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We study the mass, the mixing, and the coupling with the Z boson of the lightest Higgs boson in the

next-to-minimal supersymmetric standard model with the Z3 symmetry. The vacuum structure of the

Higgs potential is analyzed, and the new false vacua are discussed. The significant parameter region can

be excluded by requiring the realistic vacuum to be deeper than false vacua. In numerical analysis, we also

require the couplings to be perturbative up to the Grand Unified Theory scale. Our analysis results in

constraints on the properties of the lightest Higgs boson.
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I. INTRODUCTION

Supersymmetric extension of the standard model is one
of the promising candidates for physics beyond the weak
scale. In particular, the minimal supersymmetric standard
model (MSSM) is interesting. However, the MSSM has the
so-called � problem [1]. The �-term is the supersymmet-
ric mass term of Higgs fields. In addition, Higgs fields have
soft scalar mass terms due to supersymmetry (SUSY)
breaking. To realize the successful electroweak symmetry
breaking (EWSB), both sizes of the � and soft scalar
masses must be of the same order. Why can the two masses
with different sources be of the same order? That is the �
problem. Furthermore, the LHC bounds mh > 115 GeV
[2,3] also give a significant constraint on the Higgs sector
of the MSSM.

The next-to minimal supersymmetric standard model
(NMSSM) is the simplest extension of the MSSM by add-
ing a singlet field S [4–14] (for a review, see Ref. [15]). The
�-term is forbidden by the Z3 discrete symmetry, but it is
effectively induced though the coupling �SH1H2 in the
superpotential after the scalar component of S develops
its vacuum expectation value (vev). Furthermore, such a
vev is determined by SUSY breaking terms. Thus, the vev
is related with the size of SUSY breaking, and the
�-problem can be resolved.

In addition, the Higgs sector of the NMSSM has sig-
nificantly different aspects from one in the MSSM (see,
e.g., Refs. [15,16]). The lightest Higgs mass at the tree
level can be larger than the one in the MSSM, because the
above coupling term �SH1H2 in the superpotential leads to
a new quartic term ofH1 andH2 in the Higgs potential. The
larger value of � would increase the lightest Higgs mass.
Moreover, the Higgs fields H1 and H2 are mixed with the

singlet S after the symmetry breaking. Such mixing
changes the coupling between the Higgs scalars and vector
bosons. Thus, the Higgs sector of the NMSSM has a rich
structure.
Furthermore, the behavior of the Higgs potential and its

vacuum structure are much more complicated in the
NMSSM than those in the MSSM. The Higgs potential
of the NMSSM should include the realistic minimum,
where the successful EWSB is realized. In addition to the
realistic vacuum, the Higgs potential may include other
(local) minima, some of which do not break the electro-
weak symmetry correctly. If such false vacua are deeper
than the realistic vacuum, the realistic vacuum may not be
realized.1 Hence, our parameter space of SUSY breaking
terms and dimensionless couplings in the NMSSM would
be constrained in order to avoid such false vacua such that
false vacua are less deep than the realistic vacuum. In fact,
numerical studies have been done, and also analytical
studies along certain directions have been carried out
[27–36]. Then, it was shown that significant parameter
regions can be excluded by requirement to avoid false
vacua. For example, the NMSSMTools2 is the famous
code to analyze several phenomenological aspects in the
NMSSM [37–39], and it includes some of the analytical
conditions to avoid certain false vacua.
Our purpose in this paper is to study phenomenological

aspects of the Higgs sector in the NMSSM such as the
physical mass spectrum of Higgs scalars and their mixing
with taking into account analytical conditions to avoid
false vacua. For false vacua, we consider directions, which
are new and not included, e.g., in the NMSSMTools. Then,
we will show that important parameter regions could be
excluded by such conditions. Obviously, the parameter
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1In addition, there may be wrong vacua, where squarks and
sleptons develop their vevs. On such vacua, charge and/or color
are broken [9,10,17–26].

2See http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html.
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region, where the Higgs masses are tachyonic on the
realistic vacuum, is excluded. When the doublet Higgs
and singlet Higgs scalars mix sizably, the lightest Higgs
boson mass may become tachyonic. When there are such
tachyonic modes, there would be a wrong vacuum deeper
than the realistic vacuum. Thus, the parameter region with
the tachyonic Higgs boson mass corresponds to the region,
where false vacua are deeper than the realistic vacuum.
Furthermore, the parameter region leading to deeper false
vacua would be near and outside the region with the
tachyonic Higgs boson mass on the realistic vacuum.
Thus, wider regions of the parameter space, in particular,
the parameter regions with sizable mixing between doublet
and singlet Higgs scalars, would be excluded by requiring
them to avoid false vacuum.

This paper is organized as follows. In Sec. II, we review
the Higgs sector of the NMSSM, in particular, the realistic
vacuum and Higgs boson masses. In Sec. III, we study new
false vacua, which can be deeper than the realistic vacuum.
In Sec. IV, we study numerically implications of our
constraints. Section V is devoted to conclusions and
discussions.

II. REALISTIC VACUUM AND THE HIGGS
MASSES IN THE NMSSM

We start our discussion with briefly reviewing the real-
istic vacuum and the masses of the Higgs bosons in the
NMSSM. The NMSSM is defined by adding a gauge

singlet chiral supermultiplet Ŝ and imposing a global Z3

symmetry to the MSSM. Because of the Z3 symmetry, the
superpotential consists of only terms involving three chiral
supermultiplets; thus, dimensionful couplings as a super-
symmetric Higgsino mass term and the tadpole term are
forbidden. In the following, fields with a hat ð̂Þ symbol
represent superfields, and those without the symbol repre-
sent the corresponding scalar fields. The superpotential of
the Higgs and the singlet superfields is given by

W Higgs ¼ ��ŜĤ1 � Ĥ2 þ 1

3
�Ŝ3; (1)

where � and � are the Yukawa coupling constants of the

Higgs fields, and Ĥ1 and Ĥ2 are the down-type and the up-
type Higgs supermultiplets defined as

Ĥ1 ¼
Ĥ0

1

Ĥ�
1

 !
; Ĥ2 ¼

Ĥþ
2

Ĥ0
2

 !
; (2)

respectively.
The realistic vacuum which breaks the electroweak

(EW) symmetry successfully can be found by minimiz-
ing the Higgs potential. The Higgs potential is obtained
from F-, D-terms and the soft SUSY-breaking terms,
which are given by

Vsoft ¼ m2
H1
Hy

1H1 þm2
H2
Hy

2H2 þm2
SS

yS

�
�
�A�SH1 �H2 � 1

3
�A�S

3 þ H:c:

�
; (3)

where m2
H1;H2;S

and A�;� are soft masses and trilinear

couplings of the scalars, respectively. For the EW sym-
metry to be successfully broken, the neutral Higgs fields
develop vevs while vevs of the charged Higgs fields are
vanishing. Using the gauge transformations, without loss
of generality, one can take hHþ

2 i¼0 and hH0
2i2Rþ. The

condition for vanishing hH�
1 i is to require that the charged

Higgs scalars have positive masses squared. Then, the
potential of the neutral Higgs fields is given by,

V¼�2jSj2ðjH0
1j2þjH0

2j2ÞþjFSj2þVD

þm2
H1
jH0

1j2þm2
H2
jH0

2j2þm2
SjSj2

�
�
�A�H

0
1H

0
2S�

1

3
�A�S

3þH:c:

�
; (4)

where FS and VD denote the F-term of Ŝ and D-term
potential,

F�
S ¼ �S2 � �H0

1H
0
2 ; (5)

VD ¼ 1

8
ðg21 þ g22ÞðjH0

1j2 � jH0
2j2Þ2: (6)

Here, g1 and g2 denote the gauge coupling constants of
Uð1ÞY and SUð2ÞL, respectively. The Higgs sector of the
NMSSM is characterized by the following parameters:

�; �; m2
H1
; m2

H2
; m2

S;

A�; and A�:
(7)

In the following discussions, we assume that all of the
soft masses, trilinear couplings, and Yukawa couplings are
real for simplicity. Although the vevs of H0

1 and S can be

complex in general under this assumption, it was shown in
Ref. [40] that such CP-violating extrema are maxima
rather than minima. Thus, it is reasonable to assume that
the neutral Higgs fields develop real and nonvanishing vevs
while the charged ones do not. Then, we denote vevs as

hH0
1i ¼ v1; hH0

2i ¼ v2; hSi ¼ s: (8)

Furthermore, as was discussed in Ref. [29], the Higgs
potential (4) is invariant under the replacements, �, �, s !
��, ��, �s and �, v1 ! ��, �v1. Therefore, we can
always take � and v1 to be positive while �, �ð� �sÞ and
A�, A� can have both signs. The existence of the minima of
the Higgs potential is classified according to the signs of �,
s, and A� and A� [29]:
Case 1: for positive �,
(a) when sign½s� ¼ sign½A�� ¼ �sign½A��, the minima

always exist.

KOBAYASHI, SHIMOMURA, AND TAKAHASHI PHYSICAL REVIEW D 86, 015029 (2012)

015029-2



(b) when sign½s� ¼ �sign½A�� ¼ �sign½A��, the min-
ima exist if jA�j> 3�v1v2jA�j=ð�jsA�j þ �js2jÞ
where the denominator is positive.

(c) when sign½s� ¼ sign½A�� ¼ sign½A��, the minima
exist if jA�j< 3�v1v2jA�j=ðjsA�j þ �js2jÞ.

Case 2: for negative �,

(a) when sign½s� ¼ sign½A�� ¼ sign½A��, the minima
exist if jA�j< 3�v1v2jA�j=ðjsA�j � �js2jÞ where
the denominator is positive.

The vevs are determined by the stationary conditions (4)
with respect to the neutral Higgs fields,

@V

@H0
1

¼ �2v cos�ðs2 þ v2sin2�Þ � ��vs2 sin�þ 1

4
g2v3 cos� cos2�þm2

H1
v cos�� �A�vs sin� ¼ 0; (9a)

@V

@H0
2

¼ �2v sin�ðs2 þ v2cos2�Þ � ��vs2 cos�� 1

4
g2v3 sin� cos2�þm2

H2
v sin�� �A�vs cos� ¼ 0; (9b)

@V

@S
¼ �2sv2 þ 2�2s3 � ��v2s sin2�þm2

Ss�
1

2
�A�v

2 sin2�þ �A�s
2 ¼ 0; (9c)

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

q
, tan� ¼ v2=v1, and g2 ¼ g21 þ g22. The vevs of the doublet Higgs fields must satisfy v ’ 174 GeV

to give the correct masses to the gauge bosons. When two of the Higgs fields are nonvanishing, the other must be
nonvanishing without special relations among parameters. Therefore, a nontrivial solution of Eq. (9) is as follows: either
three Higgs fields are nonvanishing or one Higgs field is nonvanishing [34]. This fact is originated from the trilinear terms,
�A�H

0
1H

0
2S, in the soft SUSY-breaking terms and the quartic term, ��H0

1H
0
2ðS�Þ2, in the F-term potential. This observation

justifies our strategy of analyses on false minima of the Higgs potential in the next section.
It is useful to express the soft SUSY-breaking masses in terms of other parameters by using the stationary conditions (9),

m2
H1

¼ ��2 � 2�2

g2
m2

Zsin
2�� 1

2
m2

Z cos2�þ�

�
�

�
�þ A�

�
tan�; (10a)

m2
H2

¼ ��2 � 2�2

g2
m2

Zcos
2�þ 1

2
m2

Z cos2�þ�

�
�

�
�þ A�

�
cot�; (10b)

m2
S ¼ � 2�2

g2
m2

Z �
2�2

�2
�2 þ 2��

g2
m2

Z sin2�þ �2

g2
A�m

2
Z

�
sin2�� �

�
A��; (10c)

where m2
Z ¼ 1

2g
2v2 and � ¼ �s. Thus, given mZ, we can

use the following parameters:

�; �; A�; A�; tan�; and �; (11)

instead of Eq. (7). Using these parameters, the minimum of
the realistic vacuum, which reproduces the observed
Z-boson mass, can be written as

Vmin ¼ ��2 m
4
Zsin

22�

g4
�m4

Zcos
22�

2g2
þ �VS

min; (12)

where �VS
min is the potential involving only s ¼ �=�,

�V S
min ¼

�2

�4
�4 þ 2

3

�

�3
A��

3 þ 1

�2
m2

S�
2; (13)

with m2
S given by Eq. (10c). In the following section, we

study false vacua and compare their depths with Eq. (12).
The mass-squared matrices of the Higgs bosons at tree

level are obtained fromEq. (4) by expanding the Higgs fields
around their vevs. The number of degrees of freedom of the
Higgs bosons is ten, and three of them are absorbed by gauge
bosons via the Higgs mechanism. The remaining seven
physical degrees correspond to threeCP-even Higgs bosons,
two CP-odd Higgs bosons, and one charged Higgs boson.

The mass-squared matrix of the CP-even Higgs bosons is
real-symmetric and denoted asM2

h;ij where i, j runs over 1 to

3 for the down-type, the up-type, and the singlet Higgs
scalars. It is given by

M2
h;11 ¼ m2

Zcos
2�þ�

�
�

�
�þ A�

�
tan�; (14a)

M2
h;22 ¼ m2

Zsin
2�þ�

�
�

�
�þ A�

�
cot�; (14b)

M2
h;33 ¼

4�2

�2
�2 þ �

�
A��þ �2

g2
A�m

2
Z

�
sin2�; (14c)

M2
h;12 ¼ 2

�
�2

g2
� 1

4

�
m2

Z sin2���

�
�

�
�þ A�

�
; (14d)

M2
h;13 ¼

2
ffiffiffi
2

p
�

g
�mZ cos�

�
ffiffiffi
2

p
�

g
mZ

�
A� þ 2�

�
�

�
sin�; (14e)

M2
h;23 ¼

2
ffiffiffi
2

p
�

g
�mZ sin�

�
ffiffiffi
2

p
�

g
mZ

�
A� þ 2�

�
�

�
cos�: (14f)
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The mass-squared matrix of the CP-odd Higgs bosons,M2
A,

is also real-symmetric and given by

M2
A;11 ¼

2�

sin2�

�
A� þ �

�
�

�
; (15a)

M2
A;22 ¼

�2

g2
m2

Z

�
A�

�
þ 4�

�

�
sin2�� 3�

�
A��; (15b)

M2
A;12 ¼

ffiffiffi
2

p
�

g
mZ

�
A� � 2�

�
�

�
; (15c)

where we have removed the Nambu-Goldstone mode.
It can be shown that the mass of the lightest CP-odd

Higgs boson vanishes when � goes to zero. This is because
the Peccei-Quinn symmetry is restored in this limit. Hence,
� should not be very small to avoid tachyonic CP-odd
Higgs bosons. Assuming j�j>mZ to be consistent with
nonobservation of the charged Higgsinos, we can derive
intuitive conditions to avoid tachyonic Higgs bosons from
Eqs. (14) and (15). First, from Eqs. (14a)–(14c), it can be
understood that the mass of the lightest CP-even Higgs
tends to become tachyonic if the following conditions are
satisfied:

�

�
�

�
�þ A�

�
� �m2

Z; (16)

and/or

�

�
A�� � �m2

Z: (17)

Necessary conditions to avoid the tachyonic Higgs bosons
are to require the left-hand side of Eqs. (16) and (17) to be
positive, i.e.

(1) for positive �, A�� and A�� should be positive.
(2) for negative �, A�� should be negative, and

�A�� >���2 should be satisfied.

On the other hand, when � is positive (negative), we can
expect from Eq. (15b) that A�� should be negative (posi-
tive) to avoid the lightest CP-odd Higgs boson being
tachyonic. Thus, there is a tension between the conditions
for nontachyonic modes of the CP-even and the CP-odd
Higgs bosons. This tension can be avoided if magnitudes of
A� and A� should be tuned so that both conditions are
satisfied. One of the choices of A� and A� for positive � is
obtained as [41]

A��>� k

�
�2 and � 4�2

�2
�2 <

�

�
A��< 0; (18)

where tachyonic Higgs bosons can be also avoided when �
is negative. The condition (18) is the sufficient condition
stating that parameters not satisfying this condition result
in the tachyonic masses of the Higgs bosons. This condi-
tion is useful to understand the behavior of the tachyonic
mass region. As we will show in Sec. IV, the tachyonic
mass region appears near the regions given by Eq. (18).

The condition (18) implies that the effective Higgsino
mass, j�j, should be larger than jA�j. Since � is of order
TeV scale not to introduce the little hierarchy problem,
jA�j must be relatively small.
Furthermore, we can derive other conditions by taking

into account the off-diagonal terms. The mass of the light-
est CP-even Higgs boson tends to become tachyonic when
the mixings between the doublet Higgs and the singlet
bosons are large. The mixing can be naively written as

2��� ð�A� þ 2��Þ sin2�: (19)

Requiring this mixing to be vanishing, we have the
condition [41]

A� ’ 2�

sin2�
� 2

�

�
�: (20)

Thus, the tachyonic Higgs boson tends to appear when the
left- and right-hand sides are not comparable. As we
mentioned, the supersymmetric Higgsino mass should be
about TeV scale. This implies that A� must be taken to be
relatively large due to the factor 2= sin2�. One might
consider that small A� can be taken when �=� is larger
than 1 so that the left-hand side of Eq. (20) is tuned. In such
a parameter region, however, tachyonic Higgs bosons do
not appear even if A� is larger than the right-hand side of
Eq. (20). Indeed, as we will see in Sec. IV, the tachyonic
Higgs boson appears for small values of j�=�j. This is
because the element of the mass squared (14c) increases
and becomes larger than the off-diagonal element (14e)
and (14f) as j�=�j increases. The mixing of the singlet in
the lightest Higgs boson is suppressed in this region.
The mass squared of the charged Higgs boson is

m2
H� ¼ m2

W � 2�2

g2
m2

Z þ
2�

sin2�

�
A� þ �

�
�

�
; (21)

where m2
W ¼ 1

2g
2
2v

2 is the mass squared of the W boson.

The charged Higgs boson mass squared can also be ta-
chyonic when � is large enough. These mass-squared
matrices are used in numerical calculations to find ta-
chyonic mass regions.

III. FALSE VACUA ALONG
SPECIFIC DIRECTIONS

In this section, we show that false vacua in the Higgs
potential can be found by considering specific directions.
Hereafter, we analyze the Higgs potential involving only
the neutral Higgs fields. As discussed in the previous
section, when two of the Higgs fields develop their vevs,
the other must develop its vev to satisfy the stationary
conditions. Thus, analyses of the Higgs potential are con-
strained to cases of either one or three nonvanishing
Higgs fields. Obviously, the vacua, where only one of the
Higgs fields has nonvanishing vev, are unrealistic, and the
conditions to avoid such vacua have been studied in
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Refs. [27,34]. The realistic vacuum given in Eq. (9) is
included along the direction where all of the three Higgs
fields develop their vevs. The cases with three nonvanish-
ing Higgs vevs also include false vacua on which the
EWSB does not occur correctly. Analyses with three non-
vanishing Higgs fields are so complicated in general that it
cannot be performed analytically. However, analytical
study is possible for specific directions in the field space
along which some of the Higgs fields are related. In gen-
eral, minima of the scalar potential appear when positive
quartic terms balance with negative quadratic and trilinear
terms. When the quartic terms in the scalar potential (4)
vanish, the false minima appear for large values of the
Higgs fields, and hence these become deeper. Thus, we
restrict our discussions to three possible cases in which
three Higgs fields are aligned so that the D-term and/or
FS-term are vanishing. In Ref. [34], the false vacuum with
jH1j ¼ jH2j � 0 and S � 0, which corresponds to FS ¼ 0
and VD ¼ 0, was studied. In fact, false vacua deeper than
the realistic vacuum are easily found along these direc-
tions. Such directions should be avoided to stabilize the
realistic minimum. In the following, we denote the neutral
Higgs fields H0

1;2 as H1;2 for abbreviation.

A. FS ¼ VD ¼ 0 direction

First, we consider a direction where both of FS and VD

are vanishing. The vacua along this direction were first
analyzed in Ref. [34], and it was shown that those can be
deeper than the realistic vacuum. Along this direction,
referred as A, the Higgs fields are not independent of
each other, but related as

H1 ¼ H2; (22a)

S2 ¼ �

�
H1H2: (22b)

Here, positive values of H1 and H2 are assumed since we
are interested in the false vacua near the realistic vacua.
Then, � must be positive to satisfy Eq. (22b).

The scalar potential along this direction can bewritten as

VA ¼ F̂H2
4 � 2ÂH2

3 þ m̂2H2
2; (23)

where

F̂ ¼ 2�3

�
; (24a)

Â ¼ �

ffiffiffiffi
�

�

s �
�1jA�j � 1

3
�2jA�j

�
; (24b)

m̂2 ¼ m2
H1

þm2
H2

þ �

�
m2

S; (24c)

and

�1 � sign½A�H1H2S� ¼ sign½A��sign½S�; (25a)

�2 � sign½�A�S
3� ¼ sign½A��sign½S�: (25b)

The minimum of the potential becomes deeper when the

trilinear term, Â, is positive. From Eqs. (25), the trilinear
term can be always taken to be positive using the sign of S
and is given as

Â ¼ �

ffiffiffiffi
�

�

s ��������A� � 1

3
A�

��������: (26)

By minimizing the potential of Eq. (23) with respect toH2,
the value of H2 at extremal is obtained as

H2ext ¼ 3Â

4F̂

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8m̂2F̂

9Â2

s 1
CA; (27)

where m̂2 � 9Â2

8F̂
is required for H2ext to be real. Then, the

minimum of the potential is obtained by inserting Eq. (27)
into Eq. (23) as

VA;min ¼ � 1

2
H2ext

2ðÂH2ext � m̂2Þ: (28)

To realize the correct EWSB, the following necessary
condition is required:

VA;min 	 Vmin: (29)

B. FS � 0 and VD ¼ 0 direction

Next, we analyze the direction where VD is vanishing
while FS is nonvanishing. We refer this direction as the
direction B. The vevs of the up-type and down-type Higgs
scalars must always satisfy the relation

H1 ¼ H2 (30)

for VD to be vanishing.
We parametrize the vev of S as

S ¼ sign½S��H2; (31)

where � is positive by definition. Then, the potential is
given by

VB ¼ F̂H2
4 � 2ÂH2

3 þ m̂2H2
2; (32)

where

F̂ ¼ �2�4 þ �2ð1þ 2�2Þ � 2�1�j�j�2; (33a)

Â ¼
�
�2�jA�j � 1

3
�3j�jjA�j�2

�
�; (33b)

m̂2 ¼ m2
H1

þm2
H2

þm2
S�

2; (33c)

and

�1 ¼ sign½�H2ðS�Þ2� ¼ sign½��; (34a)

�2 ¼ sign½A�H2S� ¼ sign½A��sign½S�; (34b)

�3 ¼ sign½�A�S
3� ¼ sign½��sign½A��sign½S�: (34c)

We can expect that the deepest direction will be found
along the positive trilinear terms with � > 0 and A�A� < 0
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so that F̂ becomes smaller and Â becomes larger. From
Eqs. (34), the trilinear term can be always taken to be
positive, and the quartic and the trilinear terms are given by

F̂ ¼ �2�4 þ �2ð1þ 2�2Þ � 2���2; (35a)

Â ¼
���������A� � 1

3
�A��

2

���������: (35b)

The extremal value of H2 and the minimum of the poten-
tial, VB;minð�Þ, along this direction are given in the same

form as Eqs. (27) and (28) by replacing F̂, Â, and m̂2 with
Eqs. (35a), (35b), and (33c). Note that the value of
VB;minð�Þ depends on �. Then, the following condition is

required to stabilize the realistic minimum,

VB;minð�Þ 	 Vmin; (36)

for any value of �.
It is important to note here that the case with one non-

vanishing vev S, i.e.,

H1 ¼ H2 ¼ 0; S � 0; (37)

is included in the direction B, when we take the limit
� ! 1 and H2 ! 0 by keeping S to be finite. If the
minimum along this direction is the deepest among the
ones included in the direction B, it can be found automati-
cally by analyzing the direction B.

C. FS ¼ 0 and VD � 0 direction

The last direction we analyze is that FS ¼ 0 and
VD � 0, referred by the direction C. From FS ¼ 0, we
have a relation (22b) and parametrize the vev’s as

H1 ¼ �H2; S ¼ sign½S��H2; (38)

where � and � should satisfy

�2 ¼ �

�
�; ð� > 0Þ: (39)

The potential is given by Eq. (23) with

F̂ ¼ �ð1þ �2Þ�
3

�
þ 1

8
g2ð1� �2Þ2; (40a)

Â ¼ �

ffiffiffiffi
�

�

s ��������A� � 1

3
A�

���������3=2; (40b)

m̂2 ¼ �2m2
H1

þm2
H2

þ �

�
�m2

S: (40c)

The extremal value of H2 and the minimum of the
potential, VC;minð�Þ, are given in the same form as

Eqs. (27) and (28) by replacing F̂, Â, and m̂2 with
Eqs. (40a)–(40c). Note that the value of VC;minð�Þ depends
on �. If the extremal values satisfy

H1ext
2 þH2ext

2 ¼ ð1þ �2ÞH2ext
2 ¼ v2 ’ ð174 GeVÞ2;

(41)

this minimum can become the true vacuum. Otherwise, it is
a false vacuum. Then, the following condition is required
to stabilize the realistic minimum:

VC;minð�Þ 	 Vmin; (42)

for any value of �.
The direction C includes the direction along which only

H2 has the nonvanishing vev, i.e.,

H1 ¼ S ¼ 0; H2 � 0: (43)

This can be easily seen by taking � ¼ 0.3 Furthermore, the
direction C includes the direction A which corresponds to
� ¼ 1. Therefore, all of the false minima which can be
found along the directions proposed so far are included in
the direction B and C. Hence, it is enough to analyze the
potential along these two directions.

IV. NUMERICAL ANALYSIS

In this section, we present numerical results of the
constraints from which the false vacua studied in the
previous section should not be deeper than the realistic
one. In addition, we (i) take into account that physical
masses of the CP-even, -odd and charged Higgs scalars
are nontachyonic and (ii) require that the parameters �, �
and the top Yukawa coupling have no Landau pole until the
Grand Unified Theory (GUT) scale (’ 1:6
 1016 GeV).
For condition (ii), we solve renormalization group (RG)
equations at one-loop order [10,42] from the EWSB scale
to the GUT scale, requiring that � and j�j are smaller than
2� at the GUT scale [15,43].

FIG. 1 (color online). Region excluded by the occurrence of a
Landau pole on the �� � plane. Solid (red), dashed (green),
dotted (blue), and dashed-dotted (violet) curves correspond to
tan� ¼ 5, 3, 1.7, and 1.6, respectively. The cutoff of the model is
taken as the GUT scale (inside) and 10 TeV (outside). The region
outside each curve is excluded.

3The direction with only H1 ¼ 0 can be found by taking
� ! 0 and H2 ! 1, keeping H1 finite.
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Figure 1 shows the region excluded by the occurrence of
a Landau pole on the �� � plane. We take a cutoff of the
model to be the GUT scale (inside) and 10 TeV (outside)
for reference and use the running top quark mass,
mt ¼ 165 GeV, as the input. Solid (red), dashed (green),
dotted (blue), and dashed-dotted (violet) curves correspond
to tan� ¼ 5, 3, 1.7, and 1.6, respectively. The region out-
side each curve is excluded. One can see that, for the GUT
scale cutoff, � is more constrained as tan� is smaller, while
the upper bound on � stays constant around 0.63. This is
because RG evolution of � is directly connected with the
top Yukawa coupling. When tan� is small, the top Yukawa
coupling at low energy is large, and it grows quickly as the
energy scale goes up. Then, � is driven to a large value as
the top Yukawa coupling grows. On the other hand, RG
evolution of � is proportional to �2 and depends on the top
Yukawa coupling only through �. Therefore, � starts to
grow after the top Yukawa coupling, and � become suffi-
ciently larger than 2�. As we can see in Fig. 1, the
maximum value of � becomes small drastically for

tan�< 2, and it disappears when tan� � 1:5. For the
10 TeV cutoff, the upper bounds on � and � do not change
with respect to tan� and are about 1.9 and 1.6, respectively.
The result is understood by the fact that the RG evolutions
of � and � are determined by the values of these couplings
at the EWSB scale, and the evolutions are almost indepen-
dent of the top Yukawa coupling. This is simply because
the cutoff is close to the EWSB scale, and the top Yukawa
coupling does not grow very much even for small tan�.
In the following, we choose moderate values of tan� to
analyze the constraints from the unrealistic minima.
We use the parameter sets given in Table I as illustrating

examples. For radiative corrections to the Higgs potential,
we fix the soft masses of the third generation of left-handed
squark, m ~Q, and right-handed stop and sbottom, m~t and

m~b, as

m ~Q3
¼ 1000 GeV; m~t ¼ m~b ¼ 500 GeV; (44)

respectively. The trilinear term of stop is chosen as nearly
maximal mixing so that the lightest Higgs boson mass be-
comes the largest. The points 1 and 4 in Table Icorrespond
to the case 1.(a) shown in Sec. II, and the points 2 and 3 in
Table I correspond to the case 1.(b) explained in Sec. II,
respectively. For the point 4, A� is chosen so that the mixing
among the doublet and the singlet Higgs vanishes for small
�=�. Note that on these points, the minimum is found for
positive �.

TABLE I. Parameter sets used in the numerical calculation.

Point tan� � (GeV) A� (GeV) A� (GeV)

1 3 200 300 �50
2 3 200 �300 �50
3 3 400 �300 �50
4 3 200 660 �50

FIG. 2 (color online). Contour plot of the Higgs masses on the �� � plane. The values of the Higgs masses are indicated near each
curves and left bottom in GeV unit in the figure. The filled region is excluded by the tachyonic Higgs masses, and the red solid line
represents the Landau pole condition.
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In Figs. 2, we show the contour plot of the lightest
CP-even Higgs mass in the �� � plane. The values of
the Higgs boson mass are shown near each curve or bottom
left in the figure. The (light blue) filled region represents
the tachyonic mass region of physical Higgs bosons,
and the red solid curve represents the Landau pole condi-
tion. The Figs. 2(a)–2(d) correspond to the points 1, 2, 3
and 4, respectively. One can see that the tachyonic region
appears only in small �=� region in Fig. 2(a) while it also
appears in large �=� region in Figs. 2(b) and 2(c). The
behavior of the tachyonic mass region can be understood
intuitively by Eq. (18). First, as we discussed in the Sec. II,
the mass of the CP-even Higgs boson tends to become
tachyonic if one of the diagonal elements in the squared-
mass matrix is negative. The negative diagonal elements
can be avoided when Eq. (18) is satisfied for positive A�.
The second condition of Eq. (18) imposes the lower bound
on �=� 	 jA�j=4� for negative A�. The lower bound is
0.06 for the points 1 and 2, while the lower bound is 0.03
for the point 3. Hence the diagonal elements are negative
only for very small �=�. Second, the Higgs boson mass
also tends to become tachyonic when the off-diagonal
elements are comparable to the diagonal ones. The off-
diagonal elements become larger as �=� becomes smaller.
Thus, the tachyonic mass region appears in the small �=�
region for positive A�. For negative A�, the first condition
of Eq. (18) gives a stronger constraint on �=� because the

� parameter is larger than A�. The lower bound on �=� is
obtained as jA�=�j ¼ 1:5 and 0:75 for the points 2 and
3, respectively. Thus, the tachyonic mass region appears
for relatively large �=�. For the point 4 where the parame-
ters are tuned so that the mixing of the doublet and the
singlet Higgs bosons vanishes, according to Eq. (20). In
this case, the tachyonic region disappears. This is because
for small �=�, the second term of Eq. (20) is negligible
compared to the first term, and hence the singlet does not
mix. The physical masses of the CP-even Higgs bosons are
mainly determined by the diagonal elements, and the sec-
ond condition of Eq. (18) cannot be applied in this case.
To see the above explanation more concretely, we show

the masses of the Higgs bosons and the mixings in the
lightest Higgs boson for the point 1 in Figs. 3. The mixing,
Niði ¼ 1; 2; SÞ, is defined as

h1 ¼ N1H1 þ N2H2 þ NSS; (45)

where h1 represents the lightest Higgs boson and
P
N2

i ¼1.
Figures 3(a) and 3(b) show the masses of the lightest
Higgs boson h1 and the second lightest Higgs boson h2
for � ¼ 0:1 and 0:5, respectively. Figures 3(c) and 3(d)
show the mixings of the down-type, up-type Higgs H1,
H2 and the singlet S in the lightest Higgs boson corre-
sponding to Figs. 3(a) and 3(b). It is seen in Fig. 3(a)
that the mass of h1 is the most degenerate to that of
h2 at � ¼ 0:2, and it becomes tachyonic at � ¼ 0:4.

FIG. 3 (color online). The masses of the lightest and the second-lightest Higgs boson (top) and the mixings of H1, H2, and S in the
lightest Higgs boson (bottom) for the point 1. The left and right figures correspond to � ¼ 0:1 and 0.5, respectively.
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From Fig. 3(c), one can see that for � � 0:2, the lightest
Higgs boson consists of mainly H2, and the mixings of the
Higgs bosons are constant. The mixings of H1 and S
increase at � ¼ 0:2 where the mass of h1 is the closest to
that of h2. The mixings of H1 and S become maximum at
� ¼ 0:4 where the mass of h1 becomes tachyonic. On the
other hand, as is seen in Fig. 3(b), the mass of the h1
increases slowly as � increases. The mixing of H1 and S
is small, and the main component of h1 is the up-type
Higgs. Thus, the tachyonic mass of h1 appears when the
mixing of H1 and S becomes sizeable.

Figures 4 show the square of the mixing of the
up-type Higgs (Figs. 4(a), 4(c), and 4(e)) and the singlet
(Fig. 4(b), 4(d), and 4(f)) in the lightest CP-even Higgs
boson on the �� � plane. From top to bottom, the figures
correspond to the points from 1 to 3 in Table I. The values
of the mixing are indicated near each curve, and the filled
region is excluded by the tachyonic Higgs masses. The red
curve represents the Landau pole condition. From the

Figs. 4(a) and 4(b), one can see that for the point 1, the
tachyonic region appears when the mixing squared of H2

(S) in the lightest Higgs boson is smaller (larger) than
about 0.5. The qualitative behavior can be understood by
the discussion in Sec. II. On the point 1, the tachyonic
region is mainly determined by the CP-even Higgs boson
and tachyonic masses of the CP-even Higgs boson appear
when �=� is small so that Eqs. (18) and (20) are not
satisfied. For small �=�, M2

h;33 becomes very small, and/

or M2
h;23 becomes large in this region because of the

mixing with the singlet. The large mixing between the
up-type Higgs and the singlet results in large mass split-
ting between the lightest and the second-lightest Higgs
boson, and hence the mass of the lightest Higgs boson
becomes tachyonic. For the points 2 and 3, we can see
from Figs. 4(c)–4(f) that the tachyonic region appears
when the mixing squared of the up-type Higgs in the
CP-even Higgs boson is smaller than 0.7 while the mix-
ing of the singlet is almost zero. On these points, the

FIG. 4 (color online). Contour plot of the mixings of the up-type Higgs (left) and the singlet (right) in the lightest CP-even Higgs
boson on the �� � plane. Panels (a) and (b), (c) and (d), and (e) and (f) correspond to the point 1, 2, and 3, respectively.
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tachyonic mass regions are mainly determined by
the CP-odd Higgs boson. The diagonal element of the
CP-odd Higgs boson decreases for the negative A� while
the off-diagonal element increases negatively. Therefore,
the physical mass of the CP-odd Higgs boson becomes
tachyonic unless �=� is relatively large. In this situation,

the diagonal element M2
h;11 decreases, and the off-

diagonal element M2
h;12 increases for the small �=� region

due to tan� enhancement. Hence, the mixing between the
up-type and the down-type Higgs bosons significantly
reduces the lightest Higgs boson mass. The mixing with
the singlet does not play an important role for this choice

FIG. 6 (color online). The same plots for point 3 (upper panels) and 4 (lower panels) as Fig. 5.

FIG. 5 (color online). Excluded region of the lightest CP-even Higgs mass [(a) and (c)] and the coupling of the Z boson [(b) and (d)].
The upper panels correspond to points 1 and 2, and the lower ones to point 2.
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of the signs because M2
h;33 is always larger thanM

2
h;11 even

for negative values. Our numerical results show that the
up-type and the down-type Higgs doublets mix almost
maximally in the lightest Higgs boson, and the lightest
Higgs boson becomes tachyonic.

Figures 5 and 6 show the constraints from the false vacua
on the lightest Higgs mass boson [(a) and (c)] and the
coupling squared with Z boson normalized by that in the
standard model (SM) [(b) and (d)] in the �� � plane.
Figures 5(a)–5(d) correspond to the points 1 and 2, and
Figs. 6(a)–6(d) correspond to the points 3 and 4, respec-
tively. The same as in Fig. 2, the values of the lightest Higgs
boson mass are indicated near the curves in Figs. 5(a), 6(a),
5(c), and 6(c), and those of the coupling squared with Z
boson are indicated in Figs. 5(b), 6(b), 5(d), and 6(d). The
regions excluded by the constraints from the direction A, B,
and C are indicated by the filled region colored as green,
orange, and purple, respectively. The blue filled region
represents the tachyonic region. In Fig. 5(a), one can see
that the constraint from the direction C excludes the region
outside the tachyonic region, while the constraints from the
direction B exclude inside the tachyonic region. The region
excluded by the direction A is very narrow and appears near
the horizontal axis. The region excluded by the direction B
is simply connected from the realistic vacuum along the

tachyonic region. However, the region excluded by the
direction C appears outside the tachyonic region and hence
is not connected to the realistic minimum. The region cannot
be found by only taking tachyonic masses into account.
From the Fig. 5(a), one can see that it excludes the large
region of the lightest Higgs boson mass. From the Fig. 5(b),
one can see that the constraint from the C direction excludes
the region of the coupling squared from 0.7 to 0.9. This
implies that the lightest Higgs boson has the SM-like cou-
pling with the Z boson and consists of almost purely the
up-type Higgs in most of the allowed region. It is noted that
there exists a small region allowed between the tachyonic
mass region and the region excluded by the direction C. In
this region, the coupling with the Z boson is about half of
that in the SM. However, as shown in Fig. 7, squark masses
become tachyonic in this region. Thus, this region is not
realistic because color and charge symmetry are spontane-
ously broken. In the Figs. 5(c) and 6(a), the constraints from
the directionsB andC exclude regions outside the tachyonic
region. The constraint from the direction A also excludes the
similar but smaller regions. From these figures, large regions
on the �� � plane are excluded. The allowed region corre-
sponds to the small � region where the mass of the lightest
Higgs boson is smaller than 120 GeV, and the coupling
squared is the SM-like. For the point 4, we can see from

FIG. 7 (color online). The same figure as Fig. 5(a) and 5(b). The region of tachyonic squark masses is indicated by yellow.

FIG. 8 (color online). The same figure as Fig. 5(a) and 5(b) for the cutoff 10 TeV.
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the Figs. 6(c) and 6(d) that there is no region excluded by the
false vacua. As explained before, the mixing of the Higgs
bosons is vanishing due to the choice of parameters satisfying
Eq. (20). In this case, the false vacua along the directions A,
B, andC are not deeper than the realistic vacuum, and hence
the realistic minimum is stable. The lightest Higgs boson
mass aswell as the coupling squaredwith theZ boson are not
constrained at all. However, an unnatural tuning betweenA�,
�, and tan� is required. The behavior of the constraints or
the depth of the false minima on the parameters is very
complicated, and it is difficult to understand qualitatively.
However, as we have seen, our constraint can exclude a
sizeable region on the parameter space which cannot be
found by the tachyonic Higgs mass. Thus, it is important to
include the constraints from the false vacua in phenomeno-
logical studies.

So far, we have shown numerical results for the GUT
scale cutoff. The NMSSM with the 10 TeV cut-off scale is
also interesting in view of the heavy Higgs boson without
little hierarchy [32,44–46]. We show the constraints for the
point 1 with 10 TeV cutoff in Fig. 8. One can see that the
large region on the �� � plane is excluded by our con-
straints, although the lightest Higgs boson with the mass
125 GeV and the SM-like coupling can be obtained. In
the region between the tachyonic Higgs boson mass and
the region excluded by the C direction, squark masses
become tachyonic, and hence the region is not allowed
phenomenologically.

V. CONCLUSION

We have studied the mass, the mixings, and the
couplings with the Z boson of the lightest Higgs boson
in the viewpoint of the structure of vacua in the next-to-
minimal supersymmetric standard model with the Z3

symmetry.
In Sec. II, we have shown the intuitive conditions for

which the tachyonic masses for the CP-even and -odd
Higgs bosons can be avoided. The conditions are derived
by requiring that the diagonal elements should not be
negative, and the off-diagonal elements are not comparable
to the diagonal ones. These give rough bounds on the
parameters which are useful to understand the behavior
of the tachyonic masses. In Sec. III, we have shown the
new directions along which unrealistic vacua can appear.
The EW symmetry is not broken successfully on these
unrealistic vacua, and hence these vacua should not be
chosen as our vacuum. We have seen that the depth of
the false vacua is characterized by the SUSY-breaking
scale. Therefore, the false vacua can become deeper than
the realistic vacuum. We have also shown that the false
vacua studied in the previous works [34] are included in the
new directions.

In Sec. IV, we have shown our numerical results on the
mass. First, we have seen that the region of tachyonic
Higgs mass appears for small �=� for positive A� and

negative A� while it also appears for large �=� for negative
A� and A�. In the former case, the lightest CP-even Higgs
boson becomes tachyonic when the mixing of the singlet
becomes larger than 0.5, while in the latter case, the
tachyonic mass of the CP-odd Higgs boson appears
when the mixing of the up-type Higgs becomes larger
than 0.7. Then, we have shown that the new false vacua
appear outside the tachyonic Higgs mass region and large
�=� region. This result implies that the mass and the
mixing of the lightest Higgs boson cannot be large because
a large value of � is excluded in both cases. In fact, we have
shown that by imposing the constraint that the realistic
vacuum is deeper than the new false vacua, and the gauge
and Yukawa couplings are perturbative up to the GUT
scale, important parameter regions for the Higgs mass
around 125 GeV can be excluded. The large mixing of
the up-type, down-type, and the singlet Higgs in the light-
est Higgs boson is also excluded by the new false vacua,
and the lightest Higgs boson consists of mainly the up-
type Higgs boson in the allowed region. Then, we have
seen that the coupling squared with the Z boson of the
lightest Higgs boson is very close to that of the SM. On
the other hand, we have seen that the mass and the mixing
are not constrained by the tachyonic Higgs mass, and the
false vacua if the parameters satisfy Eq. (20). In this case,
however, the parameters should be tuned so that the
mixing of the doublet and the singlet Higgs boson van-
ishes. Our analysis can be extended to the case with the
10 TeV cut-off.
In general, our constraints exclude a wider parameter

region than the constraint to avoid the tachyonic Higgs
masses. In most cases, the region with small �=� is ex-
cluded. Furthermore, the component of the up-type Higgs
in the lightest Higgs boson is also constrained. In most
cases, the region with such a component less than 0.9 is
disfavored. That implies that the lightest Higgs boson is
SM-like. However, the region with Eq. (20) is exceptional,
the tachyonic modes do not appear, and the false vacua are
less deep than the realistic vacuum.
In the end of the conclusion, we comment on the lifetime

of the false vacua. As was discussed in Ref. [34], if the
lifetime of vacua is longer than the age of the Universe, a
realistic vacuum becomes metastable, and the parameter
space is not constrained. A Euclidean action for bounce
solutions [47,48,48–51] should be larger than 400 for the
lifetime to be longer than the age of the Universe. We
estimated the Euclidian action for the new false vacuum
and found the order of 10–100. Thus, our results will be
still valid if the lifetime is taken into consideration.
However, detailed studies of the lifetime are important
to obtain more serious constraints. We will study these
aspects in our future works. At any rate, the NMSSM has
several interesting aspects. It is important to study those
aspects of the NMSSM by taking into account our new
false vacua.
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