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We prove that sign problems in the traditional approach to some lattice Yukawa models can be

completely solved when fermions are formulated using fermion bags and bosons are formulated in the

worldline representation. We prove this within the context of two examples of three-dimensional models,

symmetric under ULð1Þ �URð1Þ � Z2ðparityÞ transformations, one involving staggered fermions and the

other involving Wilson fermions. We argue that these models have interesting quantum phase transitions

that can now be studied using Monte Carlo methods.
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I. INTRODUCTION

Feynman path integrals can be used to map a quantum
statistical mechanics partition function into a classical
statistical mechanics partition function with one caveat:
the Boltzmann weight of the classical partition function
may be negative or even complex. When this occurs the
mapping is said to suffer from a sign problem since
the mapping is not useful for Monte Carlo methods.
However, fortunately the mapping is not unique and it
may be possible to find a different mapping in which the
Boltzmann weights of the classical partition function are
indeed positive. If these weights are calculable with poly-
nomial effort as the system size grows, the mapping is said
to be free from a sign problem and one may be able to
construct a Monte Carlo algorithm to sample the classical
configuration space and solve the problem. In many inter-
esting cases a mapping without a sign problem has eluded
researchers and discovering the correct mapping is defined
as a solution to the sign problem.

Sign problems are well-known obstacles to solving
many quantum field theories from first principles. This is
particularly true when the microscopic degrees of freedom
contain fermions. Famous examples of physical systems
where sign problems have hindered progress are a finite
density of strongly interacting matter [1–3] and a finite
density of electrons with Coulomb repulsion [4]. Many
other model field theories also suffer from sign problems.
Examples of these include four-fermion field theories and
interacting boson-fermion (Yukawa) models. These often
have interesting low-energy physics and are used as effec-
tive field theories [5,6]. In three dimensions they can con-
tain interesting quantum phase transitions that have
remained unexplored due to sign problems.

While some important sign problems may be unsolvable
[7], it has become clear that a variety of sign problems can
indeed be solved by finding the right representation of the
partition function. Novel solutions to sign problems have
been found both in purely bosonic models with a complex
action [8–13] and in purely fermionic models [14,15].
Here, for the first time we show that sign problems in

models containing fermions and bosons as dynamical
fields interacting with each other (which we call Yukawa
models) can also be solved. We illustrate this using two
examples of lattice models in three dimensions.
In Sec. II we review the sign problems that haunt the

traditional approach to two lattice Yukawa models, one
with staggered fermions and one with Wilson fermions. In
Sec. III we show how the fermion-bag approach when
combined with the worldline formulation of bosonic de-
grees of freedom solves these sign problems. In Sec. IV we
present our conclusions.

II. SIGN PROBLEMS

In this section we review two examples of sign problems
in lattice Yukawa models, one with staggered fermions
and the other with Wilson fermions. For convenience our
models are defined in three space-time dimensions, but the
discussion is applicable in higher dimensions with minor
modifications. We begin with the example containing stag-
gered fermions. The action of the model is given by

Ss ¼
X
x;y

�c xðDs½��Þxyc y þ Sb½��; (1)

where �c x, c x are two Grassmann valued fields on the lattice
site x � ðx1; x2; x3Þ of a cubic lattice with V sites. While
there are many choices for the bosonic action, for simplicity
in this work we choose it to be the classical XY model,

Sb½�� ¼ ��
X
hxyi

cosð�x � �yÞ; (2)

where the bosonic field �x is a phase. Here hxyi refers to
nearest neighbor sites. The matrix Ds½�� is the V � V
staggered Dirac operator whose matrix elements are
given by

ðDs½��Þxy ¼ �g ei"x�x�x;y þ ðDs0Þxy; (3a)

ðDs0Þxy ¼
X
�

��;xr�
xy; (3b)

where the fluctuating mass term depends on the bosonic
field. The index � ¼ 1, 2, 3 represents the three directions,
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��;x are the staggered fermion phase factors (�1 ¼ 1, �2 ¼
ð�1Þx1 , �3 ¼ ð�1Þx1þx2), "x ¼ ð�1Þx1þx2þx3 is the site
parity and

r�
xy ¼ 1

2
ð�x;yþ�̂ � �xþ�̂;yÞ: (4)

The parameters � and g control the physics of the model. It
is easy to verify that the action in Eq. (1) is invariant under
the following ULð1Þ �URð1Þ chiral transformations:

c x ! ei�Lð1þ"xÞ=2þi�Rð1�"xÞ=2c x; (5a)

�c x ! e�i�Lð1�"xÞ=2�i�Rð1þ"xÞ=2 �c x; (5b)

�x ! �x þ ð�R � �LÞ: (5c)

In addition, the action is also invariant under the Z2 (parity)
transformations:

x!�x; �c x!� �c�x; c x!c�x; �x!��xþ�: (6)

These symmetries play an important role in governing the
long-distance physics of the model. The model possesses at
least two phases: a symmetric phase with massless fermions
and massive bosons, and a broken phase with massless
bosons and a massive fermion. Since a fermion mass term
breaks parity in three dimensions, it is natural to expect
massive fermions in the broken phase. Both the phases can
be accessed by tuning � and g. A schematic phase diagram,
expected from general arguments, is shown in Fig. 1. The
critical point on the g ¼ 0 axis is the well known 3d-XY
critical point. If it exists, a second order quantum critical line
separating the two phases starting from the XY point must
be governed by a different critical point. Based on symme-
tries we conjecture that it belongs to the universality class of
the model studied in [16]. Unfortunately, as we will discuss

below, this lattice Yukawa model cannot be studied using
traditional Monte Carlo methods due to sign problems.
Next we consider a Yukawa model constructed with

Wilson fermions. We again restrict ourselves to three
space-time dimensions for simplicity. The action of the
model is given by

Sw ¼X
xy

�c xðDw½��Þxyc y þ Sb½��; (7)

where, unlike the staggered fermion case, the fields �c x and
c x are each four component fields, written in terms of four
two-component left and right fields as

�c ¼ �c L �c R
� �

; c ¼ c L

c R

 !
: (8)

We label the eight Grassmann fields on each site as �c c
s;x,

c c
s;x where c ¼ L, R and s ¼ 1, 2. The Dirac operator is

given by

ðDw½��Þxy ¼
ðDw0Þxy �gI e�i�x�xy

gI ei�x�xy ðDw0yÞxy

 !
; (9)

where ~� are the Pauli matrices and I is the 2� 2 identity
matrix. The 2V � 2V matrix Dw0 is the Wilson-Dirac
operator defined by

ðDw0Þxy ¼ IMxy þ ~� � ~rxy; (10)

where ~rwas defined in Eq. (4) andM is the V � V Wilson
mass matrix defined by

Mxy ¼ � 1

�
�x;y þ 1

2

X
�

ð�x;yþ�̂ þ �xþ�̂;yÞ: (11)

The action [Eq. (7)] is also invariant under the following
ULð1Þ �URð1Þ transformations:

c L
x ! ei�Lc L

x ; �c L
x ! e�i�L �c L

x ; (12a)

c R
x ! ei�Rc R

x ; �c R
x ! e�i�R �c R

x ; (12b)

�x ! �x þ ð�R � �LÞ: (12c)

However, due to the presence of theWilson mass termMxy,

the action is not invariant under the Z2 (parity) transforma-
tions

x!�x; �c x!� �c�x; c x! c�x; �x!��xþ�:

(13)

Parity transformations are restored in the long-distance
physics, when the hopping parameter � is tuned to a critical
value where massless fermions emerge. For g ¼ 0, one
finds �c ¼ 1=3. In general �c is a function of the couplings
g and �. Once � is tuned to this value the phase diagram of
the model as a function of � and g is very similar to Fig. 1,
except that the critical behavior on the quantum critical
line could belong to a different universality class as com-
pared to the staggered fermion case. The difference is

GN model

XY Point

quantum critical line

Broken

β

g

g=0
Symmetric

FIG. 1. A schematic phase diagram of ULð1Þ �URð1Þ � Z2

symmetric lattice Yukawa models discussed in the text. The
symmetric phase contains massless fermions while the broken
phase contains massless bosons. The critical point on the g ¼ 0
line is the XY critical point. For small � the model reduces to a
Gross-Neveu (GN) model.
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essentially due to the number of fermions that become
massless on the critical line.

In order to study the two Yukawa models discussed
above one begins with the partition function

Zi ¼
Z
½d �c dc �e�Si ; (14)

where i ¼ s, w and tries to construct a Monte Carlo tech-
nique to compute expectation values of appropriate quan-
tities. The traditional method is to integrate the fermions
completely and rewrite

Zi ¼
Z
½d��e�Sb½��DetðDi½��Þ: (15)

If the determinant of the Dirac operator Di½�� was non-
negative then one could have devised a Monte Carlo
method to sample the ½�� configurations. Unfortunately
this is not the case for both the models considered here.
With staggered fermions there is no symmetry that can be
used to even argue that DetðDs½��Þ is real. The determinant
can in fact be complex. On the other hand with Wilson
fermions one can prove that

CðDw½��ÞC¼ðDw½��Þ�; whereC¼ 0 �i�2

i�2 0

 !
; (16)

which means the determinant of Dw½�� is real.
Unfortunately, it could still be negative. Thus, both
Yukawa models discussed above suffer from sign problems
in the traditional method. As far as we know, these sign
problems have remained unsolved until now. While these
sign problems clearly arise for reasons completely differ-
ent from the sign problem in finite-density QCD [3], they
seem equally difficult.

III. FERMION-BAG WORLDLINE APPROACH

We now prove that the sign problems disappear in the
above two models when the fermions are formulated in
the fermion-bag approach and bosons are formulated in the
worldline representation. Since the details of the proof are
slightly different in each case, we will discuss them sepa-
rately. Let us first consider the partition function of the
Yukawa model with staggered fermions. As explained in
[16,17] we expand the interaction in powers of the cou-
pling. We begin by noting that

e gð �c xc xÞei"x�x ¼ 1þ gð �c xc xÞei"x�x (17)

at every lattice site x due to the Grassmann nature of �c xc x.
We can represent the two terms on the right through the
discrete variables nx ¼ 0, 1. The first term refers to nx ¼ 0
or no interaction, while the second term represents nx ¼ 1
and indicates the presence of an interaction vertex �c xc x

(or a monomer). Every monomer is also associated with the
term ei"x�x . Using this idea it is possible to write

Zs ¼
X
½n�
gj
�Z

½d �c dc �e�Ss
0 �c x1c x1 . . .

�c xjc xj

�
Z
½d��e�Sb½��ei"x1�x1 . . . ei"xj �xj

�
; (18)

where [n] represents a configuration of monomers, j refers
to the total number of monomers and

Ss0 ¼
X
x;y

�c xðDs0Þxyc y (19)

is the free staggered fermion action. For every configura-
tion [n] we have labeled the sites where the monomers are
located as fx1; . . . ; xjg. As explained in [17,18] it is possible
to show thatZ

½d �c dc �e�Ss
0 �c x1c x1 . . .

�c xjc xj ¼ DetðW½n�Þ � 0;

(20)

where W½n� is a ðV � jÞ � ðV � jÞ matrix which has the
same elements as Ds0 except that the sites x1; . . . ; xj are

dropped. The sites (V � j) form what we call the strong
coupling fermion bag [16,18]. Interestingly, one can also
rewrite the bosonic integral using the worldline represen-
tation as discussed in [11,19]. One finds thatZ

½d��e�Sb½��ei"x1�x1 . . . ei"xj �xj

¼ X
½k�

Y
x;�

fIkx;�ð�Þg
Y
x

�

�X
�

ðkx;� � kx��;�Þ þ "xnx

�
;

(21)

where the integer bond variables kx;� represent worldlines

of charged particles, Ikx;�ð�Þ is the modified Bessel func-

tion, [k] represents a configuration of these worldlines.
Note that the interaction between the fermions and bosons
appear through the constrained delta function which essen-
tially implies that every monomer either creates or destroys
bosonic particles. Thus, using a combined fermion bag–
worldline representation, the partition function of the stag-
gered Yukawa model takes the form

Zs ¼
X
½n;k�

gjDetðW½n�ÞY
x;�

fIkx;�ð�Þg

�Y
x

�

�X
�

ðkx;� � kx��;�Þ þ "xnx

�
: (22)

The Boltzmann weight of every ½n; k� configuration is non-
negative and the sign problem is absent.
Let us now turn to the lattice Yukawa model with Wilson

fermions. Unlike the staggered case, we now have four
couplings g �c L

1;xc
R
1;xe

�i�x , g �c L
2;xc

R
2;xe

�i�x ,�g �c R
1;xc

L
1;xe

i�x

and�g �c R
2;xc

L
2;xe

i�x . We expand in each of these couplings

and write

e g �c L
1;x
c R

1;x
ei�x ¼ 1þ g �c L

1;xc
R
1;xe

i�x (23)
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for each of the four couplings. We then introduce four
types of monomers n1;x, n2;x, n3;x, n4;x ¼ 0, 1 at each site

x representing these four couplings. For every monomer
configuration [n] we label the sites where n1;x, n2;x, n3;x and
n4;x are nonzero, asw1; . . . ; wj1 , x1; . . . ; xj2 , y1; . . . ; yj3 , and

z1; . . . ; zj4 respectively. Thus, in the fermion-bag approach

we can write

Zw¼
X
½n�
gj1þj2þj3þj4

�Z
½d �c dc �e�Sw

0 ð�1Þj3þj4 �c L
1;w1

c R
1;w1

. . .

� �c L
1;wj1

c R
1;wj1

�c L
2;x1

c R
2;x1

. . . �c L
2;xj2

c R
2;xj2

�c R
1;y1

�c L
1;y1

. . . �c R
1;yj3

c L
1;yj3

�c R
2;z1

c L
2;z1

. . . �c R
2;zj4

c L
2;zj4

�
Z
½d��e�Sb½��e�i�w1 . . .e�i�x1 . . .ei�y1 . . .ei�z1 . . .

�
;

(24)

where

Sw0 ¼ X
x;y

f �c L
x ðDw0Þxyc L

y þ �c R
x ðDw0yÞxyc R

y g (25)

is the free Wilson fermion action. Based on the fermion
integral it is easy to see that only those monomer con-
figurations which satisfy j � j1 þ j2 ¼ j3 þ j4 contri-
bute to the path integral. If we define the free fermion
propagator

Gs;x;s0;y ¼
Z
½d �c dc �e�Sw

0 c L
s;x

�c L
s0;y; (26)

then it is easy to prove that

ðGs;x;s0;yÞ� ¼
Z
½d �c dc �e�Sw

0 ð�1Þ �c R
s;xc

R
s0;y: (27)

Using this result along withWick’s theorem it is possible to
show thatZ
½d �c dc �e�Sw

0 ð�1Þj3þj4 �c L
1;w1

c R
1;w1

. . . �c L
1;wj1

c R
1;wj1

� �c L
2;x1

c R
2;x1

. . . �c L
2;xj2

c R
2;xj2

�c R
1;y1

c L
1;y1

. . . �c R
1;yj3

�c L
1;yj3

�c R
2;z1

c L
2;z1

. . . �c R
2;zj4

c L
2;zj4

¼jDetðG½n�Þj2; (28)

where Gð½n�Þ is a j� j matrix whose matrix elements
are the free fermion propagators defined in Eq. (26)
from ðs ¼ 1; fw1; . . . xj1gÞ and ðs ¼ 2; fx1; . . . ; xj2gÞ to

ðs ¼ 1; fy1; . . . yj3gÞ and ðs ¼ 2; fz1; . . . ; zj4gÞ. Combining

this result with the worldline representation of the bosonic
integral, [similar to Eq. (32)], we see that

Zw¼
X
½n;k�

g2jjDetðG½n�Þj2Y
x;�

fIkx;�ð�Þg

�Y
x

�

�X
�

ðkx;��kx��;�Þ�n1;x�n2;xþn3;xþn4;xÞ
�
:

(29)

The above expansion of the partition function is again free
of any sign problem since the Boltzmann weights are non-
negative.

IV. DISCUSSION

In this work we have shown that the fermion-bag ap-
proach along with the worldline representation of bosonic
degrees of freedom, allows us to solve sign problems in
some lattice Yukawa models. These lattice Yukawa models
can now be solved using Monte Carlo methods in which
the worldlines and the fermion bags are updated. Such
algorithms can be easily constructed by extending the ideas
developed in [18]. These algorithms should allow us to
uncover the interesting quantum critical behavior in these
models.
While the solutions presented here depend on the details

of the models considered, the idea is more general and can
be applied to solve other sign problems, including those in
nonrelativistic field theories. For example, models that
contain pairing interactions of the form gc L

s c
R
s e

i� can
also be solved. Further, we can study models with discrete
rather than continuous symmetries. For example, if we
replace Eq. (3a) by

ðDs½��Þxy ¼ �g sinð�xÞ�x;y þ ðDs0Þxy; (30)

the ULð1Þ �URð1Þ symmetry of the model is reduced to
Ufð1Þ � Z2. While the conventional approach still suffers

from a sign problem, the fermion-bag approach does not.
Sign problems can also be solved with Nf fermion flavors

as long as all fermions couple to boson fields as in the one-
flavor case. This enhances the symmetry of the models by
an SUðNfÞ factor.
The bosonic action can also be changed. For example

instead of the XY model action, one can also choose the
more standard form where

Sb½	�¼�X
x;�

ð	�
x	xþ�þ	�

xþ�	xÞþ
X
x

ð
j	xj2þ�j	xj4Þ:

(31)

In this case the phase ei�x in the couplings is replaced by
the complex field 	x itself. Then the bosonic integrals in
Eqs. (18) and (24) can again be represented in a worldline
representation with positive Boltzmann weights. Indeed,
by writing	x ¼ �xe

i�x in the polar form one can show thatZ
½d	�e�Sb½	�	w1

. . .	wj
	�

z1 . . .	
�
zj

¼
Z
½d��e

�P
x

ð
�2
xþ��4

xÞ
�w1

. . .�wj
�z1 . . .�zj

�
�X
½k�

Y
x;�

fIkx;�ð2�x�xþ�Þg

�Y
x

�

�X
�

ðkx;� � kx��;�Þ þ nx

��
; (32)
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where nx ¼ 1 for x ¼ w1; . . . ; wj and nx ¼ �1 for x ¼
z1; . . . ; zj and nx ¼ 0 otherwise. Thus, the bosonic integral

can again be represented without a sign problem.
An important lesson from our work is that solutions to

sign problems only emerge when along with pairing in the
fermionic sector, the correct bosonic variables can also be
identified. Sign problems in theories with multicomponent
boson fields continue to remain a challenge, although our
ideas may provide hints for finding a solution. In certain
cases we believe that positivity may emerge in terms of
quantities like fermionants which unfortunately can be
exponentially difficult to compute [20]. The ability to

convert a quantum partition function into a classical parti-
tion function should ultimately be dependent on the under-
lying physics and the degrees of freedom that capture it
optimally.
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