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In 2011, the XENON100 experiment has set unprecedented constraints on dark matter-nucleon

interactions, excluding dark matter candidates with masses down to 6 GeV if the corresponding cross

section is larger than 10�39 cm2. The dependence of the exclusion limit in terms of the scintillation

efficiency (Leff) has been debated at length. To overcome possible criticisms XENON100 performed an

analysis in which Leff was considered as a nuisance parameter and its uncertainties were profiled out by

using a Gaussian likelihood in which the mean value corresponds to the best fit Leff value (smoothly

extrapolated to 0 below 3 keVnr). Although such a method seems fairly robust, it does not account for

more extreme types of extrapolation nor does it enable us to anticipate how much the exclusion limit

would vary if new data were to support a flat behavior for Leff below 3 keVnr, for example. Yet, such a

question is crucial for light dark matter models which are close to the published XENON100 limit. To

answer this issue, we use a maximum likelihood ratio analysis, as done by the XENON100 Collaboration,

but do not considerLeff as a nuisance parameter. Instead,Leff is obtained directly from the fits to the data.

This enables us to define frequentist confidence intervals by marginalizing over Leff .

DOI: 10.1103/PhysRevD.86.015027 PACS numbers: 95.35.+d, 29.40.�n, 95.55.Vj

I. INTRODUCTION

After several decades of intensive searches, direct
detection experiments have now reached the required
sensitivity to probe efficiently the parameter space associ-
ated with massive weakly interacting massive particles
(WIMPs). Just a few years after the world’s best exclusion
limits set by the EDELWEISS and CDMS experiments on
the dark matter-nucleon elastic scattering cross section, the
XENON100 experiment demonstrated that the use of
xenon-based technologies could actually beat germanium
detectors. By pushing down the exclusion limit by almost a
factor 10 on the whole dark matter (DM) mass range (and
with the present level of krypton purity [1]), the XENON100
experiment not only could rule out values of the DM-
nucleon cross section as low as 7� 10�45 cm2 for DM
particle masses of �50 GeV at 90% confidence level [1]
but could also exclude (similarly to CDMS) some of the
light DM candidates which have been hypothesized to ex-
plain CoGeNT [2], DAMA/LIBRA [3], and CRESST [4]
findings (unless one relaxes some assumptions as done in
e.g. [5–8] even though this may not be sufficient, e.g. [9]).

One element of controversy in the interpretation of these
results is the dependence of this limit on the scintillation
efficiency of the detector (see for example [10–12]). A
different Leff energy dependence at low nuclear recoil en-
ergy could indeed change the recoil energy associated with
low-mass WIMPs and possibly lead to a different exclusion
limit than published in [1]. To address this issue, the
XENON100 Collaboration used a profile likelihood analysis
in which Leff was taken to be a nuisance parameter and its
uncertainties were profiled out with a Gaussian likelihood

LðLeffðtÞÞ ¼ e�ðt�tobsÞ2=2

where tobs ¼ 0 represents the mean value of Leff smoothly
extrapolated to zero (Leff ¼ 0) at low energy and
absðt� tobsÞ ¼ 1, the 1� confidence region. A flat behavior
of Leff at low energy would then be the upper limit of the
1-sigma contour. In principle, armed with such a modeling,
the collaboration accounts for uncertainties in the extrapola-
tion of Leff at low energy. This is important since the Leff

energy behavior below 3 keVnr is being currently debated.
However, as the XENON100 analysis is very complex

and relies on many sources of uncertainties, the use of this
method makes it difficult to determine what would be the
real impact of a very different energy behavior of Leff

(with respect to the mean considered by the XENON100
Collaboration) on the exclusion limit if the latter was
determined from new data with unprecedented precision
below 3 keVnr (or if some existing data were found to be
less reliable than previously thought). This is particularly
important in the context of light dark matter candidates
(e.g. [13]) where small recoil energies are expected.
Our work is essentially motivated by the fact that some

light dark matter scenarios lie very close to the
XENON100 limit and should be therefore very sensitive
to new measurements of Leff below 3 keVnr. Several of
these scenarios cannot be constrained by the LHC nor the
measurement of the �-ray, synchrotron fluxes nor even
directional detectors (see for example [14–17]). Nuclear
recoil direct detection experiments might be the only op-
tion to exclude or discover such scenarios, thus emphasiz-
ing the need for a better determination of Leff at low
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energy. In order to properly account for the lack of deter-
mination of the low-energy behavior ofLeff , it is necessary
to make apparent the correspondence between the Leff

energy behavior and the exclusion limit. Some work to-
wards this direction was undertaken by the XENON100
Collaboration [18] where the effect of using two different
Leff parametrizations was illustrated. However this was
done prior to the so-called ‘‘profile likelihood’’ approach
and was not repeated after. The exclusion limit obtained
with this new method, along with being slightly stronger,
was claimed to have no uncertainty due to profiling out the
relative scintillation efficiency. Here we show that this is
not the case: the uncertainties onLeff do eventually reflect
in the exclusion limit, providing to drop the Gaussian
likelihood model for Leff which seems to bias the analysis
towards the mean (not necessarily physical) value of
Leff .Therefore, in the following, we will not treat Leff as
a nuisance parameter. Instead we will use directly the value
of Leff obtained from spline fits to the data and will not
profile out the uncertainties (due in particular to the
extrapolation at low energy) so as to quantify the effect
Leff has on the exclusion limit.

The estimate of the uncertainties presented in this work
is limited since we are not part of the collaboration. It is
likely that we do not use up-to-date methods and data (as a
matter of fact new data should be published soon). Also we
base our analysis on several assumptions which are
explained in the sections below. However, despite all these
limitations, we could recover the exclusion limit that
XENON100 Collaboration has obtained and can therefore
highlight the large impact the low energy behavior of Leff

has on the exclusion limit. Note that in this paper we focus
on Leff uncertainties only; the astrophysical uncertainties
will be addressed elsewhere.

In Sec. II, we recall the spline interpolation to Leff data
set as well as the extrapolation at low energies and discuss
the robustness of the fit using an extended filter formalism.
We use different types of interpolation and extrapolation
(consistent with the 1-sigma contour defined by XENON100
in [1]). In Sec. III, we derive the exclusion limit for the mean
Leff interpolation and compute the exclusion limits for more
extreme Leff behavior at low energies. Results are given in
Sec. IV and conclusion in Sec. V.

II. Leff

The XENON100 experiment aims at detecting dark
matter particles via their elastic scattering interactions
with xenon nuclei in a two-phase (liquid and gas) time-
projection chamber (TPC) detector. A DM signal is then
expected to have two signatures. The first one, referred to
as the primary scintillation signal S1, arises directly from
the interaction of a DM particle with the liquid xenon and
measures the scintillation light in the liquid detector. The
second, referred to as S2, happens in the upper part of
the detector—at the liquid-gas interface—and measures

the scintillation light which results from the drift of the
free electrons that originate from the ionization of the
xenon nuclei in the liquid phase after the DM interaction
and which survived the recombination with ionized atoms.
Both signals are measured in photon-electron units (PE)
[19] and are used to calibrate the detector’s response to
nuclear recoil events and ultimately to determine whether
the experiment has actually detected dark matter events.
The discrimination parameter is defined as

log

�
S2
S1

�
� ERmean:

Events below the threshold of ER ¼ �0:4 in the expected
energy range are considered as potential DM events. The
XENON100 experiment uses the ratio of the two signals S1
and S2 to discriminate between a DM and a background
event so the identification of signal is actually sensitive to
the primary scintillation yield of recoiling xenon nuclei in
the liquid part of the detector. As the measurement of the
absolute scintillation yield is difficult, the quantity that is
used by the collaboration is the scintillation yield of
nuclear recoils relative to that of 122 keV � rays from
a 60Co source. This is called the relative scintillation
efficiency and is referred to as Leff .
The nuclear recoil energy threshold Enr (in units of

keVnr) of a signal is then determined by both S1 and
Leff according to the relation,

Enr ¼ S1
LyLeff

Ser
Snr

;

where Ly is a normalization factor for the light-yield of the

122 keV gamma rays and Se, Sn are scintillation quenching
factors for electronic and nuclear recoil respectively, due to
the presence of an electric field (for XENON100, the
values used are Se ¼ 0:58 and Sn ¼ 0:95).
The determination of Ly andLeff are therefore of utmost

importance. While Ly has been measured precisely to

Ly ¼ 2:20� 0:09 PE
keVee , there is no theoretical prediction

for the energy dependence of Leff . An empirical formula
was obtained in [20,21] by fitting the data obtained in the
same reference, namely

Leff ¼ qnclqescqel

with qncl the Lindhard factor (cf. [20]), qesc reduction of the
scintillation light yield and qel a quench factor due to
biexcitonic collisions [22].
Such an empirical fit reproduces the observation that the

Leff data decrease with decreasing energy and is also the
assumption made by the XENON100 Collaboration in [1]
in order to obtain a conservative exclusion limit. Yet there
are no measurements ofLeff at low recoil energy. Besides,
theoretical considerations by [23] seem to favor a constant
behavior of Leff at low energy. This would be consistent
with the fit obtained by the XENON10 Collaboration [24].
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The XENON100 Collaboration’s strategy to incorporate
the uncertainties on Leff is to consider Leff as a nuisance
parameter and profile out the uncertainties with a Gaussian
likelihood centered on the mean value of Leff , that is the
best fit. Similar assumptions are made for the other
parameters which enter the analysis. Although this seems
a robust approach, it is not very transparent. In particular,
one loses the correspondence between the exclusion limit
and the uncertainties on Leff which arise due to a specific
spline interpolation of the data and extrapolation at low
energies. Indeed, the 1-sigma contour for Leff does not
show on the exclusion curve obtained in [1] but since these
uncertainties are due to the lack of data, one does expect to
be able to keep track of them. In addition, it is hard to tell
whether the final exclusion curve does take into account
possible changes in the knots of the interpolation.

In the following, we therefore adopt a different strategy.
We still use a profile likelihood analysis but we do not treat
Leff as a nuisance parameter. As a result, we can directly see
the effect of the uncertainties on Leff interpolation and
extrapolation on the exclusion limit. We thus obtain several
exclusion limits where the mean should be seen as the
exclusion limit corresponding to the best fit ofLeff andwhere
the edges of the contours correspond to the upper and lower
parts of the Leff 1-sigma bands. Said differently, instead of
obtaining one exclusion curvewhich would correspond to the
best fit given all the uncertainties in the analysis, we prefer to
draw the exclusion curves corresponding to the mean value
and 1-sigma bands of Leff and let the reader marginalize
‘‘by eyes’’ the effect of Leff on the exclusion curve. This
approach enables us to anticipate the effect of a possible
change in the physics of Leff below 3 keVnr.

A. Leff interpolation

To overcome the lack of knowledge about the low energy
behavior of Leff , it was suggested by the XENON100
Collaboration to perform an interpolation of the Chepel
et al. [25], Manzur et al. [20], Plante et al. [26] and Aprile
et al. [27]Leff data sets and perform an extrapolation below
3 keVnr. Since older data sets (e.g. [28–31]) were disre-
garded in [1], wewill only consider them to understand their
impact on the Leff interpolation.

1

Like in [1], we perform a cubic spline interpolation to
the four data sets previously mentioned and use five knots,
placed at recoil energies of 5, 10, 25, 50 and 100 keVnr
respectively. The best-fit cubic spline is found by freely
varying the y-axis positions of these knots, while minimizing
the least-squares �2 goodness-of-fit parameter between
the interpolated spline and the data (see [33] for a good
discussion of the methodology).

The result is shown in Fig. 1, along with the contour of
the 1-sigma region. There is some ambiguity in how to
define this region; we have chosen to define it by looking
for the maximum and minimum y-axis positions of the
knots which satisfy �2 <�2

min þ 5:89. These splines defin-
ing the edges of the 1-sigma region themselves deviate
from the best-fit spline by more than 1-sigma; however by
utilizing this method we take the most conservative choice,
since each spline with the chi-square value used to calcu-
late the boundary of the 1-sigma region is as valid to
determine the 1-sigma uncertainty of the exclusion curve
as any other. Hence, it is guaranteed that all points in the
WIMP parameter space which could be affected by the
systematic uncertainty on the exclusion curve due to a
1-sigma deviation of Leff are covered.

2

An alternative method would be to pick splines which
deviate by exactly 1-sigma from the best-fit spline and use
these to define the 1-sigma region. This has the advantage
that all splines contained within the region deviate from the
best-fit by 1-sigma or less, but does not contain all such
splines. Additionally, there is ambiguity in exactly which
splines to use in defining the region, unlike in the previous
method where the region was unique. Hence, using this

FIG. 1 (color online). A fit of a natural cubic spline to data for
the relative scintillation efficiency of xenon, shown as a yellow
line, along with the 1-sigma contour, shown in blue. The fit uses
five knots, shown as red squares, at fixed positions on the x axis
of 5, 10, 25, 50 and 100 keVnr. The uncertainty on the extrapo-
lation is reflected in the top and bottom curves of the 1-sigma
blue band. Note that recoil energy refers specifically to nuclear
recoils here.

1An attempt was made by [32] to measure Leff using the
nuclear recoil band of XENON10. This data is not considered in
our fits, but does provide an interesting alternative method of
determining the relative scintillation efficiency of xenon.

2There is the possibility of a small amount of overestimation of
the uncertainty using this method, though predominantly at large
WIMP masses, since a wide range of energies, and thus much of
the Leff spline, contribute to the expected recoil rate for heavy
WIMPs. Since the uncertainties are expected to be tiny at large
masses anyway, such overconservatism should not dramatically
affect our conclusions, but is still something to keep in mind.
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method causes in general an underestimation of the un-
certainties on the exclusion curve (particularly at low
masses), since there may be points in the WIMP parameter
space which could be explained by a deviation ofLeff from
the exclusion curve by one of the 1-sigma splines which
isn’t contained within the 1-sigma region.

The choice of the x positions of these five knots being
somewhat arbitrary, we now perform another cubic spline
interpolation where we place the knots at 10, 25, 50, 75 and
100 keVnr. The translation of the lowest knot, from
5 keVnr to 10 keVnr, has been performed to illustrate the
effect of ignoring the potentially less-reliable data below
10 keVnr. As can be seen in Fig. 2, the greatest change due
to the new knot positions (5 ! 10 keVnr and the addi-
tional knot at 75 keVnr) appears to be the enlargement
of the errors in the extrapolated region for energies below
the first knot. However there are also clear alterations to the
interpolation around 75 keVnr.

Changing the knots influences the Leff energy depen-
dence. In particular, it changes the shape at high and very
low energy. By adding a knot at 75 keVnr, we actually gave
someweight to the single point at (55.2, 0.268) which has for
effect to drag the curve up around 50 keVnr. Removing the
knot at 5 keVnr and instead extrapolating also changes the
behavior ofLeff at low energy. In particular, the uncertainties
on Leff become larger below 10 keVnr and notably the
constant extrapolation moves to higher values of Leff .

B. Leff extrapolation

Since there are no data points below nuclear recoil
energies of 3 keVnr there is a great uncertainty on the
energy dependence of Leff at low recoil energies.

The empirical behavior found in [20] seems to imply that
Leff falls down to 0 at low energy in a way which would be
consistent with the spline fit of Leff at higher energy.
However, [23] suggests that based on the physics of xenon
recoil and an understanding of both the ionization yield and
scintillation efficiency, Leff should be constant below
10 keVnr. Such an energy behavior would be supported
by [33] where it is argued that the drop in the scintillation
efficiency observed by [20] could be due to the drop in
sensitivity in the experiment.
Given the lack of data, we will perform an extrapolation

of our curves at low energy as in [1]; i.e., we adopt either a
constant Leff below a certain energy threshold or a drop to
0. For this latter case, we either extend the spline fit to
1 keVnr or to 2 keVnr (as in [1]). The uncertainty on the
extrapolation is reflected in the top and bottom curves of
the 1-sigma blue band in both Figs. 1 and 2. Finally, we also
try a sharp cutoff ofLeff at low energy for the bottom curve
of Fig. 2 in order to obtain the most conservative limit.

C. Robustness of the fit

Figures 1 and 2 show that even with slight modifications
in the fitting procedure, the results forLeff as a function of
recoil energy can change significantly. In order to check
the quality of a certain fit to the data, we employ the
extended critical filter formalism presented in [34]. This
formalism finds a fit to a noisy data set by making use of
the error statistics of the data points as well as a Gaussian
prior probability distribution for the underlying curve. It is
taking into account the possibility of outliers in the data,
i.e. data points with significantly underestimated error
bars. This seems to be beneficial in the case of the Leff

measurements due to the wide spread and apparent incon-
sistency of the different data sets.
Here, we feed the algorithm with differentLeff curves as

mean for the Gaussian prior. If the prior mean is already a
sufficiently good fit to the data set, the result of the ex-
tended critical filter procedure will not deviate from it. If,
on the other hand, the result of the data filtering differs
from the prior mean input, it is a sign that the data prefer a
different curve, even though the possibility of individual
data points being outliers is accounted for. These outliers
are accounted for in the algorithm by the inclusion of a
correction factor for the error bar of each data point
(see [34] for all technical details). By narrowing the prior
probability distribution for these correction factors, we can
force the algorithm to take each data point more seriously
and thus find out which of the fits is most consistent with
the data.
In this way, we study the quality of the two cubic spline

fits shown in Figs. 1 and 2, as well as theLeff curves given
by the upper and lower 1-sigma contours (i.e. the edges of
the blue-shaded regions in Figs. 1 and 2). Using a reason-
ably wide prior for the error bar correction factors, we find
that all of these curves are consistent with the data, except

FIG. 2 (color online). A fit of a natural cubic spline to data for
the relative scintillation efficiency of xenon, shown as a yellow
line, along with the one sigma contour, shown in blue. The knots
used to draw the best-fit spline are shown as red squares, at
positions on the x axis of 10, 25, 50, 75 and 100 keVnr. The
uncertainty on the extrapolation is reflected in the top and
bottom curves of the 1-sigma blue band.
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the top edge of the 1-sigma region in Fig. 1. The exclusion
of this one curve might, however, well be due to its behavior
at large recoil energies and is likely not to be related to the
extrapolation at lowest energies since the top 1-sigma curve
in Fig. 2 is not excluded although it is a more extreme
extrapolation. Note also that the behavior at recoil energies
below 3 keVnr is not constrained by this analysis.

When narrowing the prior for the error bar correction
factors to more and more extreme shapes, more curves are
successively excluded. It can thus be determined that the
central fit in Fig. 1 is the most consistent one with the data.
The multitude of Leff curves that are consistent with the
present data, however, clearly underlines the importance of
studying their influence on the resulting exclusion curve. In
fact, yet another fit can be obtained by using a constant
curve as prior mean for the extended critical filter and
narrowing the prior for the error bar correction factors until
deviations from this constant become significant. The
resulting curve is shown in Fig. 3, along with the 1-sigma
contours of the two spline fits shown in Figs. 1 and 2.

III. EXCLUSION LIMIT

Now that we have determined the uncertainties on Leff ,
we can compute the counting rate of dark matter events
expected in the XENON100 detector and deduce an exclu-
sion limit for a given Leff . For this purpose, we use a
profile likelihood ratio method and compute p values for
the signal and background, as done in [1] after randomly
simulating 10 000 ‘‘mock’’ data sets based on the
XENON100 data published in [1].

A. Counting rate

The recoil rate (per nucleus) is parametrized in the
standard form of [35],

dR

dE
¼ �ðqÞ

2m�2
��ðE; tÞ; (1)

where � is the WIMP-nucleus cross section, q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNE

p
is the nuclear recoil momentum (with mN being the nu-
cleus mass), m is the WIMP mass, � is the WIMP-nucleus
reduced mass, � is the local WIMP density and �ðE; tÞ is
the WIMP mean speed, given by the expression

�ðE; tÞ ¼
Z 1

vminðEÞ
fðv; ueðtÞÞ

v
d3v: (2)

In the above integral, ueðtÞ is the relative velocity between
the Earth-based detector and the WIMPs, with time-
dependence arising from the motion of Earth around the
Sun, and vminðEÞ is the minimum velocity for a WIMP
producing a nuclear recoil of energy E. Any astrophysical
uncertainties, such as dependance on the galactic WIMP
velocity distribution fðv; ueðtÞÞ, will arise through this
�ðE; tÞ, and could affect the analysis. Note that the stan-
dard halo model is used in the proceeding analysis and we
took the average velocity over the year and multiplied the
final rate by 100 days (in accordance with [1] where the
total number of expected events assumes a run of 100 days
with a fiducial volume of 48 kg).
The WIMP-nucleus cross section � can be further

parametrized (assuming spin-independent interactions,
and equal coupling to protons and neutrons) as,

�ðEÞ ¼ �N

�
�

�p

�
2
A2F2ðEÞ; (3)

where �N is the zero-momentum-transfer cross section for
WIMP-nucleon interactions (hereafter any references to
cross section will be to �N), A is the atomic mass, �p is

the WIMP-proton reduced mass and FðEÞ is the nuclear
form factor (taken to be of the standard Helm form here)
[36,37]. Equation (1) can now be used to calculate the
signal rate per number of photoelectrons n in the detector:

dR

dn
¼

Z 1

0
dE� dR

dE
� Pðn; �ðEÞÞ; (4)

where Pðn; �ðEÞÞ refers to the Poisson distribution
Pðn; �ðEÞÞ ¼ �ne��

n! [18]. Here �ðEÞ is the expected number

of photoelectrons in the detector at an energy E and is
given by the expression

�ðEÞ ¼ E�LeffðEÞ � Snr
Ser

� Ly; (5)

whereLeffðEÞ � Ly gives the number of expected scintilla-

tion photons fromanuclear recoil per keVnr of nuclear-recoil
energy E.
In order to translate the expected rate per photoelectron

dR
dn into something comparable with data, one must factor

in the finite photomultiplier resolution �PM ¼ 0:5 PE and
knowledge about cut acceptance �cuts. This gives an
expression for the rate per nuclear recoil signal (S1):

FIG. 3 (color online). Reconstruction of the calibration curve
when using the extended critical filter with a constant prior mean
(corresponding to the mean of all data points), shown as a yellow
line, alongwith the 1-sigma contours around the fits of Figs. 1 and 2.
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dR

dS1
¼ X1

n¼1

dR

dn
�GðS1;n; ffiffiffi

n
p

�PMÞ � �cuts; (6)

where GðS1;n; ffiffiffi
n

p
�PMÞ is a Gaussian distribution

GðS1; n; ffiffiffi
n

p
�PMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�n�2
PM

q exp

�
�ðS1� nÞ2

2n�2
PM

�
: (7)

It is then possible to calculate the expected number of
signal events in the detector Ns, by integrating

Nsðm;�Þ ¼
Z S1upper

S1lower

dR

dS1
dS1: (8)

In this case the region between S1lower ¼ 4 and S1upper ¼ 20

is considered.

B. Profile likelihood ratio

The analysis described below follows the approach
presented in [18] and centers around the application of
the profile likelihood method. The analysis takes as input
both theoretical parameters, such as the expected number
of signal events Ns for a given WIMP mass m� and cross

section �, and a set of data points.

1. Statistic test

The so-called profile likelihood ratio for a particular data
set can be expressed as

	ð�Þ ¼ Lmaxð�Þ
Lmaxð�̂Þ ; (9)

whereLmaxð�Þ refers to the likelihood function maximized
with respect to all parameters but �, which is held fixed,
and Lmaxð�̂Þ refers to the likelihood maximized with re-
spect to all variable parameters3 respectively. The quantity
q� defined as

q� ¼
��2 ln	ð�Þ �̂ < �
0 �̂ > �;

(10)

with �̂ being the value of the cross section which extrem-
izes the likelihood function and measures the quality of the
fit for that particular data set and dark matter parameters
(mass and cross section). The larger q� is, the less signal-
like these parameters are supposed to be, thus ruling out
this particular value of � for a given dark matter mass and
data set. In principle, for every mass one should test the
entire range of cross section that one initially considered.
Here, however, we only tested values of the cross section
which are relatively close to the XENON100 limit by using
a step size of log10ð�Þ ¼ 0:02 in a range defined as

½�xenon; 10�xenon� with �xenon the value of the dark
matter-nuclei cross section at the exclusion limit.
The question of the set of data points that should be

considered for the analysis is essential. In the following,
we will use both the experimental data set given in [1]
and simulated data sets that we will generate using a
Monte Carlo. By considering hypothetical alternate
XENON100 experiments, represented by randomly simu-
lated data sets (see Sec. III B 3), one therefore takes into
account the random nature of the experimental data. With
this in mind, there should be a certain proportion of simu-
lated data sets (the exact value of which depends on the
chosen confidence) which provide a better fit than the
actual experimental data.
The log of the statistical test (q�) for a given data set,

dark matter mass and cross section is uniquely determined.
We will refer to it as qobs� when using the experimental data
set and q� otherwise. To a given simulated data set corre-
sponds a certain value of q� (for fixed dark matter parame-
ters). Thus, one expects a q� distribution, which can be
used to define a p value.
The signal and background p values (ps and pb respec-

tively) are defined as:

ps ¼
Z 1

qobs�

fðq�;H�Þdq� (11)

1� pb ¼
Z 1

qobs�

fðq�;H0Þdq�: (12)

Here fðq�;H�Þ is the probability density function (PDF) of
all the q� values from simulated data sets, under the
so-called signal hypothesis H�, while fðq�;H0Þ is the
PDF for the background hypothesis H0 (cf. Sec. III B 3)
for fixed dark matter parameters. Here H0 refers to the
electronic recoil events only while H� refers to the elec-
tronic and nuclear recoil events.
Under a desired confidence of 90%, one defines the

exclusion curve by satisfying the condition that

psð�Þ ¼ 0:1� ð1� pbð�ÞÞ (13)

for each dark matter mass. Incorporating the p value for the
background hypothesis H0 into the calculation of the ex-
clusion curve enables us to take into account the possibility
that the background can mimic a WIMP discovery signal,
by explicitly requiring the chosen cross section and dark
matter mass to fit better to the signal hypothesis H� than
H0. This is particularly important given the overabundance
of background points compared to signal points for the
XENON100 data.

2. Likelihood function

Our likelihood function is the same as in [18] except that
we do not parametrize the uncertainty in the relative scin-
tillation efficiency so as to make explicit the impact ofLeff

on the exclusion limit.

3These are specifically cross section �, galactic escape veloc-
ity vesc, total number of background events Nb and the proba-
bilities to be signal and background events 
js and 
jb.
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Like [18], we make use of bands to discriminate between
electronic and nuclear recoils in S1-S2 space, thereby sep-
arating the signal from the background, allowing a more
stringent limit to be placed on WIMP mass and interaction
cross section.

The likelihood function (L) is given by the equa-
tion below:

L ¼ fvðvobs; vescÞ �
�Y23
j¼1

Pðnj; ð
jsNs þ 
jbNbÞÞ

� Pðmj
b; ð
jbMbÞÞ � Pðmj

s; ð
jsMsÞÞ
�
;

where j is run over each of the 23 bands (the bands
themselves are shown in Fig. 5), and nj is the number of

data points in band j.
The first term parametrizes uncertainty in the escape

velocity vesc, which is treated as a nuisance parameter
here. The second term compares, using a Poisson-
distribution function, the number of expected data points
in each band j for both signal and background, to the actual

number of points nj. Here 
jb is the probability for a

background event to be in band j and 
js is the equivalent
for signal events, as determined from calibration data. We

start by defining 
jb as 
jb ¼ mj
b=Mb where mj

b is the

number of electronic recoil data points in band j as appear-

ing in the calibration data, Mb ¼
P

jm
j
b, and then margin-

alize over it. Similarly, before marginalization, 
js ¼ mj
s

Ms

where mj
s is the number of nuclear recoil data points in

band j as appearing in the calibration data Ms ¼
P

jm
j
s.

The product 
jsNs represents the expected number of signal
events which fall into the nuclear recoil bands (given a
particular cross section, WIMP mass and choice of Leff).

Since the expected total number of signal events Ns is a
function of cross section �, data points in bands where


js > 
jb will have the greatest effect on the best-fit � value

for a particular data set. In particular the analysis is very
sensitive to any data points appearing in the lower bands
(see Figs. 5 and 6), where electronic recoil/background
events are unlikely to occur.

Finally the last two terms parametrize the uncertainty in

probabilities 
js and 
jb, due to the expected Poisson-

variance of the number of 241AmBe and 60Co calibration

data points in each band,mj
s andm

j
b (hereMs andMb are the

total numbers of nuclear and electronic recoil points respec-
tively for the calibration data).

3. Data set simulation

Since simulated data sets play a vital role in determining
the PDFs fðq�;H�Þ and fðq�;H0Þ, it is important to discuss
their method of generation, and the uncertainties involved.

As discussed in the previous section, by defining an
exclusion curve at 90% (or any value different from
100%), the naturally random nature of the experiment is

taken into account. Since the XENON100 experiment can
only ever be performed once, it is possible that any obser-
vation, or nonobservation, of possible signal data points
could be due, wholly or in part, to statistical fluctuations.
One seeks to improve this possibility by positing hypo-
thetical alternate XENON100 experiments, which differ
only in their sampling of the statistics. Practically these
alternate data sets are represented by simulations, based on
the actual experimental data [1].
Since the simulated data should attempt to mimic that

obtained by the experiment, the data points must be ar-
ranged on the S1-S2 plane, where S1 is equal to the number
of photoelectrons observed for a particular event, and S2
represents the ionization yield. This can be achieved with
knowledge of the expected distribution of nuclear recoils,
associated with WIMP signal events, and electronic re-
coils, associated with background events, in S1-S2 space.
Such information is contained in the calibration data
obtained by the XENON100 experiment, which used a
60Co source for samples of electronic recoils and an
241AmBe source for nuclear recoils.
In practice this calibration data is binned and normalized,

to give a PDF for signal and background events, shown in
Fig. 4. Given a desired number of signal (nuclear recoil) and
background (electronic recoil) events, a simple Monte Carlo
algorithm can be used to generate simulated data sets.
It is possible to extend the simulation algorithm further,

and improve the accuracy of the simulated data sets, by
incorporating information about the WIMP energy spec-
trum, Eq. (6), into the determination of the nuclear recoil
data points.4 However, since there are very few candidate
signal points seen in the data, and to avoid possible

FIG. 4 (color online). Contour plots of calibration data on the
S1-S2 plane [18], showing the distribution of nuclear recoils in
red and electronic recoils in blue.

4Such an extension is not necessary for the background points,
as electronic recoils have been shown to have a flat spectrum at
the energies considered here [19].
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problems with bias, this extension has not been incorpo-
rated into the current analysis. Even so, the uncertainty in
exactly how to simulate data sets most accurately will
contribute a source of uncertainty to the final exclusion
curve. With information on the recoil spectrum, the exclu-
sion limit would be expected to become stronger for low
WIMP masses, due to its pseudoexponential dependance
on energy. Hence our limit is expected to be overconser-
vative for low masses, but to a degree which is likely
subdominant to the Leff systematic uncertainty.

The above method was used to generate 10 000 simu-
lated data sets, with an expected number of 2 signal events
(nuclear recoils) and 534 background events (electronic
recoils), between S1 ¼ 4 and S1 ¼ 20, as seen in the data
obtained by the run of the XENON100 experiment [1] after
100 live days of data taking.5 In addition to these
‘‘signalþ background’’ data sets, so-called ‘‘background-
only’’ data sets were generated, with an expected number
of 536 background events and no signal events.

A plot of one such signalþ background simulated data
set is shown in Fig. 5. The analysis itself is blind to whether
a point was generated as a nuclear or electronic recoil;
however the fitting of the cross section is more sensitive to
the lower bands, where fewer background events are ex-
pected. Due to the abundance of electronic recoil events
compared to nuclear recoils, determining which points are
due to which is a difficult challenge, and so a clearer
discrimination between signal and background only arises

statistically when considering many such data sets, moti-
vating the choice of a confidence limit other than 100% for
the XENON100 limit. Hence, even with high statistics, the
ability of the analytical tools to discriminate signal from
background is limited, contributing a natural source of
error to any determination of the best-fit values of the cross
section and number of background events, and so ulti-
mately to the final exclusion curve.
Values of q� were calculated for each data set under the

prescription of Sec. IIIB. The signalþ background and
background-only q� values were then binned separately
into two normalized histograms (for each value of cross
section and WIMP mass), to give the PDFs fðq�;H�Þ and
fðq�;H0Þ respectively. In this way, the signalþ background
data sets represent the signal hypothesis H�, as they are
generated under the assumption that the two candidates-
signal events seen in the XENON100 data are in fact due
to nuclear recoils. Conversely the background-only data sets
take these points to be due to background electronic recoils,
thereby coming under the background hypothesis.
An example of fðq�;H�Þ, for a specificWIMPmass and

cross section, is shown in Fig. 6. Note that, due to Wilks’
theorem one expects the PDF to approach a �2 distribution
as the number of sampled data sets increases, a trend
which is indeed observed. Each PDF is fitted with an
analytical �2 function, to speed up computation and to
avoid susceptibility to statistical fluctuations at higher
values of q�. The value of � which satisfies Eq. (13) is
sensitive to this fit, for both fðq�;H�Þ and fðq�;H0Þ, and
so any uncertainty in the best-fit�2 function will contribute
to the uncertainty in the final exclusion curve.

FIG. 5 (color online). An example of a simulated data set, with
two nuclear recoil (signal) events, shown in red. The rest of the
points are electronic recoil (background), shown in blue. The black
lines divide the S1-S2 plane into the bands used for the analysis.

FIG. 6 (color online). The probability distribution function of
q� under the signal hypothesis, for a WIMP mass of m ¼ 7 GeV
and �N ¼ 2:51� 10�41 cm2. The PDF has been constructed
using 10 000 simulated data sets, assuming 2 expected signal
events and 534 expected background events. The actual points of
the PDF are shown as bars, while the best-fit �2 distribution is
shown as a black line. The blue dashed line indicates the value of
q� for the real experimental data set.

5As an aside, by extending the S1 region down to 0, discrimi-
nation between signal and background points would be easier in
principle, due to the clear difference in shape between the
probability contours of nuclear and electronic recoils at low
S1, as seen in Fig. 4. However the increase in sensitivity is
granted at the cost of greater susceptibility to systematics,
especially the Leff uncertainty.
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IV. RESULTS

A. Systematic error in XENON100 exclusion curves

The profile likelihood analysis has been performed using
the best-fit cubic spline to Leff , along with the top and
bottom edges of the 1-sigma bands from Figs. 1 and 2. The
resulting exclusion curves are shown in Fig. 7.

Clearly the systematic uncertainty due to the relative
scintillation efficiency is appreciably large for WIMP
masses below 10 GeV, with the majority of the variation
arising from the extrapolation uncertainty for Leff at low
nuclear recoil energies. The lower edges of the uncertainty
bounds on Fig. 7 correspond to the upper edges of the
1-sigma regions on Figs. 1 and 2; hence a flat extrapolation
of Leff at low energies tends to result in a stronger
XENON100 exclusion limit.

The upper curve in Fig. 8 represents the most conservative
exclusion limit that one can derive from the presentLeff data.
This illustrates that the conclusion from the XENON100
Collaboration is fairly robust above�20 GeV and uncertain-
ties at large mass are really small, as claimed by [1].

In comparison to similar works such as [11], which
analyzed the first set of XENON100 data without using
the profile likelihood method, our conclusions are similar,
but not identical, in the low-mass region of parameter
space, for the case where their cutoff of events at
S1 ¼ 1 was relaxed. However, in the current analysis it
is possible that the use of the profile likelihood method has
changed the size of the systematic Leff errors for low
masses due to increased sensitivity, in addition to the
different choices of spline interpolation for Leff itself,
compared with [11].

It should be noted that there are a variety of uncertainties
affecting the exclusion curves from the analysis, primarily
the uncertainty in fitting the �2 distribution to the PDFs of
q�, but also the flexibility in the actual method of data set
simulation, and the overlap of background and signal
regions on the S1-S2 plane (as discussed in Sec. III B 3).

B. Discussion and implications

The relative size of the variation of the XENON100
exclusion curve with Leff at low masses compared to that
at high masses can be understood in terms of the WIMP
recoil spectrum, an example of which is shown in Fig. 9,
and Eqs. (4)–(6).
The equation for dR

dn (4) has two terms in the integrand:

the WIMP recoil spectrum dR
dE and a Poisson distribution.

The Poisson term is peaked at a particular value of energy,
which increases for larger numbers of photoelectrons n.
Hence for a certain value of n, there will be a region along
the energy axis, of dR

dE , which contributes most to the

integral. By changing the functional form ofLeff , the value
of the nuclear recoil energy at which the Poisson distribu-
tion peaks will change (by approximately 1 keVnr for the
different parametrizations considered here). Hence for a
particular value of n, the integral of Eq. (4) will now
receive dominant contributions from different areas of dR

dE

along the energy axis, when Leff is altered.

FIG. 7 (color online). The XENON100 exclusion curve using
the best-fit cubic spline for Leff from Fig. 1, shown in red, with
logarithmic extrapolation below 3 keV to Leff ¼ 0 at 1 keV,
along with the 1-sigma systematic uncertainty due to Leff from
the fit of Fig. 1, in blue, and the 1-sigma uncertainty from the fit
of Fig. 2, in yellow. Note that all exclusion curves have a natural
uncertainty of log10� ¼ �0:02. Also shown are the best-fit
CoGeNT [2] and DAMA [35] regions, for comparison.

FIG. 8 (color online). The XENON100 exclusion curve as
shown above with also the expectation if Leff has a sharp cutoff
below 10 keV. The red plain curve uses the mean fit spline for
Leff from Fig. 1, with logarithmic extrapolation below 3 keV to
Leff ¼ 0 at 1 keV; the blue dotted curve has been calculated
using the bottom Leff curve of the 1-sigma contour in Fig. 2,
with logarithmic extrapolation below 10 keV to Leff ¼ 0 at
2 keV, and the green dashed line represents the exclusion curve
associated with a Leff function, using the same spline as for the
blue dotted curve, but with a sharp cutoff to Leff ¼ 0 below
10 keV. Also shown are the best-fit CoGeNT [2] and DAMA [35]
regions, for comparison.
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To explain the different variation in the final exclusion
curve due to Leff seen at large and small WIMP masses,
one must compare recoil spectra. For low masses, the
recoil spectrum changes rapidly at low energies (see e.g.
Fig. 9), before falling off at a few keVnr. However, at larger
masses, the spectrum is largely constant until much higher
energies before falling off; in the case of m� ¼ 500 GeV

the cutoff is at approximately 100 keVnr. Clearly, the
greatest change of dR

dn with Leff will be seen for values of

n where the Poisson term of Eq. (4) is peaked at recoil
energies where dR

dE varies most rapidly. Since the peak of the

Poisson in energy is at larger values for higher n, the largest
variation in dR

dn will be seen for higher masses at high n,

while for lower masses it will be seen predominantly at
low values of n.

Finally, Eq. (6) contains a sum of dR
dn over all n. For low

WIMP masses, the lower values of n, where the greatest
variation due to Leff occurs, dominate over the terms with
larger n. Conversely for larger masses, all values of n
contribute terms of the same order to (6); hence there
will be no dramatic change in the final result, due to the
relative scintillation efficiency.

Additionally, in the case of the forms of Leff from
Figs. 1 and 2, the systematic uncertainty of the exclusion
curve for lowWIMPmasses is further amplified, relative to
the higher masses, due to the larger uncertainties ofLeff at
low energies.

V. CONCLUSION

In this paper we have assessed the uncertainties on the
XENON100 exclusion curve [1] due to the lack of knowl-
edge about the low-energy behavior of the scintillation
efficiency of liquid xenon detector. Our analysis is

motivated by the existence of low-mass dark matter sce-
narios (below 10 GeV) which lie close to the published
XENON100 limit (see for example [14–16]).
The use of a profile likelihood analysis (in which un-

certainties on Leff were profiled out) enabled the
XENON100 Collaboration to obtain an exclusion limit
which is free from large uncertainties [1]. In particular,
the limit on low-mass WIMPs seems very precise while
one would expect to recover at least the 1-sigma uncer-
tainty band which accounts for the lack of determination of
Leff below 3 keVnr.
In order to understand this behavior, we have performed

a similar profile likelihood analysis but did not consider
Leff as a nuisance parameter. Instead Leff is defined
directly from the fits to the data. We show that the exclu-
sion limit obtained by the XENON100 Collaboration at
high energy is very robust. The uncertainties on the exclu-
sion limit due to Leff are very small and all our exclusion
curves are very similar to the XENON100 exclusion limit.
Such a conclusion was not necessarily obvious since differ-
ent types of interpolation of Leff data give different be-
haviors for Leff , even at high energy. However this can be
understood from our robustness of the fit analysis which
shows that all spline fits at high energy are equally good.
Hence heavy dark matter scenarios close to the XENON100
limits will not be affected by a better determination of Leff

at high recoil energies. This implies that dark matter scenar-
ios just above the XENON100 limit are probably excluded
indeed (provided that other sources of uncertainties which
are not accounted for in this analysis are not too large) and,
those just below, very close to be ruled out.
At low recoil energies,6 our results (cf. Fig. 7) show that

the mean value of Leff (which is in agreement with the
mean Leff curve considered by the XENON100
Collaboration) gives an exclusion limit that is similar to
(although stronger than) the XENON100 limit but a more
extreme behavior of Leff at low energy (cf. the flat ex-
trapolation or a sharp cutoff below 3 keVnr for example)
leads to a very different exclusion limit. Should new data
favor such a type of behavior for Leff at very low energy
with unprecedented precision, the exclusion limit would be
different from that presented by the XENON100
Collaboration, even though such a behavior was included
in the 1- and 2-sigma contours considered for Leff by the
XENON100 Collaboration.
Perhaps a reason for this discrepancy is the Gaussian

likelihood term which was assumed for Leff in the
XENON100 analysis (and which was centered on the
mean value of Leff) together with flat priors. Combined
with the other likelihood terms which describe the uncer-
tainties from the analysis itself, it may be that the

FIG. 9 (color online). The recoil spectrum for a WIMP of mass
5 GeV and cross section of �N ¼ 10�39 cm2. From 0 to
2.5 keVnr the differential reaction rate dR

dE changes by many

orders of magnitude.

6Our analysis of the robustness of the fit shows that the data
still prefer a smooth cutoff to 0 for Leff below 3 keVnr, even
though a different behavior has been suggested from theoretical
arguments [23].
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XENON100 maximum likelihood analysis overfits Leff

and thereby suppresses alternative possibilities for this
crucial quantity, leading to overconfidence in excluding
light DM scenarios.

In any case, since variousLeff fits give different exclusion
limits, it seems more conservative to ‘‘track’’ the effect of
different Leff energy behavior at low energy on the exclu-
sion curve and define (frequentists) confidence intervals by
marginalizing over the different fits to Leff data. With this
method, one is in principle ensured not to bias the analysis
towards the present best-fit curve ofLeff since it may in fact
not be the correct function to consider given the lack of data
in this energy region. Finally, we note that a flat behavior of
Leff (as suggested by [23]) at low recoil energy would
actually set a stronger exclusion limit. Hence the need for
new measurements of Leff at low energy.

Our analysis was based on a likelihood chosen so as to
keep the current analysis as close as possible to the one done
by the XENON100 Collaboration [1,18,19]; however it
should be possible to improve the method in identifying
WIMP signals over background. If the S1-S2 plane were

to be divided into a grid of bins, then, on top of the knowl-
edge of the actual structure of the set of data points in this
space from calibration data, one could use additional knowl-
edge of the recoil spectra for background and signal. Such a
spectrum is already known along the S1 axis for WIMPs
[Eq. (6)], and is distinct to that from electronic recoils,
which is constant for low energies [19]. This would provide
an additional method of discrimination, which would be
especially important if a future run of the XENON100
experiment were to claim a discovery signal, but is difficult
without more knowledge of the experimental setup.
Additionally, it should be possible, in principle, to test the
efficiency of a particular likelihood function in reconstruct-
ing theoretical parameters such as the cross section from
given simulated data sets, since the parameters used to
generate them are known (see [38] for a similar discussion).
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