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In many models, stability of dark-matter particles is protected by a conserved Z2 quantum number.

However, dark matter can be stabilized by other discrete symmetry groups, and examples of such

models with custom-tailored field content have been proposed. Here, we show that electroweak

symmetry-breaking models with N Higgs doublets can readily accommodate scalar dark matter

candidates stabilized by groups Zp with any p � 2N�1, leading to a variety of kinds of microscopic

dynamics in the dark sector. We give examples in which semiannihilation or multiple semiannihilation

processes are allowed or forbidden, which can be especially interesting in the case of asymmetric dark

matter.
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I. INTRODUCTION

Despite compelling astronomical evidence for the exis-
tence of dark matter [1], there is still no direct experimental
clue of which particle can play the role of dark-matter
candidate. It is only known that dark matter cannot be
satisfactorily explained by the standard model (SM) parti-
cle content. In this situation, one can focus on exploring
dark-matter candidates arising in various models beyond
the SM, especially if these models can simultaneously
address other particle physics issues such as electroweak
symmetry breaking and small neutrino masses.

Dark-matter particles must be (almost) stable on cosmo-
logical time scales. In many models, this stability is pro-
vided by imposing by hand a conserved Z2 quantum
number on the Lagrangian. This quantum number generi-
cally called parity appears in different contexts; examples
include the R-parity in supersymmetric models, the matter
parity [2], the sign flip in the Inert doublet model, [3],
which revived the old idea of Deshpande and Ma [4], or in
the minimal singlet model [5]. When assigning the parity
quantum number of the SM and new fields, different
options are available. The simplest is to assume that all
the SM particles including the SM-like Higgs boson have
positive parity, while the dark sector particles are of nega-
tive parity. Another possibility is to exploit statistics by
assigning positive Z2 parity to all SM boson fields and
negative Z2 parity to all SM fermions as well as to the new
scalar. This situation is realized, for example, in models
exploiting the matter parity [2] to stabilize the dark matter.
In both cases, the lightest non-SM state, which we generi-
cally denote d, cannot couple to SM final states without
violating the Z2 parity. Therefore, in a Z2-conserving
model, this state is stable and represents the dark-matter
candidate.

It is natural to ask whether dark matter can be stabilized
by a conserving discrete quantum number taking values in
a group other than Z2. This idea is not new and was

explored in a descent number of works, in which both
Abelian [6–8] and non-Abelian [9] finite groups were
used.1 Requiring that d transforms nontrivially under the
discrete group implies that it cannot be a truly neutral
particle. It also prohibits direct two-particle annihilation
dd ! XSM, where XSM is any set of SM particles.
However, more complicated processes involving several
d’s can take place. This certainly changes the kinetics of
dark-matter evolution in the early Universe and its relic
abundance after the freeze-out. If, in addition, one assumes
that an asymmetry between d and its antiparticle d� is
generated at a high-energy scale in a way similar to the
baryon asymmetry of the usual matter [11], then the
present-day behavior of this asymmetric dark matter is
not dominated anymore by dd� annihilation and can lead
to characteristic observational signatures.
One particular class of groups used to stabilize dark

matter are cyclic groups Zp, see Refs. [6,7]. With this

choice, all fields are characterized by a conserved quantum
number which we will call the Zp charge q and which is

additive modulo p. The usual assignment is that all the SM
fields including the SM-like Higgs boson have q ¼ 0,
while the dark-matter candidates have nonzero Zp charges.

This opens up the possibility of novel two-particle pro-
cesses such as dd ! d�XSM, which was called semianni-
hilation in Ref. [12], or even multiparticle versions of it,
‘‘multiple semiannihilation.’’ Besides, if the model allows
for the existence of several dark-matter candidates di with
different charges qi, then inelastic two-particle processes
didj ! dkXSM are also possible. Such processes, too, have

impact on the kinetics of the dark-matter abundances in the
early Universe [13].

1If one takes seriously the argument that quantum-
gravitational effects violate any global discrete symmetry, one
should require that this quantum number arise as a remnant of a
Uð1Þ gauge symmetry spontaneously broken at a high-energy
scale [10].
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Examples of Zp-stabilized dark sectors often involve a

variety of new fields which interact via Lagrangians de-
signed specifically to incorporate a given symmetry group,
see e.g. Ref. [7]. Even when linked to electroweak physics,
these models involve new fields with different electroweak
quantum numbers (doublets, singlets, etc.) [13]. Indeed, if
one assumes that extra fields come from a hidden sector
coupled to the SM fields via ‘‘portal’’ operators [14], then
they must be electroweak singlets by construction.

In this paper, we demonstrate that Zp-stabilized scalar

dark matter can easily arise in multi-Higgs-doublet mod-
els. This, perhaps, is not surprising on its own. A less trivial
fact is that even with few doublets, one can get Zp with a

rather large p. To be precise, in models with N Higgs
doublets, Zp with any p � 2N�1 is realizable in the scalar

sector. We will show that this fact can be instrumental in
avoiding semiannihilation processes even with multicom-
ponent dark-matter sectors.

The structure of the paper is the following. In Sec. II, we
quickly review what is known about symmetries in the
scalar sector of N-Higgs-doublet models (NHDM). Then,
in Sec. III, we give a 3-Higgs-doublet model (3HDM)
example with dark-matter candidates stabilized by the Z3

symmetry group. In Sec. IV, we show what is possible
with four doublets and consider in some detail the
Z7-symmetric 4-Higgs-doublet model (4HDM), in which
one can avoid semiannihilation processes. We end the
paper with a discussion and conclusions.

II. SCALAR SECTOR OF NHDM AND ITS
SYMMETRIES

The N-Higgs-doublet model is a conceptually simple
extension of the SM Higgs mechanism. It is driven by the
idea that the Higgs fields, similarly to fermions, can come
in several generations. Its simplest version with only two
doublets, 2HDM, is of special interest because it mimics
the Higgs sector of minimal supersymmetric standard
model, and it has been thoroughly studied in the last four
decades; see Ref. [15] and references therein. In addition,
many particular models employing more than two scalar
doublets have also been proposed [16].

In NHDM, one introduces N doublets of complex scalar
fields �i, i ¼ 1; . . . ; N, with electroweak isospin Y ¼ 1=2,
and constructs the self-interaction renormalizable Higgs
potential

V ¼ Yijð�y
i �jÞ þ Zijklð�y

i �jÞð�y
k�lÞ; (1)

where all indices run from 1 to N. The free parameters of
the potential are written as components of tensors Yij and

Zijkl; in the most general case, there are N2ðN2 þ 3Þ=2
independent parameters. Once these coefficients and the
Yukawa couplings are provided, the model is completely
defined, and the entire phenomenology should follow. In
practice, however, inferring these consequences directly

from the Lagrangian is impeded by algebraic obstacles at
the very first step, namely, the minimization of a suffi-
ciently generic potential. The consequence is that only very
few general results are known for N > 2 [17–19].
One particular issue which is of much importance and

where certain progress has been recently made concerns
accidental symmetries which can be encoded in the scalar
sector of NHDM. These are transformations which mix
several Higgs doublets (also called Higgs-basis transfor-
mations) but still leave the potential invariant due to
specific patterns in the tensors Yij and Zijkl. Although

particular models with several Higgs doublets based on
various symmetry groups have been proposed and studied
over the last decades, no attempt at systematic classifica-
tion of possible symmetries was made until very recently.
One of the problems here comes from the observation

that just imposing a certain symmetry group G on the
Higgs potential can often lead to potentials symmetric
under a larger group, which includes G as a subgroup.
This feature was discussed in Ref. [18] where one-
parametric symmetry groups were studied for 3HDM and
in Ref. [19] where an attempt to understand symmetries
in NHDM via geometric constructions in the space of
bilinears was made. Therefore, when describing symme-
tries of the model, one should focus only on the true
symmetry groups, the ones which are not automatically
extended to larger groups. These groups were called in
Ref. [19] ‘‘realizable groups.’’
Unfortunately, no systematic way to reconstruct the true

symmetry group of a given NHDM potential for N > 2 is
known so far. One even does not know the list of realizable
symmetry groups possible for N ¼ 3. However, a step
forward was recently made in Ref. [20], which completely
characterized all Abelian groups of Higgs-family trans-
formations and generalized CP-transformations which
can be realized as symmetry groups of the scalar sector
of NHDM. In particular, in what concerns realizable cyclic
groups, it was proved there that for a model with N
doublets, one can construct the Higgs potential symmetric
under the group Zp with any 1< p � 2N�1 (for N ¼ 3,

this conclusion was known before [18]). One can therefore
wonder if these models can be used to construct dark
matter sectors stabilized by these symmetry groups.
An electroweak-symmetry-breaking model with

Zp-stabilized scalar dark matter must satisfy several con-

ditions. First, the entire Lagrangian and not only the Higgs
potential must be Zp-symmetric. The simplest way to

achieve this is to set the Zp charges of all the SM particles

to zero and to require that only one Higgs doublet (the SM-
like doublet) couples to fermions. The Zp charge of this

doublet must be zero, and it does not matter which doublet
is chosen to be SM-like due to the freedom to simulta-
neously shift theZp charges of all the doublets. Second, the

Zp symmetry must remain after electroweak symmetry

breaking. This is possible when only the SM-like doublet
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acquires a nonzero vacuum expectation value (v.e.v.).
Third, if we insist on Zp stabilization, that is, we require

that not only decays but also 2�; 3�; . . . , (p� 1)-particle
annihilation to SM fields are forbidden by quantum num-
bers, then the dark matter candidates must have Zp charge

q which is coprime with p.
Below, we show that multi-Higgs-doublet models can

easily satisfy these conditions. We start first with the
simplest model of this kind, Z3-symmetric 3HDM, and
then we outline the plethora of kinds of microscopic dark
matter dynamics possible in models with four doublets.

III. Z3-SYMMETRIC 3HDM

A natural way to implement the Z3 symmetry in 3HDM
would be to construct a potential symmetric under �1 !
�2 ! �3 ! �1. However, upon an appropriate Higgs-
basis change, this transformation will turn into pure phase
rotations of certain doublets. In fact, it can be proven that
any Abelian subgroup of SUðNÞ can be mapped onto a
group of (possibly correlated) phase rotations of individual
doublets, see Ref. [20] for explicit construction. Therefore,
we will always use below the phase rotation representa-
tions of the cyclic symmetry groups. Also, to keep the
notation short, we will describe any such transformation
�i ! ei�i�i by providing the N-tuple of phases �i.

A scalar potential invariant under a certain group G of
phase rotations can be written as a sum V ¼ V0 þ VG,
where V0 is invariant under any phase rotation, while VG

is a collection of extra terms which realize the chosen
symmetry group. The generic phase rotation invariant
part has form

V0 ¼
X
i

½�m2
i ð�y

i �iÞ þ �iið�y
i �iÞ2�

þX
ij

½�ijð�y
i �iÞð�y

j �jÞ þ �0
ijð�y

i �jÞð�y
j �iÞ�; (2)

while VG obviously depends on the group. In particular, for
the group Z3 in 3HDM, we have

VZ3
¼ �1ð�y

3�1Þð�y
2�1Þ þ �2ð�y

1�2Þð�y
3�2Þ

þ �3ð�y
2�3Þð�y

1�3Þ þ H:c:; (3)

where at least two of the coefficients �1, �2, �3 are nonzero
(otherwise, the potential would have a continuous symme-
try). This potential is symmetric under the phase rotations
generated by

a ¼ 2�

3
ð0; 1; 2Þ; a3 ¼ 1; (4)

In fact, the assignment of these charges to the three dou-
blets is completely arbitrary, and the group generated by
the generator a with permuted charges has the same action
of the potential. In Eq. (4), we simply chose �1 to be the
SM-like doublet.

Whether this symmetry is conserved or spontaneously
broken depends on the pattern of the vacuum expectation
values. If we insist on conservation of the Z3 symmetry, we

require that h�0
1i ¼ v1 ¼ v=

ffiffiffi
2

p
, h�0

2i ¼ h�0
3i ¼ 0. There

is nothing surprising that the potential V0 þ VZ3
can have

a Z3-symmetric global minimum upon an appropriate
choice of coefficients. The question is whether it requires
any fine-tuning or not. Below, we show that it does not, and
the minimum of the type ðv1; 0; 0Þ arises in a sizable part of
the entire available parameter space of this model.
First, we note that if ðv1; 0; 0Þ is an extremum of V0, then

it is also an extremum of V0 þ VZ3
because the extra terms

contain �1 only linearly and quadratically. Therefore,
when constructing a model example, one can first build
V0 with a global minimum at ðv1; 0; 0Þ and then add
a sufficiently weak VZ3

so that this point remains a

minimum.
Now, turning to minimization of V0, suppose that we

search for the neutral minimum with a generic complex
v.e.v. pattern ðv1; v2; v3Þ. By introducing �i ¼ jvij2 � 0,
we can rewrite V0 as

V0 ¼ �Mi�i þ 1

2
�ij�i�j

¼ 1

2
�ijð�i ��iÞð�j ��jÞ þ const: (5)

Here, Mi ¼ ðm2
1; m

2
2; m

2
3Þ, �ij is constructed from �ij and

�0
ij in an obvious way, and �i ¼ ð�ijÞ�1Mj. Positivity

condition on the potential guarantees that �ij is a positive

definite matrix; therefore, its inverse exists (we omit here
the degenerate situations when the quartic potential has flat
directions).
The allowed values of the �i populate the first octant

(�i � 0) in the three-dimensional Euclidean space.
Because of Eq. (5), the search for the global minimum
can be reformulated as the search for the point in the first
octant which lies closest to �i in the Euclidean metric
defined by �ij. Clearly, if �i itself lies inside the first

octant (�1; �2; �3 � 0), then the global minimum is at
�i ¼ �i. If �i lies outside the first octant, then the closest
point lies either on a face or on an edge of the first octant, or
at the origin. The global minimum is unique by the con-
vexity arguments. It is now clear from this geometric
construction that the entire space of all possible vectors
�i can be broken into several regions of nonzero measure
which correspond to all of these possibilities. In particular,
the region corresponding to vacuum alignment of the type
ðv1; 0; 0Þ also has a nonzero measure and fills a sizeable
part of the parameter space. In this sense, this vacuum
pattern does not require any fine-tuning of the coefficients
of the potential.
Having established that the required vacuum pattern is

generically possible, we now switch to a simple version of
the model. This is done only to simplify the presentation of
the argument; if needed, the calculations can be repeated
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for a generic potential. Namely, we now choose m2
1 > 0,

m2
2, m

2
3 < 0 and take �ij ¼ 2�0�ij, so that the potential

becomes

V ¼ �m2
1ð�y

1�1Þ þ jm2
2jð�y

2�2Þ þ jm2
3jð�y

3�3Þ
þ �0½ð�y

1�1Þ2 þ ð�y
2�2Þ2 þ ð�y

3�3Þ2�
þ �1ð�y

3�1Þð�y
2�1Þ þ �2ð�y

1�2Þð�y
3�2Þ

þ �3ð�y
2�3Þð�y

1�3Þ þ H:c: (6)

By construction, its global minimum is at h�0
i i ¼

ðv= ffiffiffi
2

p
; 0; 0Þ, where v2 ¼ m2

1=�0. In order to find the
mass matrices, we write the doublets as

�1 ¼
Gþ

1ffiffi
2

p ðvþ hþ iG0Þ
 !

; �2 ¼ wþ
2

z2

� �
;

�3 ¼ wþ
3

z3

� �
:

(7)

Here, h is the SM-like Higgs boson, G0, and Gþ are the
would-be Goldstone bosons, while wþ

2 , w
þ
3 and z2, z3 are

charged and neutral Higgs bosons, respectively. Fields wþ
2;3

and z2;3 have well-defined Z3 charges: q ¼ 1 for wþ
2 , z2 as

well as forw�
3 , z

�
3 and q ¼ 2 ( ¼ �1mod 3) forwþ

3 , z3 and
w�

2 , z
�
2. Note that in contrast to the usual practice, we

describe the neutral Higgs bosons in the second and third
doublet by complex fields rather than pairs of neutral fields.
The reason is that, by construction, the fields correspond-
ing to the real and imaginary pairs of z’s have identical
masses and coupling constants. In any process which can
arise in this model, these two fields are emitted and
absorbed simultaneously, so they can be described by a
single complex field zi.

The SM-like Higgs boson has mass m2
h ¼ 2m2

1, while

the masses of the charged Higgs bosons are m2
w�

2

¼ jm2
2j,

m2
w�
3
¼ jm2

3j. Neutrals with equal q can mix, which indeed

happens at �1 � 0. We describe the resulting mass eigen-
states by complex fields d and D (md <mD), both having
q ¼ 1:

d ¼ cos�z2 þ sin�e�i�z�3;

D ¼ � sin�ei�z2 þ cos�z�3;

tan2� ¼ j�1j
�0

m2
1

jm2
2j � jm2

3j
; � ¼ arg�1;

m2
D;d ¼

jm2
2j þ jm2

3j
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjm2

2j � jm2
3jÞ2 þ

j�1j2
�2
0

m4
1

s
:

(8)

Note that within this model, we have

md <mw�
2
; mw�

3
<mD;

m2
w�
2
þm2

w�
3
¼ m2

d þm2
D:

(9)

The triple and quartic interaction terms arising from V0 and
VZ3

specify the dynamics of the dark-matter candidates.

The lightest particle from the second and third Higgs
generations is d, and it is stabilized against decaying into
the SM particles by the Z3 symmetry. As for heavier
particles, triple interactions lead to their decays such as
D ! dh, D ! dZ, and D ! wþ

2 W
�, D ! w�

3 W
þ if

allowed kinematically. If the mass splitting between the
d and D is small, then these processes involve virtual h, Z,
etc., which then decay into the SM particles. In this aspect,
D decays are similar to weak decays. Charged Higgs
bosons w�

2;3 will also decay to d or d� plus SM particles.

In the case of symmetric dark matter, the main process
leading to depletion of dark matter after electroweak sym-
metry breaking is the direct annihilation dd� ! XSM, and
the semiannihilation reaction discussed below is only a
correction to this process. Still, it might be possible that
this correction leads to a sizable departure of the kinetics of
the dark matter in the early Universe and affects the relic
abundance at the freeze-out, [13].
The situation becomes more interesting in models of

asymmetric dark matter [11], in which an asymmetry
between d and d� is generated at a higher energy scale. It
is possible, for example, that upon electroweak phase
transition, almost all d’s annihilate with d� into the SM
sector, leaving behind a certain concentration of dark-
matter candidates d. In the present epoch, d can scatter
elastically, dd ! dd with 	el: / �2

0, but they can also

initiate semiannihilation processes such as dd ! d�XSM

with a subsequent annihilation of d� with a d. This possi-
bility originates from the following quartic terms in the
scalar potential:

1ffiffiffi
2

p hddd cos� sin�ei�ð�2 cos�þ ��
3 sin�e

i�Þ þ H:c:

(10)

Depending on �’s, this process can be as efficient as the
direct annihilation in the usual annihilating dark-matter
models, or it can be suppressed by the small coupling
constant.
Finally, the same interaction terms also generate the

triple annihilation processes ddd ! h ! XSM, whose
rate is, however, suppressed at small densities with respect
to the semiannihilation.

IV. AVOIDING SEMIANNIHILATION

The presence of the hddd terms in the interaction
Lagrangian in the previous example, which were respon-
sible for the two-particle semiannihilation process, was
due to the Z3 symmetry group. One can wonder whether
two-particle semiannihilation can be avoided by employ-
ing a Zp group with larger p. In this present section, we

show that it is indeed possible in a model with four Higgs
doublets.
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According to Ref. [20], one can encode in the 4HDM
scalar sector any group Zp with p � 8. Note that in order

to avoid continuous symmetry, one must accompany the
phase-symmetric part of the potential V0 with at least three
distinct terms transforming nontrivially under phase rota-
tions. In Table I, we give the list of these symmetry groups
together with examples of the three interaction terms and
the phase rotations which generate the corresponding
group.

Two remarks concerning this table are in order. First, we
stress that all these groups are realizable, so that if the three
terms in each line are written down with nonzero coeffi-
cients, there is no phase transformation other than the
multiple of the generator and the common overall phase
shift which leaves them invariant. Second, since the poten-
tial is invariant under the common phase shift of all dou-
blets, one can freely add additional equal phases to the
generators shown in the third column, and, in addition, one
can permute the doublets. For example, the last line of this
table can be replaced by ð3y2Þð1y2Þ, ð3y1Þð4y1Þ, ð4y3Þ2,
which is symmetric under the Z8 group generated by phase
rotations 2�

8 ð0; 1; 2; 6Þ.
The patterns of phase shifts given in this table allow for

construction of various dark sectors with different possi-
bilities for dark-matter dynamics. Here, we do not aim at a
complete classification of these possibilities but would
like only to show that there are examples in 4HDM in
which semiannihilation of dark-matter candidates is also
forbidden.

To this end, let us consider the Z7-symmetric 4HDM
with the potential V ¼ V0 þ VZ7

with

VZ7
¼ �1ð�y

4�1Þð�y
3�1Þ þ �2ð�y

4�2Þð�y
1�2Þ

þ �3ð�y
4�3Þð�y

2�3Þ þ H:c: (11)

As before, we assume that only the first doublet couples to
fermions. Using the technique of the previous section, one
can easily construct the potential V0 with the global mini-

mum at ðv= ffiffiffi
2

p
; 0; 0; 0Þ. Then, expanding the doublets simi-

larly to Eq. (7), one observes that z3 and z
�
4 haveZ7 charges

q ¼ 3 and mix via the �1 term leading to mass eigenstates
d and D. In addition, we have the field z2 with Z7 charge

q ¼ 2 and electrically charged Higgs bosons w�
2;3;4 with

appropriate Z7 charges.
By adjusting free parameters, one can easily make d the

lightest among the particles which transform nontrivially
under Z7. Then, the other particles will either eventually
decay to d or d� plus SM particles or will be stable
representing an additional contribution to dark matter.
Again, if the asymmetry between d or d� exists and if the
rate of their annihilation is high, then after the freeze-out,
we are left with the gas predominantly made of d’s.
The subsequent microscopic dynamics depends on the

interactions between d’s and z2’s which follow from
Eq. (11). The relevant terms are dz2z2 times a SM field
from the �2 term and dddz�2 from the �3 term. One- or
two-particle processes such as d ! z�2z

�
2, dd ! d�z2 and

dd ! z2z2z2 are all kinematically forbidden. Multiple col-
lision kinetics depends on whether mz2 < 3md or not. If z2
is not too heavy, then the ‘‘triple semiannihilation,’’ ddd !
z2XSM, is kinematically allowed and will create a popula-
tion of z2 even if it were absent before. However, z2 will get
depleted by the semiannihilation process z2z2 ! d�XSM.
So, if one starts with a certain concentration of z2, d and
their antiparticles, then z2 will die off at a higher rate than
d’s. In stationary conditions, the terminal concentrations
will be those equilibrating the rates of the following 6d
tree-level scattering with intermediate z2’s:

6d ! z2z2XSM ! d�X0
SM; (12)

and the subsequent annihilation of d�. The net result of
this chain will be the ‘‘7d-burning process,’’ 7d ! XSM,
the bottleneck in this chain being the triple-d process
ddd ! z2XSM.
On the other hand, if mz2 > 3md, then ddd ! z2 is

kinematically forbidden, while the inverse process leads
to a quick z2 decay. In this case, one can still burn d’s via
the tree-level process with intermediate virtual z2’s:

dddd ! d�d�z2z2 ! d�d�d�XSM; (13)

The net result will be the same 7d burning, but the bottle-
neck process is now the 4d collision, whose rate is even
stronger suppressed.

V. DISCUSSION AND CONCLUSIONS

The main purpose of this paper is to demonstrate that
there already exists a phenomenological template for scalar
dark-matter models stabilized by cyclic groups larger than
Z2. This template uses several electroweak Higgs doublets
decoupled from fermions, and it represents one of the
simplest extensions of the standard model. Remarkably,
models with few doublets can easily accommodate dark
sectors which are stabilized by a large list of discrete
groups and which display various kinds of microscopic
dynamics. In particular, we gave explicit examples of
dark sectors where the bottleneck process leading to de-
pletion of asymmetric dark matter can be a two-particle,

TABLE I. Cyclic groups realizable as symmetry groups in the
scalar sector of 4HDM; (ayb) is a short notation for (�y

a�b).

group interaction terms phase rotations

Z2 ð1y2Þ, ð1y3Þ, ð1y4Þ2 2�
2 ð0; 0; 0; 1Þ

Z3 ð3y2Þ, ð1y3Þð4y3Þ, ð1y4Þð1y2Þ 2�
3 ð0; 1; 1; 2Þ

Z4 ð3y2Þ, ð1y3Þð4y3Þ, ð1y4Þ2 2�
4 ð0; 1; 1; 2Þ

Z5 ð4y3Þð2y3Þ, ð3y2Þð1y2Þ, ð4y1Þð3y1Þ 2�
5 ð0; 1; 2; 3Þ

Z6 ð4y3Þð2y3Þ, ð3y2Þð1y2Þ, ð1y4Þ2 2�
6 ð0; 1; 2; 3Þ

Z7 ð4y1Þð3y1Þ, ð4y3Þð2y3Þ, ð4y2Þð1y2Þ 2�
7 ð0; 2; 3; 4Þ

Z8 ð4y3Þð2y3Þ, ð4y2Þð1y2Þ, ð1y4Þ2 2�
8 ð0; 2; 3; 4Þ
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three-particle or four-particle semiannihilation. We stress
that these models do not require any serious fine-tuning.
We only ask for the presence of terms invariant under the
chosen symmetry group but do not constrain coefficients in
front of these terms.

In certain aspects, these models resemble the inert dou-
blet model [3,4], but in the other, they rely on symmetry
patterns which arise only with several doublets. In this
respect, such models can be viewed as ‘‘multi-inert’’ dou-
blet models, although this name of course does not com-
pletely specify the microscopic dynamics.

Exploring the observational consequences of each sort
of microscopic dynamics is a separate task. It should
include study of the dark-matter kinetics in two situations.
First, one obviously needs to track down the dark-matter
evolution in the expanding Universe after the electroweak
phase transition and determine the freeze-out abundances.
Analysis of Ref. [13] already proves that semiannihilation
processes can be important, but it remains to be understood
how sensitive the evolution is to the exact microscopic
dynamics.

We would like to stress that studying this problem in the
context of multi-Higgs-doublet models can be much
subtler than it looks at first glance due to multiple phase
transitions near and below the electroweak scale. Indeed,
even in the two-Higgs-doublet model, a single electroweak
phase transition can split into a sequence of several phase
transitions of different nature, both in the general case [21]
and in the Inert doublet model [22]. One can expect that
even longer chains of phase transitions can be possible in
multidoublet models. Note that the last among these phase
transitions can, in principle, happen at temperatures much
lower than the nominal electroweak temperature scale.
Consequently, the Universe might have evolved through
a sequence of vacua with different, and perhaps exotic,
properties. Phase transitions between these phases could
have led to complete restructuring of the particle mass
spectrum, both within the SM and in the dark sector;
particles which are stable in one phase can be unstable in
another. All these delicate details, as well as the thermo-
dynamics of the phase transitions themselves, can modify

the evolution of the dark sector. None of the existing
evolution codes can adequately address these intricacies.
The second situation where the microscopic dark-matter

dynamics can make an impact is the present epoch evolu-
tion at astrophysical sites of elevated dark matter concen-
trations (Galactic centers, interiors of compact stars, etc.
[23]). Since multiparticle processes are involved, the sen-
sitivity to the dark-matter density will be different from
that of the usual two-particle annihilating or with truly
nonannihilating dark matter.
For example, it is known that dark matter with a suffi-

cient elastic cross section can get captured inside neutron
stars [23]. In models with asymmetric truly nonannihilat-
ing scalar dark matter, its accumulation can lead to for-
mation of the Bose-Einstein condensate (which means that
the occupation number in the phase space can become
large) or even to collapsing in a tiny black hole [24]. In a
certain region of parameter space, this black hole will
destroy the host neutron star sufficiently quickly compared
to the typical neutron star lifetime; therefore, this region is
excluded by observations. In the case of multi-inert dark
matter accumulated inside a neutron star, multiple annihi-
lation processes will effectively enter the game as the
density reaches a certain threshold, precluding black-hole
formation and avoiding the above constraints.
In conclusion, we showed that multi-Higgs-doublet

models can naturally accommodate scalar dark-matter can-
didates protected by the group Zp. For a model with N

doublets, the values of p can be as large as 2N�1. These
models do not require any significant fine-tuning and can
lead to a variety of forms of microscopic dynamics among
the dark matter candidates (allowing or forbidding semi-
annihilation, offering different routes to multiparticle
annihilation, etc.).
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