

¼ p1ðp2 � p1Þ�1ðL0 þ C0
2ð’0ÞX0Þ’00�p2� ; (40)

where C0
1 and C0

2 are arbitrary polynomials of ’0 such that

0 � dðC0
1Þ � 4� p1; 0 � dðC0

2Þ � 4� p2: (41)

It is straightforward to proceed with a similar analysis
for different values of fkrgr�0. The above computations
give explicit construction of the minimal super-theory for a
given sub-theory. It is easy to generalize these computa-
tions to more complicated cases such as, for example,
higher dimensional space-times, multiple scalar fields, or
scalar fields in a representation of a gauge group.

V. DISCUSSION AND CONCLUSION

Here we focus on simple examples of obtaining a zero
cosmological constant. If we have a scalar field theory of
the type found as a component of the standard model of
particle physics, where the scalar field is renormalizable,
then we are dealing with the case

L 0ð’0; X0Þ ¼ 1

2
X0 � V0ð’0Þ; (42)

where V0ð’0Þ is a polynomial potential of at most dimen-
sion 4. We call these ’0 standard scalar fields. Note thatL0
is the most general renormalizable Lagrangian for a single

TABLE I. Choices of ðp1; q1; p2; q2Þ which give few smallest values for min fdðL�L0Þg for the case k0 ¼ 2, kr ¼ 0, r � 1. For
each choice, ðF0

p1 ;q1 ;0
; F0

p2 ;q2 ;0
Þ � ðconst; constÞ.

p1 q1 p2 q2 min fdðL�L0Þg L�L0 ðF0
p1;q1 ;0

Þ� ðF0
p2 ;q2;0

Þ�
0 1 0 2 8 F0

0;1;0X
00 þ F0

0;2;0X
002 �2L0�X00�1� L0�X00�2�

1 1 2 2 10 F0
1;1;0’

00X00 þ F0
2;2;0’

002X002 �2L0�’00�1� X00�1� L0�’00�2� X00�2�
0 1 0 3 12 F0

0;1;0X
00 þ F0

0;3;0X
003 � 3

2L
0�X00�1� 1

2L
0�X00�3�

0 2 0 3 12 F0
0;2;0X

002 þ F0
0;3;0X

003 �3L0�X00�2� 2L0�X00�3�
2 1 4 2 12 F0

2;1;0’
002X00 þ F0

4;2;0’
004X002 �2L0�’00�2� X00�1� L0�’00�4� X00�2�
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scalar field. Unless fine-tuned, such theories always have a
cosmological constant problem. Solutions to the cosmo-
logical constant problem involve fields with nonstandard
properties, which we collectively call exotic scalar fields.
The class of exotics includes ghost fields with wrong sign
kinetic energy terms, k-essence fields with kinetic and
potential parts appearing in the form X0nV 0ð’0Þ, phantom
fields, auxiliary fields, and all other types of scalar fields
that do not fit the standard scalar field classification. The
solutions we have found are models that have a limiting
case where only standard fields are present and where
exotic fields must be included to solve the cosmological
constant problem.

For example, L0ð’0; X0Þ can be supplemented with
an extra field ’00, the quantity X00 ¼ ri’

00ri’00, and the
new Lagrangian Lð’0; ’00; X0; X00Þ such that there is no
cosmological constant problem for a solution ð’0�; X0�Þ ¼
ðconst; 0Þ with an appropriate choice of ð’00� ; X00� Þ. In the
limit ð’00; X00Þ ! ð0; 0Þ, we recover L0ð’0; X0Þ, and the
cosmological constant problem. Note that the field ’0 itself
becomes exotic because of the way ’00 has to be added to
the theory.

Assuming no contributions from the kinetic cross term
Y, it turns out that Lagrangians linear in X00 are insufficient,
but there exists an infinite class of Lagrangians quadratic in
X00 which allow satisfactory solutions. Many of these so-
lutions are in the spirit of a generalized k-essence in the
sense that the potential V 0ð’0Þ couples to X00. (In k-essence,
V 0ð’0Þ couples to X0.)

Generalizations to models with multiple fields, higher
order terms in X00 and Y, or more complicated ’00 terms are
straightforward.

There is no solution of the cosmological constant prob-
lem with standard fields alone. Any generic standard scalar
field Lagrangian is plagued with a cosmological constant
problem and exotic fields are required to avoid it. We can
express this in a concise way since the results of Secs. III
and IVestablish that the cosmological constant problem in
a standard field Lagrangian can only be avoided in a
technically natural way by incorporating exotic fields of
the type introduced above. There are a large variety of
exotic field properties, including nonpolynomial poten-
tials, non quadratic kinetic terms, mixed kinetic-potential
terms, etc.

Our method is generic in the sense that for any standard
field Lagrangian there are infinitely many choices for the
Lagrangian of the full system. Since we have a large class
of models without a cosmological constant problem, it is
not unrealistic to hope that some members of the class may
arise naturally in a more fundamental context, like string or
M-theory. Since the way the exotic fields enter can vary
greatly, our results provide a large parameter space of new
models to explore.

Let us consider two simple explicit examples for the new
Lagrangian. In the first example,

L ð’0; ’00; X0; X00Þ ¼ 1

2
X0 � V 0ð’0Þð1�M�4X00Þ2; (43)

and in the second example,

Lð’0; ’00; X0; X00Þ ¼ 1

2
X0 � ðV0ð’0Þ1=2 �M�2X00Þ2; (44)

where M is a quantity with the dimension of mass and
V0ð’0Þ � 0. Note that in neither example do we have
symmetry or renormalizability to restrict the form of the
extended Lagrangian. While these examples do solve the
cosmological constant problem, for their forms to arise in a
natural way we need them to be embeddable in an over-
arching theory (e.g., string theory) to make that specifica-
tion. Hence our results should be considered as technical
progress toward a solution of the cosmological constant
problem until an all-encompassing theory can be found
where our examples can reside.
The solution ’0� ¼ const, X0� ¼ 0, X00� ¼ M4 in the first

example and ’0� ¼ const, X0� ¼ 0, X00� ¼ M2V 0ð’0�Þ1=2 in
the second example solve the Euler-Lagrange equations for
the new Lagrangian. In both examples we see there is no
cosmological constant problem as the value of the energy-
momentum tensor vanishes at the extremum. In the limit
ð’00; X00Þ ! ð0; 0Þ, we recover L0 of Eq. (42) from L. (We
note that in order for the Lagrangian in the second example
to agree with the approach in Sec. IV, we need to assume
that the polynomial V0ð’0Þ is the square of a second order
polynomial of ’0.)
If L0 is renormalizable and contains only operators of

dimension not exceeding 4, then the solutions of the cos-
mological constant problem we have found in the form of
L are all nonrenormalizable with operators of at least
dimension 8. If V 0 has dimension 4, then L has dimension
12 in the first example and 8 in the second example. We
assumeM is a high scale, sayMGUT orMPlanck, and that the
potential in L0 contains a lower scale m, say the electro-
weak scale in the form of a mass term in V 0ð’0Þ ¼ C�
m2’02 þ �’04, where � & Oð1Þ. At temperatures below,
say 1 TeV, the ’0 potential becomes

V 0ð’0; TÞ ¼ Cþ ð�m2 þ 1

2
�T2Þ’02 þ �’04; (45)

In the first example X00� ðTÞ ¼ M4 is approximately con-
stant since M � 1 TeV and so the ’00 field is ‘‘frozen’’ at
T � 1 TeV, while in the second example,

X00� ðTÞ ¼ M2ðC� ð4�Þ�1ð�m2 þ 1

2
�T2Þ2Þ1=2: (46)

so ’00 is still running with temperature. One concludes
that the solutions to the cosmological problem derived
by our methods can have dramatically different
phenomenologies.
As we have pointed out, operators of dimension greater

than 4 are not surprising from the perspective of string
theory, in fact they are ubiquitous. Hence it would be
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expected that the high energy completion of a standard
model type Lagrangian involve such operators. As we have
shown, any renormalizable models with a cosmological
constant problem has an infinite class of extensions that
solve this problem. Thus it is quite conceivable that some
of these extremal solutions coincide with members of the
vast landscape of string vacua. To find such a solution we
need not explore the entire string theory landscape statis-
tically, rather we only need to search for string compacti-
fication with the properties specified above.

Hence we have provided a scenario by which a renor-
malizable quantum field theory may be extended to solve
the cosmological constant problem. While it seems un-
likely that this solution can withstand all possible scrutiny,

we do believe we have made progress in finding a deeper
understanding of the problem and hope our work will spark
further discussion. Assuming there exists a viable UV
completion of the standard model, one could be lead to
the extreme point of view that the observational lack of a
Planck size cosmological constant is phenomenological
evidence for such a UV completion.
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