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We generalize the Lellouch-Lüscher formula, relating weak matrix elements in finite and infinite

volumes, to the case of multiple strongly coupled decay channels into two scalar particles. This is a

necessary first step on the way to a lattice quantum chromodynamics calculation of weak decay rates for

processes such asD ! �� andD ! K �K. We also present a field theoretic derivation of the generalization

of Lüscher’s finite-volume quantization condition to multiple two-particle channels. We give fully explicit

results for the case of two channels, including a form of the generalized Lellouch-Lüscher formula

expressed in terms of derivatives of the energies of finite-volume states with respect to the box size. Our

results hold for arbitrary total momentum and for degenerate or nondegenerate particles.
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I. INTRODUCTION

Lattice calculations have made considerable progress
toward a first-principles determination of the K ! ��
weak decay amplitudes [1,2]. The methodology is now in
place, results for the I ¼ 2 final state with a complete error
budget are available [2], and complete results for the more
challenging I ¼ 0 final states should become available
in the next few years. At that stage we will finally learn
whether and in what manner QCD can explain the �I ¼
1=2 rule and the observed CP-violation rate in K ! ��
decays.

Encouraged by this progress, it is natural to consider
what information lattice calculations might eventually
offer concerning the decays of heavier mesons. For ex-
ample, the LHCb experiment recently reported evidence
for CP violation in (the difference of) D0 ! �þ�� and
D0 ! KþK� decays [3]. Although the rate is larger than
naive expectations from the standard model, there is, at
present, sufficient uncertainty in the standard model pre-
diction for it to be consistent with the LHCb result (see,
e.g. Refs. [4–9]). This raises the obvious question of
whether a calculation using lattice methods is feasible.

The aim of this paper is to take a first step in developing
the methodology for such a calculation. We show how, if
one can ignore all but two-particle channels, then a gen-
eralization of the work of Lüscher, and of Lellouch and
Lüscher, would allow, in principle, a calculation of the
required matrix elements from lattice calculations in a
finite volume. In practice, however, channels with more
than two particles are coupled by the strong interactions to
�� and K �K, e.g. the four-pion channel, and they cannot be
ignored at center of mass (CM) energies as high as the
D0-meson mass (MD0 ¼ 1865 MeV). Thus our method
would yield only semiquantitative results for the desired
matrix elements. Nevertheless, it is a necessary first step,

and work is underway to extend the methodology to chan-
nels with multiple particles (see, e.g., Ref. [10]).
It is instructive to recall the three essential ingredients

needed for the lattice calculation of K ! �� amplitudes.
First, one needs to know the relation between the energies
of two-pion states in a finite box and the infinite-volume
scattering amplitude. This was worked out by Lüscher in
Refs. [11–14] (and generalized to a moving frame in
Refs. [15–17]). Second, one needs the relation between
the matrix element that one can determine on the lattice,
which connects a kaon to a finite-volume two-pion state,
and the infinite-volume matrix element which determines
the decay rate. This was provided by Lellouch and Lüscher
in Ref. [18] (and generalized to a moving frame in
Refs. [16,17]). Finally, one must calculate the large number
of Wick contractions that contribute, including several
quark-disconnected contractions requiring special methods
and high statistics. In this stage one also extrapolates to
physical quark masses. This entire program has been car-
ried out for the I ¼ 2 final state [2], and a successful pilot
calculation has been done for the more challenging I ¼ 0
case [1].
The calculation of D0 decays is considerably more

challenging. In particular, the first two of the three afore-
mentioned ingredients need to be generalized to account
for the opening of many channels. If we focus on the I ¼ 0
final state, then strong-interaction rescattering connects
two-pion final states to those with four, six, etc. pions, as
well as K �K and �� states.1 As already noted, we consider
here only the case in which several two-particle channels
are open, which for the D0 would mean keeping the ��,
K �K and �� channels while ignoring those with four or

*mth28@uw.edu
†srsharpe@uw.edu

1It is important to note that the fact that the D0 has a very large
number of decay channels [19] is not itself a concern, but rather
that, having fixed the final-state quantum numbers, in our case to
I ¼ 0, there are still a large number of states. In a lattice
calculation, one can separately consider the decays to states
with differing strong-interaction quantum numbers.
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more pions. We make this approximation not because we
think that it is a good description of reality at the D0 mass,
but rather because it is a necessary first step towards the
required formalism.

Within this approximation, we provide here the general-
ization of both the Lüscher quantization condition and
the Lellouch-Lüscher (LL) formula. These generalizations
are useful also in many other systems. For example, the
quantization condition allows the determination of the
parameters of the S-matrix in the I ¼ 0 channel above
the two-kaon threshold (and thus in the region of the
f0ð980Þ resonance), because the coupling to four or more
pions remains weak for such energies. The same should be
true in the I ¼ 1 case, where K �K and �� are the dominant
channels in the vicinity of the a0ð980Þ. The multichannel
LL formula can be used to calculate K ! �� amplitudes
including isospin breaking (so that �� and �0 are not
degenerate). Generalization to baryon decays are also pos-
sible, but this requires dealing with particles with spin,
which we do not attempt here.

There have been a large number of recent papers study-
ing the generalization of the Lüscher quantization condi-
tion to multiple two-body channels [20–23] and assessing
its utility. The work of Ref. [20] uses nonrelativistic quan-
tum mechanics, while Ref. [21] is based on a nonrelativ-
istic effective field theory. References [22,23] are based on
relativistic field theory, and give an explicit result [Eq. (3.5)
of Ref. [22]] for the case of two s-wave channels in which
the total momentum vanishes and in which the contribu-
tions from higher partial waves are assumed negligible. We
also note that the multiple-channel problem has been
studied using an alternative approach based on the Bethe-
Salpeter wave function [24].

We provide here, as a step on the way to the generalized
LL formula, a derivation of the multiple-channel quantiza-
tion condition within quantum field theory. We include
all allowed mixing between different partial waves. No
assumptions about the form of the interactions are needed,
aside from the proviso, common to all approaches, that the
range of the interaction must be smaller than the box size.
Also, our result holds for any value of the total momentum
~P of the two-particle system (i.e. it holds for a moving or a
stationary frame), and for either degenerate or nondegen-
erate particles in each channel. We follow closely the
approach of Ref. [16], which presented a generalization
of Lüscher’s single-channel quantization condition to a
moving frame. Indeed, we find that the most general
form of the final result, given in Eq. (29), is identical in
form to that of Ref. [16] (modulo some minor changes in
notation).

After deriving the general quantization condition in
Sec. II we restrict our considerations to the simplified
situation in which only s-wave scattering is included. We
focus on the case with two channels (suggestively labeled
�� and K �K), although we also provide the generalization

tomore than two channels. In the infinite-volume theory, the
two-channel system is described by a 2� 2S-matrixwhich,
due to unitarity and symmetry, is determined by three real
parameters [see Eq. (48) below]. We use a particular
parametrization of S to rewrite our quantization condition
in a convenient, pure real form [Eq. (49)]. We explain how
our result is equivalent to that of Ref. [22] in the case of a
stationary frame. As is discussed in Refs. [21–23], three
independent pieces of information are needed to determine
the three independent S-matrix parameters at each center
of mass energy, E�. References [22,23] discuss in some
detail the prospects for using either twisted boundary con-
ditions or uneven box sizes for this purpose. We restrict
ourselves here to an alternative approach, also mentioned
in Refs. [22,23], of using three different choices for the

parameters fL; ~Pg, where L is the box size. (We assume a
cubic box and periodic boundary conditions.) The parame-

ters fL; ~Pg must be tuned such that there is a two-particle
state in the spectrum having the desired value of E�. In
this way one obtains three independent conditions, and
can solve for the S-matrix parameters at the chosen value
of E�.
Turning now to the LL formula, we follow the same

approach as used by Lellouch and Lüscher in Ref. [18].
Specifically, we add a D-meson to our two-channel system
and analyze the effect of an infinitesimal weak perturbation
on the quantization condition. This yields a relation be-
tween a finite-volume weak matrix element and a linear
combination of the desired infinite-volume matrix ele-
ments. In Sec. IV we present a derivation of the relation
which follows closely the original LL work. In the final
result, Eq. (85), the coefficients relating finite- and infinite-
volume matrix elements are given in terms of the S-matrix
parameters and their derivatives, evaluated at the decay
particle’s mass. These can be calculated using the multiple-
channel quantization condition, as sketched above. It turns
out that three different lattice matrix elements are needed
to separately determine the two infinite-volume matrix
elements. Note that this is the same as the number needed
to determine the S-matrix parameters. For more than two
channels this correspondence no longer holds.
Since the S-matrix parameters and their derivatives are

ultimately determined from the spectral energies, it should
be possible to write a form for the generalized LL formula
in terms of the spectral energies and their derivatives alone.
We derive such a form in Sec. V. The result, Eq. (122), is
probably more useful in practice than Eq. (85). The second
derivation also brings out an important feature of the
generalized LL formula. Finite-volume energy eigenstates
in the coupled-channel theory can be written as linear
combinations of infinite-volume �� and K �K states having
(in our case) ‘ ¼ 0 as well as the higher values of ‘
allowed by the cubic symmetry of the box. The LL meth-
odology is (as noted in the original paper) simply a trick to
determine the coefficients of the relevant �� and K �K
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states. This point has also been stressed recently by
Ref. [25] in a different context. Our second derivation
makes clear that, irrespective of the details of the weak
Hamiltonian, one always obtains the same linear combi-
nation of �� and K �K states, and that this feature holds for
any number of channels.

The remainder of this article is organized as follows.
In the following section we give our derivation of the
multiple-channel quantization condition. In Sec. III we
restrict to s-wave scattering and derive a useful form of
the condition. The multiple-channel generalization of the
LL formula is then derived in Sec. IV, and the alternative
derivation is presented in Sec. V. We conclude in Sec. VI.
We include an Appendix, in which we discuss the general-
ization of Watson’s theorem to two channels.

The generalization of Lüscher’s quantization formula to

multiple channels for arbitrary ~P using field-theoretic
methods (the work described in our Secs. II and III) has
also been considered by Briceno and Davoudi [26]. Our
results are in complete agreement (although we use a
different parametrization of the S-matrix). Their paper is
being released simultaneously with the present article.

II. MULTIPLE-CHANNEL EXTENSION OF
QUANTIZATION CONDITION

In this section we derive an extension to multiple two-
body channels of the Lüscher quantization condition,
which relates the infinite-volume scattering amplitudes to
finite-volume energy levels. We assume throughout a cubic
spatial volume with extent L and periodic boundary con-
ditions. The (Minkowski) time direction is taken to be
infinite. The total momentum

~P ¼ 2�~nP
L

ð ~nP 2 Z3Þ (1)

is fixed but arbitrary, i.e. the quantization condition we
derive holds for a ‘‘moving frame’’ as well as a stationary
frame. We first consider the case of only two open chan-
nels, describing the extension to an arbitrary number of
channels at the end of this section.

We take each channel to contain two massive, spinless
particles. The particles of channel one are labeled pions
and are taken to be identical with mass m1 ¼ M�. The
particles of channel two, called kaons, are taken nonident-
ical, though still degenerate, with mass m2 ¼ MK. What
we have in mind is that the first channel corresponds to the
I ¼ 0 �� state, and the second to the I ¼ 0 K �K state.
Including both identical and nonidentical pairs allows us to
display the factors of 1=2 that appear in the former case.
We consider degenerate particles to simplify the presenta-
tion, but describe the generalization to nondegenerate
masses at the end of this section.

For concreteness, and to match the physical ordering, we
take the pion to be lighter than the kaon. For our results to
hold, we must assume that the thresholds for three or more

particles lie above the two-kaon threshold. If we assume a
G-parity-like symmetry, so that only even numbers of
pions can couple to a two-pion state, then the ordering
we need is

2M� < 2MK < E� < 4M�; (2)

where E� is the CM energy. The only possible scattering
events are then

1 ! 1: �� ! ��; 1 ! 2: �� ! K �K;

2 ! 1: K �K ! ��; 2 ! 2: K �K ! K �K:
(3)

If E� drops below 2MK, only the �� channel is open and
the problem reduces to that discussed by Lüscher [11–14].
The inequality 2MK < 4M� does not, of course, hold for

physical pions and kaons—the four- and six-pion thresh-
olds occur below that for two kaons. Nevertheless, the
coupling to these higher multiplicity channels is weak at
low energies, and our results should still hold approximately
as long as we are not too far above the two-kaon threshold.
Indeed, it may be that, in the I ¼ 0 case, the �� channel
becomes important before that with four or more pions. If so,
our formalism would still apply, generalized to three chan-
nels as described below. The approximation of ignoring
channels with more than two particles will become increas-
ingly poor as the energy increases, andwill likely give only a
rough guide by the D mass. A qualitative indication of this
(ignoring differences in phase space) is that the f0ð1500Þ has
a 50% branching fraction to 4�, while the branches to ��,
K �K and �� are �35%, 9% and 5%, respectively [19].
The two-channel quantization condition is obtained

by a straightforward generalization of the single-channel
approach of Ref. [16]. To make this note somewhat
independent of that reference, we reiterate some of the
pertinent details. We begin by introducing a two-body
interpolating field �ðxÞ (not necessarily local) which cou-
ples to both channels. Following Ref. [16] we then define

CLðPÞ ¼
Z
L;x

eið� ~P� ~xþEx0Þh0j�ðxÞ�yð0Þj0i (4)

where P ¼ ðE; ~PÞ is the total four-momentum of the two-
particle system (in the frame where the finite-volume
condition is applied), andZ

L;x
¼
Z
L
d4x (5)

is the spacetime integral over finite volume. The relation to
the CM energy used above is

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ~P2

q
: (6)

The poles of CL give the energy spectrum of the finite-
volume theory, and thus the condition that CL diverge is
precisely the quantization condition we are after.
To proceed to a more useful form of the condition, we

follow Ref. [16] and write CL in terms of the Bethe-
Salpeter kernel, as illustrated in Fig. 1(a):
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CLðPÞ ¼
Z
L;q

�j;q½z2�2�jk;q�y
k;q

þ
Z
L;q;q0

�j;q½z2�2�jk;qiKkl;q;q0 ½z2�2�lm;q0�
y
m;q0

þ � � � : (7)

The notation here is as follows. Indices j, k, l andm refer to
the channel, and take the values 1 or 2. The two-particle
intermediate states are summed/integrated as is appropriate
to finite volume

Z
L;q

¼ 1

L3

X
~q

Z dq0

2�
: (8)

The summand/integrand includes the product of two fully
dressed propagators

½z2�2�ij;q ¼ �ij�i½ziðqÞ�iðqÞ�½ziðP� qÞ�iðP� qÞ�; (9)

where

zjðqÞ�jðqÞ ¼
Z

d4xeiqxh�jðxÞ�jð0Þi; (10)

�jðqÞ ¼ i

q2 �m2
j þ i�

: (11)

Here �1 and �2 are interpolating fields for pions and
kaons, respectively, chosen such that zj ¼ 1 on shell. �1 ¼
1=2 and �2 ¼ 1 account for the symmetry factors of the
diagrams. K is related to the Bethe-Salpeter kernel

iKij;q;q0 ¼ iBSijðq; P� q;�q0;�Pþ q0Þ; (12)

with BSij the sum of all amputated j ! i scattering dia-

grams which are two-particle-irreducible in the s-channel

(with particles of either type). Finally, �j;q and �y
j;q0 de-

scribe the coupling of the operators � and �y to the two-
particle channel j. Their detailed form is not relevant; all
we need to know is that they are regular functions of q.
We emphasize two important features of Eq. (7). First, it

does not rely on any choice of interactions between the
pions and kaons, such as those predicted by chiral pertur-
bation theory. All the quantities that enter can be written in
terms of nonperturbatively defined correlation functions.
Second, the kernel iK and the propagator dressing function
z have only exponentially suppressed dependence on the
volume [12]. Thus, if L is large enough that such depen-
dence is negligible (as we assume hereafter), we can take
iK and z to have their infinite-volume forms.
The dominant power-law volume dependence enters

through the momentum sums in the two-particle loops.
To extract this dependence, we use the identity derived in
Ref. [16], which relates these sums for a moving frame
to infinite-volume momentum integrals plus a residue.
Before stating the identity we recall the relevant notation.

For any four-vector k� ¼ ðk0; ~kÞ in the moving frame,

k�� ¼ ðk0�; ~k�Þ is the result of a boost to the CM frame.

In particular, the total four-momentum ðE; ~PÞ boosts to

ðE�; ~0Þ in the CM frame. We also need the quantities

q�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Þ2=4�m2

j

q
; (13)

which are the momenta of a pion (j ¼ 1) or kaon (j ¼ 2) in
the CM frame. The identity then reads (no sum on i here):Z

L;k
fðkÞ�i�iðkÞ�iðP� kÞgðkÞ

¼
Z
1;k

fðkÞ�i�iðkÞ�iðP� kÞgðkÞ

þ
Z

d�q�d�q�0f�i ðq̂�ÞF iiðq̂�; q̂0�Þg�i ðq̂0�Þ; (14)

with

b)

c)

d)

a)

FIG. 1. (a) The initial series of ladder diagrams which builds
up CL [see Eq. (7)]. The Bethe-Salpeter kernels iK are connected
by fully dressed propagators. The dashed rectangle indicates
finite-volume momentum sum/integrals. (b) and (c) The series
which build up the matrix element A and the scattering ampli-
tude iM. Note that these series contain only the momentum
integrals appropriate to infinite volume. (d) The resulting series
for the subtracted correlator [see Eqs. (17) and (26)]. Each
dashed vertical line indicates an insertion of F , which carries
the entire volume dependence (neglecting exponentially sup-
pressed dependence).
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Z
1;k

¼
Z d4k

ð2�Þ4 : (15)

We introduce two functions fðkÞ and gðkÞ to correspond
to the momentum dependence entering from the left and
right of the loop integrals, as well as that from the dressing
functions [see Fig. 1(a)]. The functions f and g must have
ultraviolet behavior that renders the integral/sum conver-
gent. In addition, the branch cuts they contain, correspond-
ing to four or more intermediate particles, must be such
that, after the k0 contour integration, they introduce

no singularities for real ~k. This condition holds when
0<E� < 4M�. The last line of Eq. (14) depends on the
values of the functions f and g when the two particles are
on shell, and thus only on the direction of the CM momen-
tum, q̂�. Specifically, if q�i is the moving frame momentum
that boosts to the on-shell momentum ðE�=2; ~q�i Þ, then

f�i ðq̂�Þ ¼ fðqiÞ; g�i ðq̂�Þ ¼ gðqiÞ: (16)

Finally the quantity F , which depends on q�, L and the
particle mass, contains the power-law finite-volume depen-
dence of the loop sum/integral.2 Its form is given below in
Eqs. (23)–(25). Note that it is diagonal in channel space,
i.e. it cannot change pions into kaons. It can, however,
insert angular momentum, due to the breaking of rotation
symmetry by the cubic box.

The key point of the identity is that the difference
between finite- and infinite-volume integrals depends on
on-shell values of the integrand, allowing the finite-volume
dependence to be expressed in terms of physical quantities.
Applying the identity to each loop integral in Fig. 1(a), one
then rearranges the series by grouping terms with the same
number of insertions of F . The volume-independent term
with noF insertions is of no interest, since it does not lead
to poles. Thus we drop it and consider the difference

CsubðPÞ � CLðPÞ � C1ðPÞ: (17)

In the remaining diagrams with F insertions, all terms to
the left of the firstF and to the right of the last are grouped
and summed into new end caps which we label Aj and A0

j

[see Fig. 1(b)]. These quantities equal certain matrix ele-
ments of the interpolating field � [16]

Ajðk̂�Þ � h ~k�;� ~k�; j; outj�yð0Þj0ij ~k�j¼q�j
; (18)

A0
jðk̂�Þ � h0j�ð0Þj ~k�;� ~k�; j; inij ~k�j¼q�j

: (19)

In contrast to [16] we include no wave-function renormal-
ization factors, because our single-particle interpolating
fields satisfy on-shell renormalization conditions. Having

summed up the ends the next step is to do the same
for the series which appears between adjacentF insertions
[Fig. 1(c)]. As indicated in the figure, this series generates
the infinite-volume scattering amplitude iMij. We thus

deduce an alternative series for Csub built from A, A0 and
iM’s, all connected by F ’s [Fig. 1(d)].
We stress that the analysis just performed is a straight-

forward generalization of the single-channel analysis of
Ref. [16]. All that has changed is that F and M are now
2� 2 matrices in channel space, and A and A0 vectors.
To proceed, we decompose A, A0,M andF in spherical

harmonics, defining coefficients via

Ajðk̂�Þ �
ffiffiffiffiffiffiffi
4�

p
Aj;‘;mY‘;mðk̂�Þ; (20)

A0
jðk̂�Þ �

ffiffiffiffiffiffiffi
4�

p
A0
j;‘;mY

�
‘;mðk̂�Þ; (21)

M ijðk̂�; k̂0�Þ � 4�Mij;‘1;m1;‘2;m2
Y‘1;m1

ðk̂�ÞY�
‘2;m2

ðk̂0�Þ;
(22)

F ijðk̂�; k̂0�Þ � � 1

4�
Fij;‘1;m1;‘2;m2

Y‘1;m1
ðk̂�ÞY�

‘2;m2
ðk̂0�Þ;

(23)

where a sum over all ‘’s and m’s is implicit. The factors of
4� are present so that we match the conventions of
Ref. [16]. They imply, for example, that for a purely
s-wave amplitude, M is the same in the two bases (for
the 4� cancels with the two spherical harmonics). The
kinematical factor F is given in Ref. [16] (aside from the
above-noted factor of �i) and takes the form3

Fij;‘1;m1;‘2;m2
� �ijFi;‘1;m1;‘2;m2

¼ �ij�i

�
Req�i
8�E� �‘1‘2�m1m2

� i

2E�
X
‘;m

ffiffiffiffiffiffiffi
4�

p

q�‘i
cP‘mðq�2i Þ

�
Z

d�Y�
‘1;m1

Y�
‘;mY‘2;m2

�
: (24)

Here the volume dependence enters through the sums4

cP‘mðq�2Þ ¼
1

L3

X
~k

!�
k

!k

e�ðq�2�k�2Þ

q�2 � k�2
k�‘

ffiffiffiffiffiffiffi
4�

p
Y‘;mðk̂�Þ

� �‘0P
Z d3k�

ð2�Þ3
e�ðq�2�k�2Þ

q�2 � k�2
; (25)

with !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

i

q
being the energy of a particle with

momentum ~k, and !�
k the energy after boosting to the CM

2The result [Eq. (14)] is equivalent to Eqs. (41–42) of
Ref. [16], although we have done some further manipulations
to the last line of Eq. (14) to bring it into a matrix form. Also, we
have included a factor of �i in F , rather than keeping it
explicitly as in Ref. [16].

3An additional difference from Ref. [16] is the appearance of
Req�i rather than q�. This is discussed in the next section.

4We are slightly abusing the notation here for the sake of
clarity. cP‘m depends not only on q�2 but also on mi, but we keep
the latter dependence implicit. The dependence is made explicit
at the end of this section.

MULTIPLE-CHANNEL GENERALIZATION OF LELLOUCH- . . . PHYSICAL REVIEW D 86, 016007 (2012)

016007-5



frame. The properties of these sums are discussed in
Ref. [16].

We are now in a position to write down the final result.
The series indicated in Fig. 1(d) gives

CsubðPÞ ¼ �X1
n¼0

A0F½�iMF�nA (26)

¼ �A0 1

F�1 þ iM
A: (27)

Here all indices are left implicit and may be restored in the
obvious way. For example,

A0FMFA

¼A0
i;‘1;m1

Fij;‘1;m1;‘2;m2
Mjk;‘2;m2;‘3;m3

Fkl;‘3;m3;‘4;m4
Al;‘4;m4:

(28)

As C1 has no poles in the region of E� that we consider
(below 4M�), the poles in CL must match the poles in Csub.
The desired quantization condition is then just that the
matrix between A0 and A have a divergent eigenvalue.
This may be written as

detðF�1 þ iMÞ ¼ 0; (29)

where we recall that the matrices now act in the product
of the two-dimensional channel space and the infinite-
dimensional angular-momentum space. More precisely, F
is diagonal in channel space but has off-diagonal elements
between different angular momentum sectors (as allowed

by the symmetries of the cubic box and the momentum ~P),
while M is diagonal in angular momentum but off-
diagonal in channel space.

Equation (29) is the main result of this section. It has
exactly the same form as that for the single channel given
in Ref. [6] (aside from the change of notation in which
symmetry factors are contained in F rather than kept
explicit). The generalization to more than two two-particle
channels is now immediate. As long as E� is kept below the
four-particle threshold of the lightest particle the argu-
ments above go through in the same manner. One need
only extend the values of the channel indices, taking care to
include the appropriate symmetry factor �j for each chan-

nel. The final result then has exactly the form of Eq. (29).
To make the formal expression Eq. (29) useful in prac-

tice one assumes that there is some ‘max, above which the
partial wave amplitudes are negligible,

M ‘>‘max
ij ¼ 0: (30)

One can then show that, although F couples ‘ 	 ‘max to
‘ > ‘max, the projection contained in M is sufficient to
collapse the required determinant to that in the ‘ 	 ‘max

subspace. The argument for this result is given for one
channel in Ref. [6] and generalizes trivially to the multiple-
channel case. Thus one finds that Eq. (29) still holds, but
with M and F now understood to be finite dimensional

matrices both in channel space and in the partial wave
basis, with ‘ running up to ‘max.
To conclude this section we comment briefly on two

generalizations of the result. We first consider the case
when not just a single � but rather a set of operators f�ag
is of interest. This is likely to be the case in practice since
multiple operators may be needed to find combinations with
good overlapswith the finite-volume eigenstates. If there are
n such operators, then CL generalizes to an n� n matrix:

Cab
L ðPÞ ¼

Z
L;x

eið� ~P� ~xþEx0Þh0j�aðxÞ�ybð0Þj0i: (31)

The generalization of Eq. (27) is effected by replacing A0
with an n� 2 matrix

A0
1 A0

2

� �!
A0a¼1
1 A0a¼1

2

A0a¼2
1 A0a¼2

2

..

. ..
.

0
BBB@

1
CCCA (32)

and A with a 2� n matrix

A1

A2

 !
! Ab¼1

1 Ab¼2
1 � � �

Ab¼1
2 Ab¼2

2 � � �

 !
: (33)

The key point, however, is that the matrix between A0 and A
is unchanged, so that the quantization condition [Eq. (29)] is
unaffected. This is as expected, since the operators used to
couple to states cannot affect the eigenstates themselves.
The second generalization is to the case of nondegener-

ate particles. The expressions given above remain valid
as long as one makes three changes. First, the symmetry
factors �i become unity for all nondegenerate channels.
Second, q�i in Eq. (24) is replaced by the solution of

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�2i þM2

ia

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�2i þM2

ib

q
; (34)

which is the CM momentum when the channel contains
particles of masses Mia and Mib. Third, when evaluating
cP‘m using Eq. (25), one should use one of the massesMia or

Mib when determining !k, !
�
k and

~k�. One can show that

both choices lead to the same result.
The third change emphasizes that the kinematic func-

tions cP‘m depend not only on q�i but also on the particle

masses. This can be made explicit by rewriting them in
terms of a generalization of the zeta-function introduced in
Ref. [25]. The result is [26–29]

cP‘mðq�2Þ ¼ �
ffiffiffiffiffiffiffi
4�

p
	L3

�
2�

L

�
‘�2

ZP
‘m½1; ðq�L=2�Þ2�; (35)

Z P
‘m½s; x2� ¼

X
~n

r‘Y‘mðr̂Þ
ðr2 � x2Þs ; (36)

where 	 ¼ E=E�, ~n runs over integer vectors, and ~r is
obtained from ~n by rk ¼ 	�1½nk � c ~nP� and r? ¼ n?,
where parallel and perpendicular are relative to ~P, and
2c ¼ ð1þ ðM2

1a �M2
1bÞ=E�2Þ. The sum in Z‘m can be
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regulated by taking s > ð3þ ‘Þ=2 and then analytically
continuing to s ¼ 1. This shows that mass dependence
enters through the difference5 M2

ia �M2
ib. One can derive

Eq. (35) by generalizing the method used for the degener-
ate case in Ref. [16].

III. MULTIPLE-CHANNEL QUANTIZATION
CONDITION FOR S-WAVE SCATTERING

For the remainder of this article we focus on the simplest
case, ‘max ¼ 0, in which only s-wave scattering is signifi-
cant. In this section we determine the explicit form for the
finite-volume quantization condition when there are two
channels. We also present compact forms for the condition
when an arbitrary number of two-particle channels are open.

With only s-wave scattering, the two-channel quantiza-
tion condition takes the form

½ðFs
1Þ�1 þ iMs

11�½ðFs
2Þ�1 þ iMs

22� � ½iMs
12�½iMs

21� ¼ 0

(37)

where

Fs
i ¼ �i

�
Req�i
8�E� �

i

2E� c
P
i

�
; (38)

cPi � cPðq�2i Þ � cP00ðq�2i Þ; (39)

and the superscript on F and M is a reminder that only
‘ ¼ 0 contributes.

To simplify Eq. (37), and in particular to reexpress it as
an equation between real quantities, it is useful to recall
first the single-channel analysis. This has the additional
benefit of showing how the two-channel result collapses to
the known single-channel result in the appropriate kine-
matic regime, namely

2M� < E� < 2MK: (40)

In this regime q�2 becomes imaginary, and the second
channel contributes negligibly because cP [Eq. (25)] be-
comes exponentially volume-suppressed and Req� in F2

[Eq. (24)] vanishes.6 Sending F2 ! 0 we find that the
quantization condition becomes

½Ms
11��1 ¼ �1

�
� iq�1
8�E� �

1

2E� c
Pðq�21 Þ

�
: (41)

Note that the pion momentum q�1 is real for the energy
region considered.
Naively one might think that Eq. (41) gives two con-

ditions, the separate vanishing of the real and imaginary
parts. This is not the case, however, because the vanishing
of the imaginary part is a volume-independent condition
which is guaranteed to hold by the unitarity of the
S-matrix. This can be seen by expressing M in terms of
the real phase shift �ðq�Þ,

M s
11 ¼

8�E�

�1q
�
1

�
e2i�ðq�1Þ � 1

2i

�

¼
�
�1q

�
1

8�E� ½cot�ðq�1Þ � i�
��1

: (42)

Here e2i� is the one-dimensional unitary S-matrix in the
partial wave basis. Given Eq. (42), it is manifest that the
imaginary part of Eq. (41) holds automatically. The real
part of Eq. (41) then gives the moving frame generalization
of the Lüscher result in the familiar partial wave form
[13,16,17]

tan�ðq�1Þ ¼ � tan�Pðq�1Þ; (43)

where

tan�Pðq�Þ ¼ q�

4�
½cPðq�2Þ��1: (44)

We now return to the CM energies for which both
channels are open, 2MK < E� < 4M�, and generalize
Eq. (43). The first step is to recall the relationship between
the scattering amplitude and the S-matrix. Unitarity im-
plies that

M s �Msy ¼ iMsyP2Ms; (45)

where P2 is a diagonal matrix containing the phase-space
factors, whose square root is

P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4�E�p

ffiffiffiffiffiffiffiffiffiffiffi
�1q

�
1

p
0

0
ffiffiffiffiffiffiffiffiffiffiffi
�2q

�
2

p
0
@

1
A: (46)

We note that, when expressed in terms of q�, the form of P
is still valid if the two particles in the channel are non-
degenerate. We also note that the form in Eq. (45) holds for
an arbitrary number of two-particle, s-wave channels, with
P generalized in the obvious way.
The solution to the unitarity relation is

iMs ¼ P�1ðSs � 1ÞP�1 (47)

where Ss is a dimensionless, unitary 2� 2 matrix. To
proceed, we need to parametrize Ss. First we note that Ss

can be taken to be symmetric. This is because of the T
invariance of the strong interactions, together with the fact
that angular momentum eigenstates have definite T-parity

5The apparent lack of symmetry under the interchange Mia $
Mib can be understood as follows. One can show that ZP

‘m !
ð�Þ‘ZP

‘m under this interchange (so that for degenerate masses
the zeta-functions for odd ‘ vanish [15]). This sign flip for odd ‘
must hold also for the cP‘m, and it does because the interchange
of masses leads to ~k� ! � ~k� at the pole. The sign flip is
canceled in the expression for F , Eq. (23), since the product
Y‘1 ;m1

ð ~k�ÞY�
‘2 ;m2

ð ~k0�Þ also changes sign. This is because, when ‘ is
odd, the integral over d� in the definition of F, Eq. (24),
enforces that ‘1 þ ‘2 is odd. The overall effect is that the
quantization condition is symmetric under mass interchange,
as it must be.

6The appearance of Req� rather than q� in Fi can be under-
stood by reviewing the derivation of F in Ref. [6]. The term
enters as the difference between principal part and i� prescrip-
tions. When q� is imaginary there is no pole and different ways
of regulating give the same result.
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(in our case, positive). Thus in the 2� 2 case, Ss is
determined by three real parameters. We use the ‘‘eigen-
phase convention’’ of Blatt and Biedenharn [30],

Ss ¼ c� �s�

s� c�

 !
e2i�� 0

0 e2i�


 !
c� s�

�s� c�

 !
; (48)

where the notation sx ¼ sinx and cx ¼ cosx will be used
throughout. The three real parameters ��, �
, and � gen-

eralize the single � which appears in the one-channel case.
The parameter � quantifies the mixing between the mass
eigenstates of channels one and two (the pions and kaons)
and the S-matrix eigenstates. The phases �� and �
 are, for

arbitrary �, associated with both channels. Of course, in the
limit � ! 0 they reduce, respectively, to the phase shifts of
pion and kaon elastic scattering.

Substituting the form of Ss into Eq. (47) and then placing
this in Eq. (37) and simplifying, we deduce7

½tan�� þ tan�Pðq�1Þ�½tan�
 þ tan�Pðq�2Þ�
þ sin2�½tan�� � tan�
�½tan�Pðq�1Þ � tan�Pðq�2Þ� ¼ 0:

(49)

This is the main result of this section. One can use it in one
of two ways: to predict the spectrum given knowledge of
the scattering amplitude from experiment or a model, or to
determine the S-matrix parameters from a lattice calcula-
tion of the spectrum. In the former case, we note that all
quantities appearing in Eq. (49), i.e. ��, �
, �, q

�
i and �P,

are functions of E�. One can thus search, at given spatial

extent L and total momentum ~P, for values of E� which
satisfy Eq. (49). If the condition holds for a particular E�

k,

then

EkðL; ~nPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
k þ ~P2

q
(50)

is in the spectrum of the finite-volume moving-frame
Hamiltonian. Here we choose to write Ek as a function of

~nP rather than ~P, since, in practice, it is the former quantity
which is held fixed as one varies L.

The second use of Eq. (49) is the most relevant for the
discussion in subsequent sections. For a given choice of E�,
one finds, through a lattice calculation, three pairs fL; ~nPg
for which there is a spectral line Ek such that E

�
k [defined in

Eq. (50)] is equal to E�. One could use a fixed ~nP and

consider multiple spectral lines (the simplest choice con-
ceptually), or use three different choices of ~nP (probably
more practical since one would not need to determine so
many excited levels). In either case, one ends up with three
versions of Eq. (49), all containing the desired quantities
��ðE�Þ, �
ðE�Þ and �ðE�Þ, but having different values of

the�Pðq�j Þ. Solving these equations one determines, rather

than the angles themselves, the quantities tan��, tan�
,

and sin2� at CM energy E�. For our discussion we there-
fore restrict

��;
 2 ½��=2; �=2� and � 2 ½0; �=2�: (51)

Having determined the restricted phases over a range of
energies, one can afterward relax the constraints in order to
build continuous curves as a function of energy. We direct
the reader to Refs. [22,23] for discussion of other methods
for extracting the three scattering parameters.
We emphasize that Eq. (49) has a very intuitive form. If

�� ¼ �
 or m1 ¼ m2 or � ¼ 0 then the second line van-

ishes and the result reduces to two copies of the one-
channel quantization condition [Eq. (43)]. To see that this
makes sense, note that for identical phase shifts, the �
matrix commutes through the phase matrix and we recover
two uncoupled channels. Similarly if the masses are
degenerate then the eigenstates of the S-matrix will also
be mass eigenstates leading to the decoupled form. Finally,
the decoupling for � ¼ 0 is an obvious property of the
parametrization [Eq. (48)].
An alternative solution to the unitarity relation [Eq. (45)]

can be given in terms of the K-matrix used in Ref. [22].
Specifically, Eq. (45) is satisfied if

ðMsÞ�1 ¼ M� iP2=2; (52)

with M any real symmetric 2� 2 matrix. If we set

M ¼ 1

8�E� k
ffiffiffiffi
�

p k K�1 k ffiffiffiffi
�

p k; (53)

[where double bars denote a diagonal matrix, so that k � k
¼ diagð ffiffiffiffiffiffi

�1
p

;
ffiffiffiffiffiffi
�2

p Þ], and further set ~P ¼ 0, then one can

show that the two-channel quantization condition given
above can be manipulated into the form given in Eq. (3.5)
of Ref. [22] in terms of the real, symmetric matrix K.
We now generalize Eq. (49) to N s-wave channels. As

noted above, the form of the unitarity relation [Eq. (45)]
holds for any N, and the same is true for its solution
[Eq. (47)]. In the latter, the N channel S-matrix can be
parametrized as8

S ¼ R�1 k e2i� k R; (54)

with R an SOðNÞ matrix, and

k e2i� k¼ diag½e2i�� ; e2i�
 ; � � ��: (55)

7We emphasize that the physical content of Eq. (49), namely
that there is a relation between scattering amplitudes and energy
levels, does not depend on the parametrization chosen for the
matrix Ss. This is clear either from Eq. (37) or from Eq. (58)
below. An advantage of our choice of parametrization is that it
shows that Eq. (37) only implies one real condition (rather than
two), an observation which must hold for any parameterization.
We also note that the freedom to independently change the
phases of �� and K �K states, which leads to Ss ! UySsU,
with U a diagonal unitary matrix, does not change the quantiza-
tion condition, as can be seen most easily from Eq. (58) below.

8The remainder of this paper is limited to the s-wave, so we
drop the superscript s hereafter.
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Together with Eqs. (54) and (55) one needs the N � N
generalization of F, which has been discussed in the pre-
vious section. From these definitions one can straightfor-
wardly work out the quantization condition for N coupled
channels.

We conclude this section by describing two additional
ways of writing the quantization condition, both of which
make the higher channel generalization especially clear.
Observe first that, for any number of open channels,

F�1 ¼ P�1 k 1� e�2i� k P�1: (56)

Combining this with Eq. (47), it follows that

F�1 þ iM ¼ P�1½S� k e�2i� k�P�1: (57)

Since P�1 has no singularities in the kinematic regime we
consider, the quantization condition can be rewritten as

det½S� k e�2i� k� ¼ 0: (58)

This form shows that the symmetry factors cancel from the
quantization condition in general. Although Eq. (58) looks
like it will lead to one complex and thus two real condi-
tions, it turns out that it leads only to a single real condi-
tion. This follows from the identity

k 1þ it� k �½S� k e�2i� k� � ½R�1 k 1� it� k R�
¼ 2i½R�1 k t� k Rþ k t� k�; (59)

where tx ¼ tanx. It gives a manifestly real rewriting of the
quantization condition,

det½R�1 k t� k Rþ k t� k� ¼ 0: (60)

This form leads directly to the result Eq. (49) in the two-
channel case, and collapses to the single-channel result
Eq. (43) for any channel that decouples from the rest. If
any of the channels contain nondegenerate particles, this
enters only through the values of the kinematic functions
t�, as discussed in the previous section.

IV. MULTIPLE-CHANNEL EXTENSION OF THE
LELLOUCH-LÜSCHER FORMULA

Having found the two-channel quantization condition,
we are now in a position to work out the two-channel
generalization of the LL formula which relates weak
matrix elements in finite and infinite volume. The deriva-
tion follows the original work by Lellouch and Lüscher,
Ref. [18], which was extended to a moving frame by
Refs. [16,17].

We begin by introducing a third channel which is de-
coupled from the original two. This contains a single
particle, which we call a D-meson, whose mass satisfies

MD > 2M�; 2MK: (61)

We next introduce a weak perturbation to the Hamiltonian
density

H ðxÞ ! H ðxÞ þ �HWðxÞ; (62)

where � is a parameter which can be varied freely and can,
in particular, be taken arbitrarily small. The perturbation
HW is defined to couple channels one and two (pions and
kaons) to the third (D-meson) and nothing more. It is
convenient to choose it to be invariant under time reversal
(T) symmetry. The generalization to perturbations which
are not T invariant is described at the end of the section.
Consider now the finite-volume spectrum, first in the

absence of the perturbation. The spectrum of two-particle

states with ~P ¼ 2�~nP=L is determined by Eq. (49). It is
L-dependent and L can therefore be tuned to make one of
the levels, call it kD, degenerate with the energy of a single
(moving) D meson

EkD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D þ ~P2
q

: (63)

With L fixed in this way, we now turn on the weak
interaction. At leading order in degenerate perturbation
theory this changes the energies to

Eð1Þ ¼ Eð0Þ � �VjMW j (64)

where V ¼ L3, Eð0Þ ¼ EkD , and the finite-volume matrix

element is

MW ¼ LhkDjHWð0ÞjDiL: (65)

The subscripts L on the states indicate that they are nor-
malized to unity, unlike the relativistically normalized
infinite-volume states. Superscripts (1) are used throughout
this section to indicate that the quantity includes both
the leading order and the Oð�Þ correction, while super-
scripts (0) indicate the unperturbed quantity. The effect of
the perturbation may also be written in terms of the CM
energy as

E�ð1Þ ¼ MD � ��E�; (66)

�E� ¼ Eð0ÞVjMW j
MD

: (67)

Of course, in addition to affecting the finite-volume
energy spectrum, the weak perturbation also changes the
infinite-volume scattering amplitudes. The leading order
effect is generated by the diagram of Fig. 2, which gives

M ð1Þ ¼ Mð0Þ 
 ��M (68)

with

�Mj;k ¼ hjjHWð0ÞjDihDjHWð0Þjki
2Eð0ÞVjMW j

: (69)

The indices j and k run over the two two-particle channels.
This perturbation may equivalently be represented through
shifts in ��, �
 and �,
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�ð1Þ
� ðE�Þ ¼ �ð0Þ

� ðE�Þ � ����ðE�Þ; (70)

�ð1Þ

 ðE�Þ ¼ �ð0Þ


 ðE�Þ � ���
ðE�Þ; (71)

�ð1ÞðE�Þ ¼ �ð0ÞðE�Þ � ���ðE�Þ: (72)

The explicit forms of the perturbed phases are given in
Eqs. (81)–(83) below.

The calculation now proceeds as follows. When the
quantities

�ð0Þ
� ðE�Þ; �ð0Þ


 ðE�Þ; and �ð0ÞðE�Þ (73)

are placed in the quantization condition [Eq. (49)], the

condition is satisfied by construction at E�ð0Þ ¼ MD.
Alternatively if one places

�ð1Þ
� ðE�Þ; �ð1Þ


 ðE�Þ; and �ð1ÞðE�Þ (74)

into the same condition then it must be satisfied when

evaluated at the perturbed CM energy E�ð1Þ, but only to
linear order in �. The constant order term in the � expan-
sion is just the unperturbed condition, and so it is the
vanishing of theOð�Þ term that is of interest. The condition
that this term vanish gives the relation between finite- and
infinite-volume weak matrix elements that we are after.

The only detail left to discuss, before substituting into
the quantization condition and expanding in �, is the
explicit forms of the amplitude corrections to ��, �
 and

�. Before these are found it is useful to determine the
constraints on the infinite-volume matrix elements which
arise from Watson’s theorem. As shown in the Appendix,
time reversal invariance and unitarity constrain the matrix
elements to be such that the following two quantities are
real:

v1 ¼ e�i��

h ffiffiffiffiffiffiffiffiffiffiffi
q�1�1

q
AD!��c� þ

ffiffiffiffiffiffiffiffiffiffiffi
q�2�2

q
AD!KKs�

i
; (75)

v2 ¼ e�i�


h
�

ffiffiffiffiffiffiffiffiffiffiffi
q�1�1

q
AD!��s� þ

ffiffiffiffiffiffiffiffiffiffiffi
q�2�2

q
AD!KKc�

i
: (76)

Here

AD!�� � h��jHWð0ÞjDi; (77)

and similarly for theK �K case, normalized so that the decay
rates to each channel are

�D!j ¼
q�j�j

8�M2
D

jAD!jj2 ¼ 1

2MD

P2
jjjAD!jj2: (78)

This relation holds also if the particles in a channel are
nondegenerate (requiring � ¼ 1). All energy-dependent
parameters in Eqs. (75) and (76), i.e. ��, �
, � and q�j ,
are to be evaluated at E� ¼ MD.
The results of Eqs. (75) and (76) hold when the phases of

the states are chosen so that the S-matrix is symmetric (as
is possible given T invariance). This does not determine the
signs of the two matrix elements, and these signs are
unphysical. More precisely, the relative sign ambiguity is
the same as the ambiguity in the sign of �, so once we have
fixed the latter to be positive, the relative sign is physical.
The overall sign remains unphysical, and can be chosen,
for example to set v1 � 0,
Inverting the relations in Eqs. (75) and (76) yields

AD!�� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
q�1�1

p ½v1e
i��c� � v2e

i�
s��; (79)

AD!KK ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
q�2�2

p ½v1e
i��s� þ v2e

i�
c��: (80)

Inserting these in �M, Eq. (69), and using the relation
between M and S, Eq. (47), and the parametrization of S,
Eq. (48), we find that perturbations to ��, �
 and � are real.

This is a consistency check on the calculation (or an
alternative derivation of the Watson’s theorem constraint).
Specifically, we find

��� ¼ �N v2
1; (81)

��
 ¼ �N v2
2; (82)

�� ¼ �N
v1v2

c�c
ðt� � t
Þ (83)

where t� ¼ tan��, etc., and

N ¼ 1

16�Eð0ÞMDVjMW j
: (84)

We now have all the ingredients to substitute into the
quantization condition and determine the LL generaliza-
tion. We emphasize that, when the expansion in � is
performed, ��, �
 and � each contribute both from the

amplitude corrections of Eqs. (81)–(83) and from the shift
in the energy, Eq. (66). The other contributions arise from
the energy dependence of �i ¼ �Pðq�i Þ. Substituting and
simplifying, we find the main result of this section

C 1v
2
1 þ C2v2

2 þ C12v1v2 ¼ CM2 jMW j2 (85)

where

C 1 ¼ �

16

t1 þ t2 þ 2t
 þ ðt2 � t1Þð1� 2s2�Þ
c2�

; (86)

FIG. 2. The diagram giving rise to the amplitude perturbation
�M [see Eq. (69)].
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C 2 ¼ �

16

t1 þ t2 þ 2t� þ ðt1 � t2Þð1� 2s1�Þ
c2


; (87)

C 12 ¼ �

4
ðt1 � t2Þ s�c�c�c


; (88)

CM2 ¼ �2MDV
2ðEð0ÞÞ2
2

�
t01
q�1

ðt2 þ t
 þ ðt� � t
Þs2�Þ

þ t02
q�2

ðt1 þ t� þ ðt
 � t�Þs2�Þ þ 4t0�
MD

ðt2 þ t


þ ðt1 � t2Þs2�Þ þ
4t0

MD

ðt1 þ t� þ ðt2 � t1Þs2�Þ

þ 4s20�
MD

ðt1 � t2Þðt� � t
Þ
�
; (89)

and where we use the additional notation

t i ¼ tan�P½q�i �: (90)

All quantities are evaluated at the D mass, and we have
dropped the superscript (0). The primes on �i indicate
derivatives with respect to q�i while those on ��, �
 and

� indicate derivatives with respect toE�. In each case, these
are the natural variables on which the quantities depend.
We have checked that this formula reduces to (two copies
of) the single-channel LL result if � ! 0.

We now describe how the result Eq. (85) can be used in
practice. A lattice calculation yields the finite-volume
matrix element jMW j, and the aim is to determine the
infinite-volume matrix elements AD!�� and AD!KK.
Using the generalized quantization condition [Eq. (49)]
for three different spectral lines (all chosen to have
E� ¼ MD) one can determine ��, �
 and � as described

in the previous section. Repeating the procedure at a
slightly different energy allows a numerical determination
of the required derivatives. One now evaluates jMW j at the
degenerate point on one of the spectral lines. The knowl-
edge of the S-matrix parameters and their derivatives,
together with the value of L, allows one to calculate the
values of the four C’s [Eqs. (86)–(89)]. Combined with the
value of jMW j, one then finds from Eq. (85) a quadratic
constraint on v1 and v2. Repeating the procedure for a
second spectral line gives an independent constraint, which
allows for the determination of v1 and v2 up to a two-fold
ambiguity corresponding to the unknown relative sign.
Finally, repeating for a third spectral line resolves the
sign ambiguity. With v1 and v2 determined in this way,
one can obtain the infinite-volume matrix elements using
Eqs. (79) and (80). Although this procedure is rather
elaborate, we note that (for the case of two channels) three
spectral lines are needed both for the determination of the
parameters of the S-matrix and of the LL factors.

We conclude this section by commenting that Eq. (85)
factors as

sgn ðC1Þðc1v1 þ c2v2Þ2 ¼ CM2 jMW j2 (91)

where

c1 ¼
ffiffiffiffiffiffiffiffi
jC1j

q
; c2 ¼ sgn½C1C12�

ffiffiffiffiffiffiffiffi
jC2j

q
: (92)

The only new information encoded in Eqs. (91) and (92)
relative to Eq. (85) is that

4C1C2 ¼ C212; (93)

which can be shown to hold by applying Eq. (49) to
Eqs. (86)–(88). Although the factorized form [Eq. (91)]
is simpler, it does not reduce the number of values of L that
are needed because there remains a sign ambiguity (from
the square root) at each L. What it does make clear,
however, is that the generalized LL condition will fail
when the signs of C1 and CM2 are opposite. Presumably
this cannot happen for physical values of the phase shifts.
We stress that this issue also arises in the original one-
channel setup, where the LL formula only makes sense if

dð�þ�PÞ
dq�

> 0: (94)

We return to these sign constraints in the next section.
The form Eq. (91) also allows one to write the LL

condition as a factored form in terms of the desired matrix
elements,

jc�AD!�� þ cKAD!KKj2 ¼ jCM2 jjMW j2; (95)

where c� and cK are complex, and can be determined from
the above results. As this equality holds for any T-invariant
form of weak perturbation and for any decay particle, it
must imply a relation between finite- and infinite-volume
states

LhkDj / c�h��; outj þ cKhK �K; outj þ . . . : (96)

Here the ellipsis indicates the �� and K �K states of higher
angular momentum which are needed to satisfy the peri-
odic boundary conditions. Indeed, as noted in the original
derivation of Ref. [18], the use of the D-meson is simply a
trick to obtain the normalization factors.9 It follows that
Eq. (95) must also hold for perturbations which are not T
invariant.
The appearance of the linear combination in Eq. (96) can

be better understood from an alternative derivation of the
LL formula, to which we now turn.

9In the one-channel case, an alternative line of argument has
been developed for obtaining the LL relation, based on matching
the density of two-particle states in finite and infinite volumes
[31]. In the present case, we do not see how to use this approach
to determine the relative normalization, cK=c�, of the two
components in the finite-volume state. Thus we think that this
approach could provide only a consistency check.
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V. ALTERNATIVE DERIVATION OF
LELLOUCH-LÜSCHER FORMULA

In this section we present a different derivation of the
two-channel LL relation which has the following advan-
tages: (a) it does not require determining the shifts ���,
��
 and ��, but rather works directly with the change in

M; (b) it gives one directly a condition with the factored
form, proportional to the left-hand side of Eq. (95); (c) it
allows one to rewrite the LL condition in a simpler form in
which the only inputs required are the derivatives of the
energies with respect to L along the three spectral lines.
This form is likely to be more practical.

We work directly with the condition detðF�1 þ iMÞ ¼
0, and keep results for general number of channels, N, as
far as possible. We begin by defining

X ¼ F�1 þ iM; (97)

Y ¼ S� k e�2i� k (98)

and recall from Eq. (57) that

X ¼ P�1YP�1: (99)

The quantization condition detX ¼ 0 is equivalent to X
having an eigenvector with vanishing eigenvalue. We label
this eigenvector ~eX. Note also that the symmetry of X
implies ð ~eXÞTr ¼ e

Q
X is a left eigenvector, also with zero

eigenvalue.
Now we can formulate the LL condition in a relatively

compact form. As above, let Mð0Þ be the scattering ampli-

tude at CM energy E� ¼ MD. Similarly, let Fð0Þ be the
finite-volume factor at this CM energy and for one of the
values of box size L for which the quantization condition
holds. Then for

X ð0Þ � ðFð0ÞÞ�1 þ iMð0Þ; (100)

we have

e
Q
XXð0Þ ~eX ¼ 0: (101)

Now, while holding L fixed, we change the energy by

���E ¼ ��VjMW j and change M to Mð0Þ 
 ��M,
and require that the quantization condition still hold.
Thus we have, to linear order in �,

detðXð0Þ þ ��XÞ ¼ 0; (102)

where

�X ¼ ��E
@X
@E

��������L

i�M: (103)

It follows that there must be a new eigenvector of the form

~e X þ �� ~eX (104)

which is annihilated by the perturbed matrix. From the
Oð�Þ term in

½e
Q
X þ ��e

Q
X�½Xð0Þ þ ��X�½ ~eX þ �� ~eX� ¼ 0; (105)

we deduce

e
Q
X�X ~eX ¼ 0: (106)

Using the explicit form of �X this becomes

�Ee
Q
X @X
@E

��������L
~eX ¼ e

Q
Xi�M ~eX; (107)

where the derivative is evaluated at E� ¼ MD.
We can slightly simplify this result by expressing the

left-hand side in terms of Y rather than X, and thus
removing factors of P�1. The point is that, when the
derivative acts on the P�1 factors in X, the contribution
to the left-hand side vanishes, since one can still act (either
to the left or the right) on the zero-eigenvector. Thus we
can rewrite the condition in terms of the zero eigenvector
of Y, which is

~e Y ¼ P�1 ~eX: (108)

The new form is

�Ee
Q
Y @Y
@E

��������L

~eY ¼ e
Q
X½i�M� ~eX: (109)

We now focus on the 2� 2 case. To proceed, we need
the explicit form for ~eY , which is given, up to an overall
normalization factor, by

~e Y ¼ 1
zeið�2��1Þ

� �
(110)

where z is the real quantity

z ¼ t�
sinð�
 þ�1Þ
sinð�
 þ�2Þ : (111)

It is clear from the form of Eq. (109) and the relation
Eq. (108) that the normalization of ~eY is irrelevant and so
we have chosen a relatively simple unnormalized form.
We evaluate the right-hand side of Eq. (109) using the

form of �M, Eq. (69). It is immediately apparent that the
result factorizes, given that �M is an outer product. This
will hold for all N. In the N ¼ 2 case we have

e
Q
X½i�M� ~eX ¼ ie�2i�1

M21
8�MDE

ð0ÞVjMW j
; (112)

where

M1 ¼ ei�1

ffiffiffiffiffiffiffiffiffiffiffi
q�1�1

q
AD!�� þ zei�2

ffiffiffiffiffiffiffiffiffiffiffi
q�2�2

q
AD!KK: (113)

Here we have used the assumed T invariance of HW . We
have pulled out the phase e�2i�1 so that M1 is real. Its
reality is not obvious, but can be established using the
results derived from Watson’s theorem and given in the
Appendix. In particular, an algebraic exercise shows that
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M1¼ sinð�1��2Þ
�
�
�v1

c�
sinð��þ�2Þþv2

s�
sinð�
þ�2Þ

�
; (114)

and we recall that the quantities v1 and v2 [defined above
in Eqs. (75) and (76)] are real.

The result Eq. (113) makes clear that, for any choice of
HW , one ends up with the matrix element to a given
(complex) linear combination of h��j and hK �Kj states,
since all the factors (�1, �2 and z) are determined by Eð0Þ
and L. Indeed, what the LL method has allowed us to do is
determine the coefficients of the s-wave h��j and hK �Kj
components within the finite-volume state. As mentioned
above, this decomposition has nothing to do withHW , and
thus we can use the result for any HW , including one
involving T violation. By comparing the result Eq. (113) to
the general decomposition of the finite-volume state,
Eq. (96), we can read off the ratio of the coefficients,

cK
c�

¼ eið�2��1Þz

ffiffiffiffiffiffiffiffiffiffiffi
q�2�2

q�1�1

s
: (115)

It is interesting that the relative phase between cK and c� is
determined by the kinematic phases �j. Given the form of

�M, and the fact that, in Eq. (112), it is sandwiched
between e

Q
X and ~eX, it follows that the zero eigenvector

itself gives the relative size of the�� andK �K contributions:

~eX / c�

cK

 !
: (116)

This illustrates in a direct way that the linear combination
which appears is completely independent of the form of
HW , since the eigenvector of X knows nothing about this
perturbation.

Having discussed the right-hand side of Eq. (109) in
some detail we now turn to the left. Specifically, we show
that it is possible to write the left-hand side in terms of the
derivative of the spectral energy with respect to L. To
motivate this form, we first recall that the LL result of
the previous section depends on ��, �
 and � and their

derivatives, evaluated at E� ¼ MD. As described in
Sec. IV, the three S-matrix parameters may be determined,
using Eq. (49), by finding three different pairs fL; ~nPg for
which there is a spectral line EkðL; ~nPÞ satisfying
E�
kðL; ~nPÞ ¼ MD [see Eq. (50)]. Furthermore, by slightly

changing the three L values, one can determine ��, �
 and

� at slightly different energies and thus deduce the deriva-
tives at MD.

The point of reiterating these steps is to note that, since
the lattice simulation actually gives the energy spectrum as
a function of L, it would be preferable if the LL result
could be rewritten directly in terms of the properties of the
spectrum. In this way the extra step of separately working
out the phase shifts and their derivatives would be avoided.
This turns out to be possible, as we now show.

We use the quantization condition in the form detY ¼ 0.
To stay on a spectral line EkðL; ~nPÞ as we vary E away from

the moving frame D-meson energy Eð0Þ, we need to vary L
in such a way that this condition remains fulfilled. We note
that, while F depends on both E� and L, S depends only on
E�. Thus we use E� and L as independent variables. Then
the condition to stay on a spectral line becomes

0 ¼ e
Q
Y

�
�E� @Y

@E�

��������L
þ�L

@Y
@L

��������E�

�
~eY; (117)

which leads to

dE�
k

dL

��������line
¼ � e

Q
Y @Y

@L
~eY

e
Q
Y @Y
@E� ~eY

: (118)

Here, in the left-hand side, the subscript ‘‘line’’ indicates
that the derivative is along a spectral line with fixed ~nP.
The key features of Eq. (118) are that the denominator

on the right-hand side is, up to a simple overall factor,
equal to the quantity appearing on the left-hand side of
the Eq. (109), while the numerator is a kinematic factor.
Specifically, using

e
Q
Y @Y
@E� ~e

Y ¼ E�

E
e
Q
Y @Y
@E

~eY; (119)

and

dEk

dL

��������line
¼ E�

k

Ek

dE�
k

dL

��������line
� ~P2

EL
(120)

(which follows since E2 ¼ ðE�Þ2 þ ð ~PLÞ2=L2 and because
~PL is fixed along the spectral line), we find

e
Q
Y @Y
@E

~eY ¼ �2ie�2i�1

@�1

@L þ z2 @�2

@L

dEk

dL jline þ ~P2

EL

: (121)

Combining this with Eqs. (109) and (112) we conclude

M21
16�MDE

ð0ÞV2jMW j2
¼ �

@�1

@L þ z2 @�2

@L

dEk

dL jline þ ~P2

Eð0ÞL

: (122)

We thus have found an alternative form of the LL relation
which is simpler than Eq. (85), and also likely to be more
practical.
The single-channel version of Eq. (122) is instructive. It

can be written, using Eq. (78), in terms of the decay rate:

�D!�� ¼ 2Eð0ÞV2jMW j2
MD

2
4 � @�

@L
dEk

dL jline þ ~P2

Eð0ÞL

3
5: (123)

This form holds both for identical and nonidentical parti-
cles, with the symmetry factor being contained in �. It also
sheds light on the sign constraints discussed in the previous
section. The right-hand side must be positive. Based on
numerical studies, we find that @�=@L is always positive,
implying that the denominator, which is proportional to
dE�

k=dL, must be negative.
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The same holds for the two-channel result, Eq. (122). In
order for the right-hand side to be positive, the denomina-
tor must be negative. Since we could do the LL analysis
on almost any spectral line, this appears to imply that
dE�

k=dL < 0 in general. The only exception is for a state

with E�
k below the two-particle threshold. Such a state

occurs, for example, as the lowest energy state for ~P ¼ 0
if there is an attractive interaction. For such a state one has
dE�

k=dL ¼ dEk=dL > 0, i.e. of the ‘‘wrong’’ sign. But in

this case the LL analysis does not apply, because the
particle lies below threshold in infinite volume.

VI. CONCLUSIONS

We have presented two new results in this article. First, a
field-theoretic derivation of the generalization of Lüscher’s
quantization formula to the case of multiple strongly
coupled two-particle channels (where the particles are
spinless). Second, the generalization to multiple channels
of the Lellouch-Lüscher formula relating finite-volume
and infinite-volume matrix elements. We also have ex-
plained in some detail how, in the case of two channels,
one can use these results to determine the infinite-volume
decay amplitudes of a particle which is coupled by a weak
interaction to the two-body channels.

As already noted in the introduction, this is but a step on
the way toward our ‘‘dream’’ application, namely the
calculation of D0 ! �� and D0 ! K �K amplitudes. To
achieve that goal, one will also need to include the chan-
nels with four or more pions. These are significant once
one approaches the energy MD. Work in this direction is
underway.

An example where our formalism should be useful with
minimal approximation is the determination of the isospin
breaking in K ! �� decays. Given the mass splitting
between charged and neutral pions, there are really two
two-body channels to consider, and in this case the cou-
pling to the four-pion channel is very small and can rea-
sonably be neglected.
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APPENDIX: TWO-CHANNELWATSON’S
THEOREM

In this Appendix we work out the consequences of
Watson’s theorem for the phases of the matrix elements
of interest, h��jHWð0ÞjDi and hK �KjHWð0ÞjDi. We

assume at first that HW is T invariant, and describe the
generalization to noninvariant Hamiltonians at the end.
We closely follow the textbook presentation given in
Ref. [32].
We consider the 3� 3 S-matrix with the three states

being the hypothetical D meson (at rest) and the s-wave
�� and K �K states. We assume that we are in the kinematic
regime described in the main text, so that the 3� 3
S-matrix is unitary. Although we introduce a weak cou-
pling between the D and the two-particle states, so that the
D is a resonance, its width is of second order in the weak
interaction and thus can be ignored at the linear order to
which we work. Thus it is valid to treat it as an asymptotic
state.
Watson’s theorem follows by breaking the S-matrix into

a strong part Sð0Þ and a weak part SW . The strong part is T
invariant, and, since we use states which have definite
(positive) T-parity, can be taken to be symmetric. This
fixes the phases of the �� and K �K states, though not their
overall signs. Extending the dimensionless, strong-
coupling S-matrix of Eq. (47) to include the D gives

Sð0Þ ¼ 1 0

0 Ss

 !
; (A1)

where 1 is the 1� 1 identity and Ss is the 2� 2 s-wave
S-matrix given in Eq. (47). The weak part only contains
couplings between theD and the two-particle states, and in
3� 3 notation is

SW ¼
0 SWD;�� SWD;KK

SW��;D 0 0

SWKK;D 0 0

0
BB@

1
CCA: (A2)

The assumed T invariance implies that it, too, is symmet-
ric. The nonzero elements of SW are proportional to the
desired matrix elements

SWj;D ¼ cPjjhjj½�iHWð0Þ�jDi; (A3)

where j ¼ 1, 2 runs over the�� andK �K channels, P is the
square root of the phase space factor defined in Eq. (46),
and c is a known real constant whose value will not be
needed.
Unitarity of the complete S-matrix implies that the terms

linear in the weak interaction satisfy

iSW ¼ Sð0ÞðiSWÞySð0Þ: (A4)

This implies that

iSWj;D ¼ SsjkðiSWD;kÞ� ¼ SsjkðiSWk;DÞ�; (A5)

where in the last step we have used the symmetry of SW .
Using the explicit form for the two-channel S-matrix10

10For simplicity of presentation, we are here using �1 ¼ �� and
�2 ¼ �
.
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Ss ¼ R�1
e2i�1 0

0 e2i�2

 !
R; (A6)

with

R ¼ c� s�

�s� c�

 !
; (A7)

we find

iRjkS
W
k;D ¼ e2i�jðiRjkS

W
k;DÞ�: (A8)

It follows that the phase of iRjkS
W
k;D is ei�j . This is the

desired generalization of Watson’s theorem to two chan-
nels. Thus the quantities

vj ¼ e�i�j
1

c

ffiffiffiffiffiffiffiffiffiffiffiffi
4�E�p

iRjkS
W
k;D (A9)

are real. Using Eq. (A3) we can rewrite the vj as in

Eqs. (75) and (76).
If the weak interaction is not T invariant, then SWj;D will

contain some number of T-violating phases. Since we are
working to linear order in the weak interaction, we can
break up HW into parts each with a single T-violating
phase and treat each separately. Each such part has an
overall phase ei�T , and the symmetry of the S-matrix is
replaced by

SWD;kð�TÞ ¼ SWk;Dð��TÞ: (A10)

However, if we first pull out the overall phase by hand, then
the symmetry of �S is restored, and Watson’s theorem
applies to the residue.
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