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In a previous paper, based on a calculation in the nonrelativistic quark model, we advanced the

hypothesis that the Dsð2317Þ, D0ð2308Þ mesons are predominantly four-quark states lowered in mass by

the flavor-dependent Kobayashi-Kubo-Maskawa ’t Hooft UAð1Þ symmetry breaking effective interaction.

Here we show similar results and conclusions in a relativistic effective chiral model calculation, based on

three-light-quark (i.e., two q plus one �q) local interpolators. To this end we classify the four-quark (three

light plus one heavy quark) local interpolators according to their chiral transformation properties and then

construct chiral invariant interactions. We evaluate the diagonal matrix elements of the Kobayashi-Kubo-

Maskawa ’t Hooft interaction between different interpolating fields and show that the lowest-lying one is

always the (antisymmetric) SUð3ÞF antitriplet belonging to the chiral (3, 3) multiplet. We predict bottom-

strange Bs0 and the bottom-nonstrange B0 scalar mesons with equal masses at 5720 MeV, the strange meson

being some 100 MeV lower than in most of the quark potential models. We also predict the JP ¼ 1þ

bottom-nonstrange B1 and the bottom-strange Bs1 meson masses as 5732 MeVand 5765 MeV, respectively,

using the Bardeen-Hill-Nowak-Rho-Zahed scalar-vector mass relation.
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I. INTRODUCTION

Nine years have passed since the discovery of the
positive-parity charm-strange mesons Dþ

s ð2317Þ [1] and
Dþ

s ð2460Þ [2,3], some 160 MeV below their predicted
masses as c�s states calculated in potential quark models
(see Refs. [4–6]). The corresponding bottom-up/down
b �u= �d and bottom-strange b�s scalar states still await
their discovery, though the odd-parity ground states [the
JP ¼ 0� mesons Bð5279Þ and Bsð5366Þ, and their JP ¼ 1�
partners B�ð5325Þ and B�

sð5415Þ], and several even-parity
states, viz. the JP ¼ 1þ mesons B�ð5721Þ and B�

sð5830Þ
and JP ¼ 2þ mesons B�ð5747Þ and B�

sð5840Þ, have been
observed. Early potential quark models (Refs. [4,5]) pre-
dicted JP ¼ 2þ mesons around B0ð5800Þ and Bs0ð5880Þ,
whereas the post-Dþ

s ð2317Þmodel (Ref. [7]) moves them to
somewhat lower values around 5760 MeV and 5850 MeV,
respectively.

Eight years ago we suggested, on the basis of a non-
relativistic quark model calculation involving the ’t Hooft
interaction, that the Dþ

s ð2317Þ is a predominantly tetra-
quark state (see Refs. [8–11]). Although tetraquark is by no
means the only possible explanation of the low mass of
these states, to our knowledge it is the only one that
predicted the degeneracy of Dþ

s ð2317Þ and D�
0ð2308Þ be-

fore the experimental values were published (Ref. [12]).
Bardeen-Hill-Nowak-Rho-Zahed [BHNRZ)] (Refs. [13–

15]), on the other hand, used the chiral symmetry in
association with the heavy-quark symmetry to predict
striking ‘‘sum rules’’ for the 0� and 1� D and Ds meson
masses:

D0þð2308Þ �D1þð2420Þ ¼ Dð1869Þ �D�ð2010Þ (1)

Ds0þð2317Þ �Ds1þð2460Þ ¼ Dsð1968Þ �D�
sð2112Þ: (2)

The two relations [Eqs. (1) and (2)] do not predict the
(approximate) degeneracy of Dþ

s ð2317Þ and D�
0ð2308Þ, as

the sum rules for the strange and nonstrange D mesons
are independent, but the experimental values allow for,
and indeed are consistent with, such a degeneracy. The
(numerical) validity of the sum rules was interpreted in
Ref. [15] as evidence ‘‘that the two orthogonal linear
combinations of mesons . . . have well defined transforma-
tion properties under SULð3Þ � SURð3Þ, transforming as
(approximately) pure (1, 3) and (3, 1), respectively.’’
These sum rules can be ‘‘read’’ in two ways: (a) as

identities of two hyperfine-interaction (HFI)-induced split-
tings 0� � 1� ¼ 0þ � 1þ, which should depend on the
light-quark mass/flavor [i.e., on the SUFð3Þ symmetry
breaking], but in reality do not; and (b) as identities of
two parity-doublet splittings 1þ � 1� ¼ 0þ � 0�, which
need not depend on the light-quark mass/flavor, though in
reality they do. This suggests that there are two different
broken chiral symmetries at work here: one non-Abelian,
SULð3Þ � SURð3Þ, and another Abelian one: ULð1Þ �
URð1Þ ’ UVð1Þ �UAð1Þ, where UVð1Þ ¼ UBð1Þ is the
(absolutely conserved) baryon number. These perhaps
unexpected peculiarities/properties of the D, Ds meson
spectrum demand a reexamination of the underlying as-
sumptions of these chiral mass sum rules. That is what we
do in this paper, with the following consequences.
Our work is based on three-light-quark (i.e., two q plus

one �q equals one constituent quark) local interpolators. We
classify the four-quark (three light plus one heavy quark)
local interpolators according to their chiral transformation*dmitrasin@ipb.ac.rs
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properties: we find five chirally exotic effective constituent
quark fields, Q1; . . . ; Q5. We are interested in the chiral
mixtures of these constituent quarks with the ordinary light
constituent quark within the scalar mesons: the energy cost
of one quantum of orbital angular momentum is roughly
the same as the rest mass of a pseudoscalar isosinglet q �q
pair [e.g., the �ð550Þ meson mass]. If the interaction
between this pair and the rest of the hadron is attractive,
as is the case with the Kobayashi-Kubo-Maskawa ’t Hooft
(KKMT) interaction here, then the total mass may be
smaller than that of the orbitally excited meson.

We show that the light constituent antiquark in the scalar
(even-parity spinless) heavy-light mesons need not be in an
orbitally excited state, but rather it may be in an S wave
together with a light pseudoscalar q �q pair in the flavor
�3A multiplet, thus forming a chiral (3, 3) ‘‘antitriquark’’
( �Q1 � �Q2), its mass lowered by the KKMT instanton-
induced interaction. The �3A flavor SUFð3Þ multiplet shows
no signs ofSUFð3Þ symmetry breaking: both the strange and
nonstrange states are degenerate even with a strange quark
that is heavier than the up/down ones. Thus, the UAð1Þ and
SULð3Þ � SURð3Þ symmetry breaking effects ‘‘collabo-
rate’’ to reproduce the observed peculiarities in only one
flavor multiplet belonging to only one chiral multiplet.

Thus we have shown, among other things, that the
assumption of ‘‘(approximately) pure (1, 3) and (3, 1)’’
chiral multiplets is neither necessary, nor sufficient, at least
for the ð0�; 1�Þ � ð0þ; 1þÞ parity doublet(s). Indeed, we
have constructed several other effective constituent quark
operators that belong to chiral multiplets other than (3, 1)
and/or (1, 3), and different Abelian axial charges, but
only one of them, the (3, 3), successfully reproduces the
observed D meson masses.

We shall not concern ourselves with the technical details
of chiral mixing here (that will be done elsewhere), but
rather we use these results to make specific predictions for
the B mesons: the bottom-strange Bs0 and the bottom-
nonstrange B0 scalar meson masses ought to have equal
mass around 5720 MeV, the strange one being some
100 MeV lower than in most of the quark potential models
and the nonstrange one in agreement with most potential
models. This is not as marked a decrease as in the case of
Ds mesons, where this state was some 160 MeV lower than
predicted in potential models.

This paper is organized in four sections. In Sec. II we
introduce the framework of our calculation. This is neces-
sary as a prelude to the inclusion of the ’t Hooft interaction
that follows in Sec. III. Then in Sec. IV we discuss our
results, present and future experiments, and compare with a
few other theoretical predictions.

II. THEORETICAL FRAMEWORK

We start by defining the theoretical framework that we
use. It is based on various interpolating operators for the
effective light constituent quark operator. Besides the usual

single (‘‘current’’) quark operator being used in this role,
one may define any polynomial function of quark and
antiquark operators that preserves the overall quantum
numbers (spin, flavor, color, baryon number) as the single
quark operator. It need not have the chiral properties of the
current quark, however, because that symmetry is sponta-
neously broken. The simplest such operators contain two
quarks and one antiquark field; there are five such (linearly
independent) objects—we shall call them triquarks. Their
chiral transformation properties are generally not identical
to those of a current quark, however, and that is precisely
what we are looking for: distinct chiral properties, with
identical flavor properties that may modify the BHNRZ
sum rule.
Chiral properties of interpolating operators for baryons

consisting of three quarks have been studied in great detail:
see Refs. [16–18]. To construct the triquark fields, we
follow the same approach that we used for baryons in
Refs. [16–18] and we classify them according to their
spin and flavor.
So, in general one must write1

QðxÞ � Pabcð3CÞ �qcðxÞ�2ð~qaðxÞPabð�3CÞ�1qbðxÞÞ
þ Pabcð3CÞ �qcðxÞ�4ð~qaðxÞPabcð6CÞ�3qbðxÞÞ; (3)

where qðxÞ ¼ ðuðxÞ, dðxÞ, sðxÞÞT is a flavor-triplet quark
field at location x, and the indices a, b, and c represent the
color. Here the color-space projectors Pabcð�CÞ ensure that
the overall color state of the triquark is the triplet, which
implies that any pair of quarks (a ‘‘diquark’’) is either in the
color antitriplet �3C state, or in the color sextet 6C. Here we
have introduced the ‘‘tilde-transposed’’ quark field ~q as
follows:

~q ¼ qTC�5; (4)

where C ¼ i�2�0 is the Dirac field charge conjugation
operator. The matrices �i (i ¼ 1, 2, 3, 4) are tensor prod-
ucts of Dirac and flavor matrices. With a suitable choice of
�1;2, the baryon operators are defined so that they form an

irreducible representation of the Lorentz and flavor groups,
as we shall show below in this section.

A. Local triquark fields

A local interpolating operator QðxÞ for a constituent
quark consisting of two quarks and one antiquark can be
generally written as

QðxÞ � �qðxÞ�ið~qðxÞ�iqðxÞÞ ¼ �qðxÞ�iDiðxÞ; (5)

where DiðxÞ are the local diquark fields at location x (see
Sec. II B). The Pauli principle eliminates one half of the
local diquark fields in the color �3C-plet and similarly for

1Of course one must include the color-dependent and path-
dependent ‘‘gauge factors.’’ We shall drop them henceforth, to
keep the notation simple.
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the local diquarks in the color 6C-plet. Other than that, the
Pauli principle does not play a role here. The Fierz trans-
formations that one usually associates with implementing
the Pauli principle lead here to identities relating the
triquark operators in the diquark basis/channel to triquark
operators in the meson basis/channel.

The first step is to apply the Pauli principle to the first
and second quarks, i.e., to the diquarks, as discussed in
Sec. II B. Secondly, an additional constraint comes from
the permutation of the second quark and the third anti-
quark, which corresponds to the usual Fierz transforma-
tion. In this case the Fierz identities do not impose
additional Pauli-principle-induced relations (identities)
among the fields; rather, they present explicit connection
between the fields in the diquark and meson bases.

Note that the Fierz transformation connects only opera-
tors belonging to the same Lorentz and flavor group mul-
tiplets. We may, therefore, classify the triquark operators
according to their Lorentz and flavor representations. It has
been known that such operators may couple either to the
even-or odd-parity states. In the following discussion, all
the triquark operators will be defined as having even parity.
We note, however, that two different flavor operators
belonging to the same chiral multiplet may have opposite
parities.

B. Color �3C and 6C diquarks

We begin with bilinears of two quarks in Eq. (3). There
are 10 nonvanishing possibilities for �1 with bilocal fields
(besides the familiar five that survive in the local approxi-
mation limit):

D1ðxÞ ¼ Pabð�3CÞPijð�3FÞ~qa;iðxÞqb;jðxÞ; (6)

D2ðxÞ ¼ Pabð�3CÞPijð�3FÞ~qa;iðxÞ�5qb;jðxÞ; (7)

D
�
3 ðxÞ ¼ Pabð�3CÞPijð�3FÞ~qa;iðxÞ��qb;jðxÞ; (8)

D�
4 ðxÞ ¼ Pabð�3CÞPijð6FÞ~qa;iðxÞ���5qb;jðxÞ; (9)

D��
5 ðxÞ ¼ Pabð�3CÞPijð6FÞ~qa;iðxÞ���qb;jðxÞ; (10)

where a, b are the color SUð3ÞC indices, and i, j are the
flavor SUð3ÞF indices. There are also five color 6C ones:

D6ðxÞ ¼ Pabð6CÞPijð6FÞ~qa;iðxÞqb;jðxÞ; (11)

D7ðxÞ ¼ Pabð6CÞPijð6FÞ~qa;iðxÞ�5qb;jðxÞ; (12)

D
�
8 ðxÞ ¼ Pabð6CÞPijð6FÞ~qa;iðxÞ��qb;jðxÞ; (13)

D
�
9 ðxÞ ¼ Pabð6CÞPijð�3FÞ~qa;iðxÞ���5qb;jðxÞ; (14)

D
��
10 ðxÞ ¼ Pabð6CÞPijð�3FÞ~qa;iðxÞ���qb;jðxÞ: (15)

These quark bilinear fields, D1, D6, D2, D7, D
�
3 , D

�
8 , D

�
4 ,

D
�
9 and D

��
5 , D

��
10 , shall be referred to as the flavor anti-

triplet or sextet, depending on their flavor dependence;
and scalar, pseudoscalar, vector, axial-vector and tensor
diquarks, respectively, according to their Lorentz trans-
formation properties2.
All spin 0 and 1 diquark operators were classified

according to their Lorentz and isospin group representa-
tions in Table I. From Table I we see that only the Lorentz
rep. ð12 ; 12Þ diquark fields have the same chiral properties

with both signs under the Pauli principle/two-particle ex-
change. This means that only the triquark fields made from
these diquarks are subject to ‘‘Pauli mixing.’’ These are the
J ¼ 1

2 and J ¼ 3
2 fields.

TABLE I. The Abelian UAð1Þ, the Lorentz group SOð3; 1Þ, and the non-Abelian SULð3Þ �
SURð3Þ chiral transformation properties/axial charges and the Lorentz group representations of
the diquark fields. In the last column we show the sign under transposition of the two quarks in
the color �3C state.

UAð1Þ SOð3; 1Þ SULð3Þ � SURð3Þ SUFð3Þ SUCð3Þ
D1 �D2 �2 (0, 0) ð�3; 1Þ � ð1; �3 �3 �3
D1 þD2 þ2 (0, 0) ð�3; 1Þ � ð1; �3Þ �3 �3
D3 0 ð12 ; 12Þ ð3; 3Þ �3 �3
D4 0 ð12 ; 12Þ ð3; 3Þ 6 �3
D5 þ2 ð1; 0Þ � ð0; 1Þ ð6; 1Þ � ð1; 6Þ 6 �3
D6 �D7 �2 (0, 0) ð6; 1Þ � ð1; 6Þ 6 6
D6 þD7 þ2 (0, 0) ð6; 1Þ � ð1; 6Þ 6 6
D8 0 ð12 ; 12Þ ð3; 3Þ 6 6
D9 0 ð12 ; 12Þ ð3; 3Þ �3 6
D10 þ2 ð1; 0Þ � ð0; 1Þ ð�3; 1Þ � ð1; �3Þ �3 6

2Throughout the present paper, Latin indices i, j, etc. run over
the flavor space 1; 2; . . . 8, and Greek indices �, �, etc. run over
the Lorentz space 0, 1, 2, 3.
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C. The constituent quark (J ¼ 1
2 ,

�3F) fields

Firstly, we consider the simplest case Dð12 ; 0ÞF¼�3, where

Dð12 ; 0Þ denotes the representation of the Lorentz group

and F ¼ �3F denotes the flavor. There are 10 local quark
operators with J ¼ 1

2 and
�3F (we omit the color and flavor

projectors here, for brevity’s sake) that can be further
separated into the color antitriplet diquark ones,

Q1ðxÞ ¼ �qðxÞð~qðxÞqðxÞÞ;
Q2ðxÞ ¼ �qðxÞ�5ð~qðxÞ�5qðxÞÞ;
Q3ðxÞ ¼ �qðxÞ��ð~qðxÞ��qðyÞÞ;
Q4ðxÞ ¼ �qðxÞ���5�

ið~qðxÞ���5�
iqðyÞÞ;

Q5ðxÞ ¼ �qðxÞ����ið~qðxÞ����
iqðyÞÞ;

and the color sextet diquark ones,

Q6ðxÞ ¼ �qðxÞ�ið~qðxÞ�iqðxÞÞ;
Q7ðxÞ ¼ �qðxÞ�5�

iqðxÞð~qðxÞ�5�
iqðxÞÞ;

Q8ðxÞ ¼ �qðxÞ���iqðxÞð~qðxÞ���
iqðxÞÞ;

Q9ðxÞ ¼ �qðxÞ���5ð~qðxÞ���5qðxÞÞ;
Q10ðxÞ ¼ �qðxÞ���qðxÞð~qðxÞ���qðyÞÞ:

Here we use the SUFð2Þ isospin �i matrices as a shorthand
to indicate that the diquark involved is a flavor-sextet one
and thus differentiate it from the corresponding flavor
antitriplet diquark; otherwise, the flavor and color projector
operator conventions for a constituent quark field hold, as
specified by Eq. (5). As the color antitriplet diquark tetra-
quarks are lighter than the color sextet diquark ones, we
shall consider only the former. Their chiral properties are
summarized in Table II. Note that these constituent quarks
may have either parity: the above formulas imply even-
parity quarks, but changing it to odd-parity requires a mere
multiplication by a �5 matrix. Moreover, note that the
chiral properties are all ‘‘nonstandard’’ for a single quark:
for example Q1 þQ2 and Q5 belong to the chiral ð3; 1Þ �
ð1; 3Þmultiplet, just like the ‘‘ordinary’’ quark field, but they

carry triple of the usual axial baryon charge gð0ÞA ¼ þ3.
Similarly, the only other standard chiral ð3; 1Þ � ð1; 3Þ mul-

tiplet Q3 �Q4 is an Abelian chiral mirror field gð0ÞA ¼ �1.
The remaining two effective constituent quark fields,

Q1 �Q2 and Q3 þ 1
3Q4, belong to manifestly exotic chiral

multiplets ð�3; �3Þ and ð3; 8Þ � ð8; 3Þ. Some of these chirally
exotic constituent quarks are subject to additional selection
rules that reduce or eliminate entirely their contributions to
the scalar mesons. In the next section we shall show that the
KKMT interaction may then lower the mass of such chirally
exotic scalar tetraquarks below that of the orbitally excited
Q �q meson.

III. INTERACTIONS

A. The UAð1Þ-breaking interaction

The KKMT interaction, as induced by instantons in
QCD [19], reads

L ð6Þ
tH ¼ �K½detfð �c ð1þ �5Þc Þ þ detfð �c ð1� �5Þc Þ�;

(16)

where detfð �c ð1þ �5Þc Þ is a determinant in the flavor

space only. Its primary purpose was to correct the �, �0
masses, but in the meantime it has been shown that this
interaction also affects the scalar meson [20–22] and
baryon spectra [23]. The effective coupling constant K
has been determined in Ref. [20] as

12K ¼ �h �qqi�3
0 ½f2�0m2

�0 þ f2�m
2
� � 2f2Km

2
K�: (17)

Inserting the experimental values of the pseudoscalar me-
son masses and decay constants into Eq. (17), as well as the
quark condensate taken here as h �qqi ¼ �ð225 MeVÞ3, the
KKMT coupling constant comes out at K ¼ 390 GeV�5.
Note, however, that the large uncertainty and the high
exponent of the quark condensate h �qqi0 ¼ ½� ð225�
25Þ MeV�3 lead to an even larger uncertainty in the value
of K. This uncertainty translates into a wide margin for
tetraquark mass predictions.
The KKMT interaction [Eq. (16)] leads to the following

three-quark potential:

V123 ¼ 12KP1
123

�
1þX3

i<j

�5
i�

5
j

�
�ðr1 � r2Þ�ðr3 � r2Þ

12P1
123 ¼

�
4

9
� 1

3

X3
i<j

�i � �j þ dabc�a1�
b
2�

c
3

�
: (18)

As can be seen from Eq. (18), the flavor-dependent part of
the KKMT three-quark potential is just the three-quark-
flavor SU(3) singlet projection operator P1

123 [20]. Fierz

rearrangement identities lead to additional terms with

ð 1Nc

P3
i<j �

��
ðiÞ �

ðjÞ
��Þ and explicit color SU(3) dependence.

Such terms have the same chiral symmetries as the
original KKMT term, but are generally Oð1=NcÞ sup-
pressed with respect to the latter [21]. As such they are
not expected to play a significant phenomenological role.
These terms are nevertheless interesting, as they introduce
UAð1Þ symmetry-breaking effects, however small, into

TABLE II. The Abelian UAð1Þ, the non-Abelian SULð3Þ �
SURð3Þ chiral transformation properties/axial charges, and the
Lorentz group representation ð12 ; 0Þ.

UAð1Þ SULð3Þ � SURð3Þ
Q1 �Q2 �1 ð�3; �3Þ
Q1 þQ2 þ3 ð3; 1Þ � ð1; 3Þ
Q3 �Q4 �1 ð3; 1Þ � ð1; 3Þ
Q3 þ 1

3Q4 �1 ð3; 8Þ � ð8; 3Þ
Q5 þ3 ð3; 1Þ � ð1; 3Þ
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vector-and axial-vector mesons and affect a different chiral
representation.

1. C conjugation and KKMT interaction for
systems with antiquarks

Conversion of the above interactions to systems with one
or two antiquarks can be accomplished according to the
rules and formulas spelled out in Refs. [24,25]. One must
be careful about the definition of the SU(3) factors in the
three-body potential involving antiquarks as they are sen-
sitive to the C-conjugation properties of the relativistic
interaction from which the potential was derived. More
specifically, one finds a difference between the Lorentz
scalar and zeroth component of Lorentz vector models.

The quark SU(3) group generator matrices Fa are related
to the SU(3) charge (i.e., Lorentz vector) operators of an
antiquark by

�F a ¼ � 1

2
�aT ¼ � 1

2
�a�� (19)

The minus sign in this relation stems from the
C-conjugation properties of the vector (and/or axial-
vector) current and not from the SU(3) algebra itself. So
for Lorentz scalar, pseudoscalar, and antisymmetric (Pauli)
tensor interactions, such as the KKMT one, this sign
changes into a plus one � ! � ��i and leads to

CP1
123C

�1 ¼ 1

27
� 1

9

X3
i<j

ð�ÞjFi � �Fj � 2

3
dabcFa1F

b
2
�Fc3:

(20)

We can express the two SU(3) invariant flavor factors in
terms of SU(3) Casimir operators. The first one remains
unchanged,

X3
i<j

Fi � Fj ¼ F1 � F2 þ F1 � �F3 þ F2 � �F3 ¼ 1

2
Cð1Þ
iþjþk � 2;

(21)

whereas the second one becomes

dabcFa1F
b
2
�Fc3 ¼

1

6

�
Cð2Þ
iþjþk �

5

2
Cð1Þ
iþj þ

50

9

�
: (22)

Note that in the second factor [Eq. (22)], the first (qua-
dratic) Casimir is evaluated between the two-quark (sub)
state iþ j, which leads to a distinction between the two
overall flavor triplets (which are symmetric and antisym-
metric in the quark indices). This leads to the results shown
in Table III.

2. Matrix elements

We need to evaluate the KKMT interaction’s effects in
first-order perturbation theory. There are (only) two kinds
of chiral multiplets that are affected by this interaction: the
(3, 3) and the ð�6; 3Þ. The former involves only scalar and

pseudoscalar fields, the latter only Pauli-tensor (spin-1)
interpolators. The (3, 3) contains a flavor-antitriplet and a
sextet: �3A � 6 	 ð3; 3Þ; whereas the ð�6; 3Þ contains a flavor-
antitriplet and an anti-15-plet: �3S � 15 	 ð�6; 3Þ. The latter
does not show up on our list of spin � 1

2 local effective

constituent quarks, however (i.e., such an operator has spin
3
2 and need not be considered with regard to scalar heavy-

light mesons); it does appear in axial-vector heavy-light
mesons, however.
Using Table III, we find the following SU(3) projection

operators:

Pð3AÞ ¼ 1

9
� 1

12

X3
i<j

ð�ÞjFi � �Fj � 1

4

X3
i<j

Fi � �Fj

þ dabcFa1F
b
2
�Fc3 (23)

Pð�6Þ ¼ 2

9
� 5

12

X3
i<j

ð�ÞjFi � �Fj � 1

4

X3
i<j

Fi � �Fj

� dabcFa1F
b
2
�Fc3 (24)

Pð3SÞ ¼ 1

9
þ 7

12

X3
i<j

ð�ÞjFi � �Fj � 1

8

X3
i<j

Fi � Fj

� 1

2
dabcFa1F

b
2
�Fc3 (25)

Pð15Þ ¼ 5

9
þ 5

24

X3
i<j

ð�ÞjFi � �Fj þ 5

8

X3
i<j

Fi � �Fj

þ 1

2
dabcFa1F

b
2
�Fc3: (26)

We find the following ’t Hooft interaction flavor-spin-
spatial matrix elements in Eq. (27):

CP1
123C

�1 ¼ � 5

9

�
Pð3AÞ þ 2

5
Pð3SÞ þ 1

15
Pð�6Þ

�
: (27)

The level splitting is shown in Fig. 1.

B. The UAð1Þ-conserving interactions

The UAð1Þ-conserving interactions include all gluon
exchanges and can be effectively described by chirally
invariant Lagrangians, such as those in Ref. [26] connect-
ing the (1, 3) constituent antiquark and the (3, 3) constitu-
ent antiquark. This induces chiral mixing:

TABLE III. Diagonal matrix elements of the three-body SU(3)
operators for various SU(3) q2 �q states.

3A 3S �6 15

hP3
i<j Fi � Fji � 4

3 � 4
3 � 1

3
2
3

hP3
i<jð�ÞjFi � �Fji 0 2 �1 0

hdabcFa1Fb2 �Fc3i 5
9 � 5

18 � 5
18

1
18
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jD0þð2308Þi ¼ cos	jD0þð1; �3Þi þ sin	jD0þð3; 3Þi (28)

jDs0þð2317Þi ¼ cos	sjDs0þð1; �3Þi þ sin	sjDs0þð3; 3Þi:
(29)

Chiral mixing determines the flavor content of the physical
states, which in turn determines their decay channels.

One may try and use chiral Lagrangians such as those in
Ref. [26] to evaluate the masses of various flavor SU(3)
multiplets within the chiral multiplet: it appears that the
ratio of masses of the flavor antitriplet and the sextet in
�3A � 6 	 ð3; 3Þ is not determined by such symmetry con-
siderations; the only thing that one can show in general is
that the �3A 	 ð3; 3Þ must be lighter than 6 	 ð3; 3Þ. The
absolute values of these contributions to the total masses
remain undetermined by symmetry arguments anyway,
and require a dynamical model with some phenomenologi-
cal free parameter input. Therefore, the ratio of the
UAð1Þ-conserving and the UAð1Þ-breaking contributions
also remains unknown. This fact leads to a potentially
variable ordering of higher-lying states in the spectrum;
but the lowest-lying state always remains the �3A 	 ð3; 3Þ,
in agreement with the nonrelativistic calculation (Ref. [8]).

IV. RESULTS AND EXPERIMENTAL
PREDICTIONS

Our model is incomplete: two energy scales, the KKMT
and the confining scales, are undetermined. In order to set
these scales and thus make absolute predictions in the
beauty-meson sector, we must resort either to our previous

nonrelativistic calculations or to experimental values
(which are, in this case, the same). We adopt the same
value(s) of the overall energy shift as in Ref. [8], so as to
reproduce the observed D, Ds meson masses and then
predict the missing B, Bs meson masses.
Chiral multiplets may involve (only) states with

identical values of total angular momentum, and possibly
different parities. Therefore, ‘‘truly chiral’’ sum rules may
involve only masses of equal-spin states: the BHNRZ sum
rule is an exception in this regard, due to the additional
heavy-quark Isgur-Wise symmetry.

A. D, Ds scalar mesons

Therefore, we write the 0�, 0þ states’ masses in a
separate spinless meson relation/‘‘sum rule’’:

�D0 ¼ D0þð2308Þ �Dð1869Þ (30)

�Ds0 ¼ Ds0þð2317Þ �Dsð1968Þ (31)

Ds0þ ¼ D0þ ; (32)

and similarly for the 1�, 1þ mesons

�D1 ¼ D1þð2420Þ �D�ð2010Þ (33)

�Ds1 ¼ Ds1þð2460Þ �D�
sð2112Þ (34)

Ds1þ ’ D1þ : (35)

We note here that the KKMT interaction does not seem
to predict the identity of the two axial-vector masses
Ds1þ ’ D1þ [Eq. (35)] the way it predicts the identity of
the two spin-0 meson masses Ds0þ ¼ D0þ [Eq. (32)]: that
is, rather, an experimental fact—i.e., a (possibly fortuitous)
coincidence of two scales that are different, in principle.
The BHNRZ relations [Eqs. (1) and (2)] imply the equality
of the spin-0 and spin-1 �D’s (i.e., �D0 ¼ �D1 and
�Ds1 ¼ �Ds0) that is above and beyond the above rela-
tions [Eqs. (32) and (35)].

B. B, Bs mesons

The heavy quark serves (merely) as a (quasistatic) color
source for the light constituent (anti)quark(s). Therefore,
its mass and/or flavor should not influence the light quark
dynamics, at least to lowest approximation, i.e.,

�D0 ¼ �B0

�Ds0 ¼ �Bs0

�D1 ¼ �B1

�Ds1 ¼ �Bs1:

Wemay then use the separateD,Ds ‘‘scalar-pseudoscalar’’
and ‘‘vector-axial vector’’ meson mass relations (sum
rules) [Eqs. (32) and (35)], as well as their B, Bs analogons
for the 0�, 0þ states’ masses

FIG. 1. Masses of the scalar D meson tetraquark states as a
function of the KKMT coupling KtH: the splitting of the two
chiral multiplets ð�6; 3Þ and (3; 3), and further splitting into flavor
SU(3) multiplets �3A, 6, and �3A, 15 occurs also due to the UAð1Þ
symmetry-conserving gluon exchange interactions. Horizontal
(dashed) lines denote the corresponding thresholds.
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�B0 ¼ B0þðXÞ � Bð5279Þ (36)

�Bs0 ¼ Bs0þðXsÞ � Bsð5370Þ (37)

Bs0þ ¼ B0þ ; (38)

and similarly for the 1�, 1þ mesons

�B1 ¼ B1þðYÞ � B�ð5322Þ (39)

�Bs1 ¼ Bs1þðYsÞ � B�
sð5416Þ (40)

Bs1þ ’ B1þ ; (41)

respectively, to predict the (as yet) experimentally missing
B, Bs meson masses from

D0þð2308Þ �Dð1869Þ ¼ B0þðXÞ � Bð5279Þ (42)

Ds0þð2317Þ �Dsð1968Þ ¼ Bs0þðXsÞ � Bsð5370Þ (43)

D1þð2420Þ �D�ð2010Þ ¼ B1þðYÞ � B�ð5322Þ (44)

Ds1þð2460Þ �D�
sð2112Þ ¼ Bs1þðYsÞ � B�

sð5416Þ: (45)

There are four (linear) equations with four unknowns
(X, Y, Xs, Ys) that are readily solved with the results shown
in Table IV. We see that the nonstrange scalar B meson
mass of 5718 MeV is ‘‘in the same ballpark’’ as the
predictions of potential models, whereas the strange scalar

Bs-meson mass of 5719 MeV is roughly 100 MeV below
the predictions of potential models. This shift of the scalar
Bs meson mass is smaller than in the Ds meson sector
(160 MeV), but should still be clearly visible in experi-
ment. We note here that Bardeen et al. (Refs. [15,27])
predicted essentially the same mass for the Bs meson
(5718� 35 MeV), but a substantially lower one for the
nonstrange scalar B meson (5627� 35 MeV).
We also note that Matsuki et al. [28,29] predicted a

scalar Bs meson mass as light as 5617 MeV, with the
corresponding scalar B meson at 5592 MeV, some
25 MeV lower than the strange one.
If we accept Eq. (35) as a phenomenological fact, and

assume validity of its analogon, Eq. (41), we also predict
the JP ¼ 1þ bottom-nonstrange B1 and the bottom-strange
Bs1 meson masses at 5732 MeV and 5765 MeV, respec-
tively. We note that Bardeen et al. (Refs. [15,27]) pre-
dicted essentially the same mass for the Bs1 meson
(5765� 35 MeV), but a lower one for the nonstrange
axial-vector scalar B1 meson (5674� 35 MeV).
All of these states ought to be observable at the LHCb.
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