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We propose a new model for producing a Higgs boson mass near 125 GeV within the MSSM. By

coupling the MSSM Higgs boson to a set of strongly interacting fields, large corrections to the Higgs

quartic coupling are induced. Although the Higgs doublets do not participate in the strong dynamics, they

feel the effects of the strongly coupled sector via (semi)perturbative interactions. These same strong

dynamics are also capable of generating the � term. Additionally, this strong sector is in the conformal

window, which drives the couplings to an infrared fixed point and naturally generates model parameters of

the appropriate size.
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I. INTRODUCTION

A Higgs boson mass of about 125 GeV indicated by
the ATLAS and CMS Collaborations [1,2] strongly sup-
ports a supersymmetric (SUSY) extension of the standard
model [3]. However, its mass is slightly larger than ex-
pected [4] in the minimal supersymmetric standard model
(MSSM). Thus, various mechanisms to enhance the Higgs
boson mass have subsequently been proposed.

Within the MSSM, the simplest approaches require
either a very large SUSY-breaking scale, i.e. a gravitino
mass of m3=2 ¼ 10–100 TeV [5–9] or A terms of order a

few TeV (for recent discussions [10–13]). These are con-
sistent scenarios, but they create tension with naturalness
in the MSSM. This is because heavy top squarks and large
A terms induce large radiative corrections to the Higgs
potential necessitating a fine-tuning of the MSSM parame-
ters in order to realize electroweak symmetry breaking at
the weak scale.

On the other hand, if additional contributions to the
Higgs self-quartic coupling are present, a 125 GeV Higgs
boson mass is possible even for a relatively low SUSY-
breaking scale and a small A term. Under these conditions,
the tension with naturalness becomes much more mild.
There have been, in fact, two classes of models proposed
that generate additional contributions to the Higgs self-
quartic coupling. One method is to introduce a gauge
singlet that couples to the Higgs doublets [14–16] and
the other is to add an additional Uð1Þ gauge interaction
[17–19].

In this paper, we propose an alternative mechanism for
generating a relatively large Higgs quartic coupling in the
MSSM. Our mechanism assumes the existence of an addi-
tional strongly coupled sector whose influence is commu-
nicated to the MSSM via the Higgs doublets. Although the
Higgs doublets couple with this strong sector, they are not
charged under the new strong gauge group. However, they
feel the effects of this strong sector via (semi)perturbative
interactions. These semiperturbative interactions to the

strongly interacting spectators induce a large Higgs
quartic coupling, which in turn enhances the Higgs boson
mass.
We also show that the � term can be dynamically

generated by coupling the Higgs boson to strongly in-
teracting spectators. Interestingly, we find that an exten-
sion of the strongly interacting sector which is consistent
with grand unification is in the conformal window. In
this extension, the model parameters appropriate for a
Higgs mass of 125 GeV are naturally obtained by re-
normalization group running to the infrared (IR) fixed
point.
The organization of the paper is as follows. In Sec. II, we

discuss the generic structure of the strongly interacting
sector which enhances the effective quartic coupling of
the Higgs doublet. In Sec. III, we construct a model which
can also explain the origin of the � term. The refinements
in Sec. IV push our model into the conformal window and
are consistent with grand unification. There we show that
the appropriate parameter values are provided by a fixed
point of the renormalization group equations.

II. STRONGLY INTERACTING SPECTATORS

Before discussing explicit models, let us summarize
some generic features of our model with strongly coupled
spectators. In our model, we assume that the Higgs dou-
blets Hu and Hd are elementary superfields but couple to
a strongly interacting sector in the superpotential with
coupling constants �u and �d, respectively. That is, the
elementary Higgs doublets couple to some operators con-
sisting of strongly interacting fields

WH ¼ �uHuOu þ �dHdOd: (1)

Here, the Higgs doublets are elementary superfields and
have the usual MSSM gauge and Yukawa interactions. This
simple structure is one of the advantages of our model. In
other models of this type that can realize a heavier lightest
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Higgs boson, the Higgs doublets (and top quark) are com-
posite fields (Refs. [20–22]).

In addition, we also assume that the spectators couple to
a SUSY-breaking spurion field X ¼ MX þ FX�

2 via a
coupling constant �X:

W ¼ �XXOX: (2)

In the following discussion, we include the effects of the
supersymmetric expectation value of X,MX, as well as the
supersymmetry-breaking expectation value FX, and treat
each of these as fixed parameters.1 As we will show below,
these mass parameters, MX and

ffiffiffiffiffiffi
FX

p
, are required to be of

Oð1Þ TeV.
Finally, for the models discussed below, some of the

fields in the strongly interacting sector become massless in
the limit of �X ! 0. In such models, to exclude regions
with tachyonic masses we require

j�XMXj4 * j�XFXj2; (3)

where the uncertainty in the inequality represents the in-
calculable effects of the strongly interacting sector.

In Fig. 1, we show an illustrative picture of the inter-
actions between the strongly coupled spectators, and the
elementary Higgs doublets and the SUSY-breaking spurion
field. The strongly interacting sector is assumed to confine
at a dynamical scale �H. Below this scale the strongly
interacting sector decouples from the MSSM sector. A
concrete model is developed in the next section.

A. Effective Higgs quartic coupling

With the above construction, we immediately find that
there are contributions to the quartic couplings of the Higgs
scalar potential from the strongly interacting spectator
fields. These spectator fields generate an effective Kähler
potential of

K4 ’ �4
uð�XXÞyð�XXÞ
N2

NDA�
4
H

Hy
uHuH

y
uHu (4)

(see Fig. 2). The coefficient NNDA is expected to be
NNDA � 4� by naive dimensional analysis [24,25]. We

also obtain terms involving Hd’s via similar diagrams.
In the above expressions, we have not shown the gauge

superfields which should be inserted between Hy
u and

Hu.
2

For the above effective Kähler potential, the Higgs
potential has an additional contribution,

V ’ �eff

4
jhyhj2; �eff ’ 4�4

u

N2
NDA

M4
H

�4
H

x2

�2
X

sin4�; (5)

where we have introduced the notation x ¼ FX=M
2
X and

MH ¼ �XMX. Using the Higgs mixing angle �, we have
replaced Hu by the light Higgs boson h. The quartic terms
in the Kähler potential involving Hd will also contribute to
the �eff but will be suppressed by cos�, �=MH or �=�H.
In the following discussion, we have omitted these contri-
butions by assuming tan� is rather large, i.e. tan� * 5, and
the � term is much smaller than MH and �H. The follow-
ing arguments, however, can be extended to include these
contributions in a straightforward way.3

In Eq. (5), we have assumed that the coupling constants
�u;d;X as well as MX and FX are real. These assumptions

can be validated by field redefinitions in the models dis-
cussed in the following sections. The sign of the effective
quartic coupling �eff , on the other hand, cannot be deter-
mined due to the incalculability of the strongly interacting
sector. As we will see, however, it is possible to show that
the effective quartic coupling is positive valued for the
perturbative limit of the strongly coupled sector. Armed
with the results of our perturbative examples, we assume
that the effective quartic coupling is positive valued even in
the strongly coupling limit.

FIG. 1 (color online). An illustrative picture of the couplings to the ‘‘strongly interacting spectators.’’ The Higgs doublets and the
SUSY-breaking spurion couple to a strongly interacting sector via �u;d;X , respectively

FIG. 2 (color online). An illustrative diagram for the effective
quartic term in the Kähler potential.

1The dynamical generation of the expectation values of X can
be done by scaling down the cascade SUSY-breaking mecha-
nisms [23].

2The effects of these higher dimensional operators on the
MSSM Higgs bosons have been discussed extensively in
Refs. [26–28].

3If one includes the Hd contributions to the effective Higgs
potential, there could be an enhancement of h ! �� [29].
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Including the effective quartic term leads to an addi-
tional contribution to the lightest Higgs boson mass in the
MSSM,

m2
h ¼ mMSSM2

h þ�m2
h; �m2

h ¼ �effv
2; (6)

where mMSSM
h denotes the lightest Higgs boson mass in the

MSSM and v ’ 174:1 GeV.4 In Fig. 3, we have shown the
required values of the effective quartic term necessary to
realize a lightest Higgs boson mass ofmh ¼ 124–126 GeV
as a function of the MSSM contributionmMSSM

h . The figure

shows, for example, that a lightest Higgs boson mass of
mh¼125GeV requires �eff ’ 0:08 formMSSM

h ¼ 115 GeV.
Such an effective quartic coupling can be realized for

�u ¼ Oð1Þ with MH ’ �H and �X ’ x,

�eff ¼ 0:025� �4
u

�
4�

NNDA

�
2 M4

H

�4
H

x2

�2
X

(7)

[see Eq. (5)]. In the right panel of Fig. 3, we show contours
of �u which realize �eff ¼ 0:1. This figure clearly shows
that the quartic coupling �eff ¼ Oð0:1Þ can be realized for
�u ¼ Oð1Þ, x=�X ¼ Oð1Þ and MH ��H.

5

B. Soft masses from strongly interacting spectators

Before closing this section, let us discuss the soft
squared masses of the Higgs doublet which are generated
through �u;d, its coupling to the strongly coupled sector.

Along with the effective quartic term in Eq. (5), the strong
dynamics also generate effective SUSY-breaking mass
terms via the effective Kähler potential in Fig. 4:

K2 ’ �2
uð�XXÞyð�XXÞ
N2

NDA�
2
H

Hy
uHu: (8)

This term leads to an additional contribution to the soft
mass squared of Hu:

�m2
Hu

’ �2
u

N2
NDA

M2
H

�2
H

x2

�2
X

M2
H ’ �eff

4�2
u

�2
H: (9)

Therefore, the contribution to the Higgs soft mass squared
from the spectator dynamics can be less than Oð1Þ TeV as
long as the dynamical scale �H is of Oð1Þ TeV.

III. � TERM FROM STRONGLY INTERACTING
SPECTATORS

In the above sections, we have discussed the effective
quartic term generated by the strongly interacting sector
examining the generic features of the spectator fields. In
this section, we discuss an ambitious extension of these
ideas that also generates the supersymmetric Higgs mixing
term, i.e. the � term.

A. Confining of spectators by strong dynamics

As a first step in this attempt, we consider a strongly
coupled theory based on an SUð3Þ supersymmetric QCD
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FIG. 3 (color online). (Left) The required quartic coupling for mh ¼ 124–126 GeV as a function of mMSSM
h . For example,

mh ¼ 125 GeV requires �eff ’ 0:08 if the MSSM contribution gives mMSSM
h ¼ 115 GeV. (Right) Contours of the coupling constant

�u which realizes �eff ¼ 0:1 as a function of (x=�X;MH=�H). We have taken sin� ’ 1. In the shaded region, the coupling constant �u

also becomes rather strong and the perturbative treatment of �u is less reliable.

FIG. 4 (color online). An illustrative diagram for the effective
quadratic term in the Kähler potential.

4Here, mMSSM
h means the radiatively corrected Higgs boson

mass in the MSSM.
5For MH � �H, the expansion of the effective Kähler poten-

tial in Eq. (4) is no longer valid.
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with three flavors, ðQi; �QiÞ (i ¼ 1–3), having a deformed
moduli space below the dynamical scale �H [30]. The
charge assignments of these fields are given in Table I.
We allow tree-level interactions between the strongly
interacting spectators and Hu, Hd, and X at high energies
which are given by

Wtree¼�uHuQL
�Q0þ�dHd

�QLQ0þ�XXð �QLQLþ �Q0Q0Þ;
(10)

where the summation of the gauge indices is understood.
We have taken a common coupling constant of X to QL;0

for simplicity. The Q’s become massless in the limit
�X ! 0. It should be noted that we have assumed that
the � term of the elementary Higgs doublets is absent
from the superpotential.6

Below the dynamical scale of SUð3ÞH, �H, the light
degrees of freedom are composite mesons and baryons
which are related to the elementary fields by

Mi
j ’

1

NNDA

ðQi
a
�Qa
j Þ

�H

; B ’ 1

NNDA

Qi1
½a1Q

i2
a2Q

i3
a3�

�2
H

;

�B ’ 1

NNDA

�Q½a1
i1

�Qa2
i2

�Qa3�
i3

�2
H

: (11)

The contraction of the gauge indices a is understood. Here,
we have again used naive dimensional analysis and as-
sumed that the above composite fields have canonical
kinetic terms. In terms of these composite fields, the low
energy effective superpotential is given by

Weff ’ �u

NNDA

�HHuH d þ �d

NNDA

�HHdH u

þ
ffiffiffi
3

p
�X

NNDA

�HXM0 þ NNDA

�H

�X
�
detMþ �H

NNDA

B �B� �3
H

N3
NDA

�
; (12)

where X is a Lagrange multiplier field which enforces the
deformed moduli constraint between the mesons and bary-
ons. We have neglected noncalculable Oð1Þ corrections to

the coupling constants. In the above expression, we have
decomposed the meson fields into two SUð2ÞL doublets
ðH u;H dÞ, one SUð2ÞL triplet T , and two singlets

M0 ¼ tr½M=
ffiffiffi
3

p � andM8 ¼ tr½�8M�, where �8 is the eighth
Gell-Mann matrix of SUð3Þ.7
By expanding the meson and baryon fields around a

solution of the deformed moduli constraint,

M0 ’
ffiffiffi
3

p �H

NNDA

þ �M0; X ’ ��XX; (13)

and all other fields are taken to be zero, the above super-
potential is reduced to

Weff ’ �u

NNDA

�HHuH d þ �d

NNDA

�HHdH u

þ �XXH uH d þ �X

2
XT 2 þ �X

2
XM2

8

� �XX�M
2
0 � �XXB �Bþ � � � ; (14)

where the ellipses denote higher dimensional operators
which are irrelevant for our discussion. As a result, we
find that the composite mesons and baryons obtain masses
of about MH ¼ �XMX, while the elementary Higgs dou-
blets have Dirac mass mixing terms together with their
composite partners H u;d.

Now, let us assume that �u;d�H=NNDA � MH. In this

case, we may integrate out the composite mesons and bary-
ons at the scale ofMH which leads to an effective � term:

W ’ � �u�d

N2
NDA

�2
H

�XX
HuHd; (15)

or more specifically the � parameter is

� ’ � �u�d

N2
NDA

�2
H

MH

(16)

with Oð1Þ ambiguities. It should also be noted that the
effective � term in Eq. (15) also leads to the
supersymmetry-breaking Higgs mixing mass parameter,

B ’ xMX ¼ x

�X

MH: (17)

Thus, we find that an appropriately sized� term andB term
are generated by the effects of the strongly interacting
spectator fields.
Let us return to the effective quartic term of the Higgs

doublets. In addition to the effective quartic term in Eq. (4),
the quartic coupling of elementary Higgs doublets also
receives additional contributions through its mixing with
the composite Higgs, H u;d. That is, the composite Higgs

doublets have an effective quartic term8

TABLE I. The strongly interacting sector is charged under
SUð3ÞH which is based on supersymmetric QCD with three
flavors. We embed the standard model gauge groups SUð2ÞL �
Uð1ÞY into the subgroups of the maximal global symmetry
Uð3Þ �Uð3Þ.

SUð3ÞH SUð2ÞL Uð1ÞY
Q0 3 1 0

QL 3 2 �1=2
�Q0

�3 1 0
�QL

�3 �2 1=2

6This can be enforced by appropriate symmetries such as a
global Uð1Þ symmetry.

7Here, we take the normalization of the Gell-Mann matrix �i

(i ¼ 1–8) to be tr½�i�j� ¼ �ij.
8It should be noted that there is no effective quartic Kähler

potential of H ’s proportional to ð�XXÞ�2, although the model
includes massless fields in the limit of �X ! 0. This is due to the
fact that all the low energy interactions of those light composites
states are proportional to �XX [see Eq. (12)].
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K ’ N2
NDA

�2
H

H y
uH uH

y
uH u: (18)

The mixing of Hu andH u takes the above contribution to
the Kähler potential and turns it into

K ’ �4
u�

2
H

N2
NDAj�XXj4

Hy
uHuH

y
uHu: (19)

As a result, we obtain

�eff ’ 16�4
u

N2
NDA

�2
H

M2
H

x2

�2
X

sin4�; (20)

which is larger than that found in Eq. (4) for MH & �H.
The soft mass squared of Hu also receives an additional
contribution which is larger than the contribution found in
Eq. (9). This contribution arises from the effective Kähler
potential,

K ’ �2
u�

2
H

N2
NDAj�XXj2

Hy
uHu; (21)

and leads to

�m2
Hu

’ �2
u

N2
NDA

x2

�2
X

�2
H: (22)

In Fig. 5, we show contours of �u which give �eff ¼ 0:1,
where we have assumed that �eff is given by a sum of the
contributions in Eqs. (4) and (20). The shaded regions are
disfavored because �, B or �mHu

are larger than 1 TeVor

� is smaller than 100 GeV; however, the boundaries of
these regions are not exact since there are Oð1Þ ambigu-
ities. These figures show that an acceptable � term and
sufficiently large effective quartic coupling constants are
obtained if MH=�H ’ 1 and �u;d ’ 2–4.

It should also be noted that the spectator fields charged
under the strongly coupled gauge group of the hidden
sector also generate A terms and the wrong Higgs coupling
A terms [31]. In our case, the A terms are generated via the
effective Kähler potential in Eq. (21) which leads to

L ’ �2
u�

2
H

N2
NDAMH

x

�X

Fy
Hu
Hu þ H:c: (23)

Therefore, the generated A terms are suppressed by an
additional factor of ð�u=NNDAÞ2 as compared to the B
term in Eq. (17). The wrong Higgs couplings are generated
though an effective Kähler potential such as9

K ’ �u�d

N2
NDA

j�XXj2
�4

H

ð�XXÞyHuðD2HdÞ: (24)

As a result, we obtain an effective operator leading to
wrong Higgs coupling A terms,

L ’ �u�d�
4
H

N2
NDAM

3
H

x2

�2
X

FHd
Hu þ H:c: (25)

Thus, the wrong Higgs coupling A terms is further sup-
pressed by a factor of x=�X.
Next, we discuss the effects on the MSSM Yukawa

coupling from the mixing of the elementary and composite
Higgs bosons. Since the elementary Higgs doublets mix
with the composite Higgs doublets with a mixing angle
"u;d ’ �u;d=NNDA ��H=MH, the normalizations of the

Yukawa coupling constants above the threshold MH are
different from those in the MSSM. For example, the top
Yukawa coupling above the threshold MH is given by

eff 0.1
MH 5 TeV

u 4 1 2

u

1

u

2
u

3

m Hu 1000 GeV

B
1000

G
eV
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H

FIG. 5 (color online). Contour plots of �u which realizes �eff ¼ 0:1 for MH ¼ 5 TeV (left) and for MH ¼ 10 TeV (right) for
NNDA ¼ 4�. The gray shaded regions are disfavored because �, B, and �mHu are too large or � is too small. We have also assumed
�u ¼ �d.

9Here, we are assuming �H �MH which is favored in the
above discussion (see Fig. 5).
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yHt ’ ð1þ "2uÞ1=2yLt ; (26)

where yLt is determined by the top quark mass. Clearly the
high energy Yukawa coupling constant is larger than the
low energy one. This could exasperate the Landau pole
problem of the top Yukawa coupling. For typical parame-
ters found in Fig. 5, however, the effects of the Higgs
mixing on the Yukawa couplings is quite small,

yHt � yLt
yLt

’ 1

2
"2u ’ 0:03�

�
4�

NNDA

�
2
�
�u

3

�
2 �2

H

M2
H

: (27)

Thus, the mixings between the elementary and compos-
ite Higgs doublets have a minor effect on the Landau
problem.

Before closing this section, we comment on the stability
of the baryons. Although the low energy superpotential
potential respects Uð1ÞB, this symmetry may be broken by
Planck suppressed operators. As we will see below, these
Planck suppressed operators are sufficient to guarantee that
the baryons decay before big bang nucleosynthesis, thanks
to the large anomalous dimensions of the strongly interact-
ing fields.

B. Constraints from electroweak
precision measurements

As we have seen above, the effective quartic term and �
term are successfully generated from the spectator fields.
Interactions with the Higgs boson similar to those pre-
sented above often contribute to the electroweak precision
parameters which are severely constrained by precision
measurements.

Below the dynamical scale, the most important higher
dimensional operator which contributes to the electroweak
precision parameters [32] is given by

K ’ �4
u

N2
NDA�

2
H

Hy
uHuH

y
uHu; (28)

where we have assumed �H ’ MH. This higher dimen-
sional operator leads to the effective Lagrangian

L ’ �4
u

N2
NDA�

2
H

sin4�jhyD�hj2; (29)

which contributes to the T parameter (see Ref. [28] for
more extensive studies). As a result, the contribution to the
T parameter from the strongly interacting spectator fields is
roughly estimated to be

jTj ’ v2

�

�4
u

N2
NDA�

2
H

sin4�

’ 0:08�
�

4�

NNDA

�
2
�
�u

3

�
4
�
5 TeV

�H

�
2
sin4�; (30)

where we have again used naive dimensional analysis. We
have also used v ’ 174:1 GeV and� ’ 1=129 in the above

expression. Notice that we cannot determine the sign
of T when using naive dimensional analysis. As we will
see in what follows, the analysis in the perturbative limit
shows that the contribution from the spectator fields is
positive.
In addition to the contributions to the T parameters,

there are operators which contribute to the S parameter
such as

K ’ �2
u

N2
NDA�

2
H

ðry2Hy
u e�2VÞðr2HuÞ; (31)

where r’s denote the gauge covariant superspace deriva-
tives. This higher dimensional operator leads to an effec-
tive operator,

L ’ �2
ugg

0

N2
NDA�

2
H

sin2�ðhyW�	hÞB�	; (32)

whereW and B denote the gauge field strengths of SUð2ÞL
and Uð1ÞY and g and g0 the corresponding gauge coupling
constants, respectively. As a result, the contribution to the
S parameter from the spectator fields is estimated to be

jSj ’ 8sWcWv
2gg0

�

�2
u

N2
NDA�

2
H

sin2�

’ 0:007�
�

4�

NNDA

�
2
�
�u

3

�
2
�
5 TeV

�H

�
2
sin2�;

(33)

where sW and cW are the sine and cosine of the weak
mixing angle.
Therefore, by comparing these contributions with the

current constraint (for mh ¼ 120 GeV) [33],

S ¼ 0:02� 0:11; T ¼ 0:05� 0:12; (34)

we find that the strong dynamics of the spectator fields for
�H ’ 5–10 TeV give contributions that are well within the
constraints of electroweak precision measurements.

C. Perturbative analysis

Before closing this section, let us consider the effective
quartic coupling constant and the contributions to the
electroweak precision parameters in the limit of weak
interactions. In this case, the spectator sector is well de-
scribed by the elementary Q’s, and we can calculate the
effective quartic coupling constant and the electroweak
precision parameters perturbatively.10

At the one-loop level, the effective quartic coupling
constant is given by

10Similar perturbative analysis has was done in Refs. [34–38]
where Higgs couples to additional matter with positive
supersymmetry-breaking masses.
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�eff ’ �4
u

32�2

sin4�

x�ð1� x2�Þ
ð�2x�ð3� 9x2� þ 8x4�Þ

þ 3ð�1þ 2x�Þð1� x2�Þ2 logð1� x�Þ
þ 3ð1þ 2x�Þð1� x2�Þ2 logð1þ x�ÞÞ

’ �4
u

16�2
x2�sin

4� ðx� � 1Þ; (35)

where we have defined x� ¼ x=�X. The advantage of this
perturbative model is that we can calculate the sign of the
effective quartic term. As we see from the results, the
effective quartic coupling obtained in the perturbative
analysis is positive and so enhances the Higgs boson
mass. This is an encouraging result for our model even
though we are interested in the strongly coupled regime
where the perturbative calculation is no longer reliable.

Similarly, we can also calculate the contributions to the
S and T parameters, from the strongly interacting spectator
fields perturbatively. At the one-loop level, the scalars
contribute

Ss ¼ Nc

30�

�2
uv

2

M2
H

1� 4x2� � ð1þ x2�Þ sin� cos�

ð1� x2�Þ2
(36)

and

Ts ¼ Nc

32�c2Ws
2
W

�4
uv

4

M2
HM

2
Z

�
1

15
Fpðx�Þðsin�þ cos�Þ4

þ 1

3
Fmðx�Þðsin�� cos�Þ4

þ Fmpðx�Þðsin2�� cos2�Þ2
�
; (37)

where

FpðxÞ ¼ 15x4 þ 14x2 þ 3

ð1� x2Þ3 ; (38)

FmðxÞ ¼ 1

1� x2
; (39)

FmpðxÞ ¼
2x� 4x3 þ 2

3 x
5 � ð1� x2Þ3 lnð1þx

1�xÞ
x3ð1� x2Þ2 : (40)

The fermion contributions to the S and T parameters are

Tf ¼ Nc

480�c2Ws
2
W

�4
uv

4

M2
HM

2
Z

ð13þ 2 cos� sin�

� 8cos2�sin2�Þ (41)

and

Sf ¼ Nc

30�

�2
uv

2

M2
H

ð4–7 cos� sin�Þ: (42)

The total contributions are just

T ¼ Ts þ Tf; (43)

S ¼ Ss þ Sf; (44)

which gives a result similar to the estimations made based
on naive dimensional analysis in the previous section with
�u ¼ Oð1Þ.11

IV. STRONG CONFORMAL DYNAMICS
OF THE SPECTATORS

In the previous section, we have constructed a model
with strongly interacting spectators based on supersym-
metric QCD with a quantum deformed moduli space.
There, we showed that the � term and a large effective
quartic term could be generated as a result of the spectator
fields. In the model of the previous section, however, there
are several unsatisfactory features:
(i) The needed coupling constants �u;d are rather large

(see Fig. 5).
(ii) The ratio betweenMH and�H needs to be close to 1

(see Fig. 5).
(iii) The matter content of the strongly interacting sec-

tor is not consistent with grand unification (see
Table I).

In this section, we show that these unsatisfactory features
can be solved simultaneously by simply extending this
model into the conformal window.

A. Model near the conformal fixed point

In the previous section, we have considered a model
with strongly interacting spectators based on an SUð3Þ
supersymmetric QCD with three flavors. Here, we make
a simple extension of this theory to six flavors with the
charge assignments given in Table II. As we see from the
table, the matter content of this sector is now consistent
with an SUð5Þ grand unified theory (GUT). With this
simple extension, we now assume a tree-level superpoten-
tial of

Wtree ¼ �uHuQL
�Q0 þ �dHd

�QLQ0 þ �XXð �Q �DQ �D

þ �QLQL þ �Q0Q0Þ: (45)

For this theory the � and B terms as well as the effective
quartic term of the Higgs boson are generated in the same
way they were in the previous sections.12

It should be noted, however, that the SUð3ÞH supersym-
metric gauge theory with six flavors is in the conformal
window [39], and hence, the coupling constants flow to an

11For a more detailed analysis see Appendix A.
12Strictly speaking, in order for this model to flow to the
deformed moduli model discussed in the previous section, we
need to assume MQD

>MQL;0
. Although this is an assumption, it

should arise naturally as a result of the renormalization-group
(RG) flows of GUT coupling constant �X, becauseQD is charged
under SUð3Þc.
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infrared fixed point in the limit �X ! 0 (i.e. MH ! 0).
Thus, if the coupling constants at the high energy scale are
in the vicinity of the infrared fixed point, the coupling
constants will subsequently flow to the fixed point. The
conformal symmetry is eventually broken by the explicit
mass termMH ¼ �XMX below which the strongly coupled
sector flows to a confining phase and behaves as discussed
in the previous section. In this way, the effective quartic
term as well as the � and B terms are generated in this
model with strongly coupled conformal dynamics. In
Fig. 6, we show an illustrative picture of the RG flow of
the conformal sector.

Now, let us estimate the coupling constants at the
infrared fixed point. Initially, we will neglect the MSSM
couplings. (We discuss the renormalization group flow
including the MSSM coupling constants in the next sub-
section.) In this limit, the one-loop anomalous dimensions
of the matter fields are given by

�0 ¼ 1

2�
�u � 2

3�
�30 ; �L ¼ 1

4�
�d � 2

3�
�30 ;

�D ¼ � 2

3�
�30 ; �Hu

¼ 3

4�
�u;

��0 ¼
1

2�
�d � 2

3�
�30 ; � �L ¼ 1

4�
�u � 2

3�
�30 ;

� �D ¼ � 2

3�
�30 ; �Hd

¼ 3

4�
�d;

(46)

where the subscripts of the anomalous dimensions corre-
spond to the ones appearing in Table II and the �’s are
�30 ¼ g230=4� with g30 being the gauge coupling constant

of SUð3ÞH, �u ¼ �2
u=4� and �u ¼ �2

d=4�. In terms of

the anomalous dimensions, the Novikov-Shifman-
Vainshtein-Zakharov beta function is given by

d

d ln�R

1

�30
¼ 1

2�

9�Pð1� 2�iÞ=2�
Pð1� 2��iÞ=2

1� 3�30=2�
;

(47)

where the summation is taken over all 6 flavors. The beta
functions of the Yukawa interactions are given by

d

d ln�R

�u ¼ 2�uð�Hu
þ � �u þ �0Þ;

d

d ln�R

�d ¼ 2�dð�Hd
þ �u þ ��0Þ:

(48)

By requiring that all the beta functions are vanishing, we
find three different infrared fixed points (the so-called
Banks-Zaks approximation [40]):

ðIÞ: �2
u ¼ 12�2

7
; �2

d ¼
12�2

7
; g230 ¼

27�2

14
;

ðIIÞ: �2
u;d ¼

3�2

2
; �2

d;u ¼ 0; g230 ¼
27�2

16
;

ðIIIÞ: �2
u ¼ 0; �2

d ¼ 0; g230 ¼
3�2

2
: (49)

Notice that the fixed points on the second line are only
stable when either �u or �d are zero and the third fixed
point is only stable for �u ¼ �d ¼ 0.
Interestingly, �u;d and g30 take rather large values for the

stable fixed point (I),

�u ’ 4:1; �d ’ 4:1; g30 ’ 4:4: (50)

These large values are advantageous for generating a large
effective quartic coupling for the Higgs boson as well as
for generating natural values of the � and B terms (see
Fig. 5). Thus, if the strongly coupled sector approaches the
fixed point above the conformal breaking scale MH,
the strongly coupled sector naturally leads to the desired
coupling constants �u;d.

Another bonus of having a rather strongly interacting
fixed point is that the model predicts that MH should be
close to the dynamical scale �H. That is, the spectators

TABLE II. The strongly coupled sector is charged under
SUð3ÞH which is based on supersymmetric QCD with six flavors.
We embed the standard model gauge groups SUð3Þc �
SUð2ÞL �Uð1ÞY into the subgroup of the maximal global sym-
metry Uð6Þ �Uð6Þ.

SUð3ÞH SUð3Þc SUð2ÞL Uð1ÞY
Q0 3 1 1 0

QL 3 1 2 �1=2
Q �D 3 �3 1 1=3
�Q0

�3 1 1 0
�QL

�3 1 �2 1=2
�Q �D

�3 3 1 �1=3 FIG. 6 (color online). An illustrative picture of the RG flow of
the conformal sector. The parameter �R denotes the renormal-
ization scale. The conformal symmetry is broken explicit by the
mass term MH ¼ XXMX. Below this scale, the strongly interact-
ing sector flows into a confining phase as discussed in the
previous section.
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become confined immediately after the conformal sym-
metry breaking, since the gauge coupling constant is
already large at the fixed point. Therefore, the model also
importantly predicts

�H ’ MH; (51)

which is needed as is discussed in the previous section. As
a result, we find that the conformal dynamics of the spec-
tators provide us a very attractive framework for producing
parameters with the appropriate size.

Before closing this section, let us comment on the
validity of the one-loop Banks-Zaks approximation. As
we have seen, the coupling constants at the fixed point
are rather large [see Eq. (50)], and hence, the one-loop
approximation of the anomalous dimension seems less
reliable. To justify our use of the one-loop anomalous
dimensions, let us compare our one-loop approximation
with the anomalous dimensions determined nonpertur-
batively using a maximization [41]. As shown in
Appendix B, the anomalous dimensions determined by a
maximization are given by

�0 ’ �0:18; �L ’ �0:23; � �D ’ �0:29;

�Hu
’ 0:41; (52)

with �i ¼ ��i and �Hu
¼ �Hd

. The anomalous dimensions

estimated by the Banks-Zaks approximation are, on the
other hand,

�0 ’ �0:11; �L ’ �0:21; � �D ’ �0:32;

�Hu
’ 0:32: (53)

The discrepancies between the one-loop approximation
and the nonperturbative determination are at most 30%.
Therefore, the Banks-Zaks approximation provides us
moderately reliable results.

B. Numerical renormalization group flow

In the above discussion, we have neglected contributions
from the MSSM coupling constants. As we have seen,

however, the coupling constants at the fixed point are quite
large and, hence, will affect the running of the MSSM
coupling constants. In particular, the beta function of the
top Yukawa coupling receives large positive contributions
from the conformal Yukawa couplings which drive the top
Yukawa coupling constant large (small) at the high (low)
energy. In particular, if the coupling constants of the con-
formal sector reach the fixed point at some high energy
scale, the top Yukawa coupling constant is drastically
suppressed in the low energy due to the renormalization
group running. The backreactions from the top Yukawa
coupling onto the conformal coupling constants are also
not negligible.
In Fig. 7, we show typical renormalization group flows

of the conformal sector coupling constants and the top
Yukawa coupling constant. The anomalous dimensions
and the beta functions of the coupling constants are given
in Appendix C. The GUT scale values for theMSSM gauge
coupling constants are taken to be13 g1;2;3ðMGUTÞ ’ 1:1.
The left panel of the figure exhibits all of the key

features of the conformal sector. Since �u;d � 1 at the

GUT scale, the gauge coupling initially runs to the fixed
point at g230 ¼ 3�2=2 [i.e. the fixed point ðIIIÞ in Eq. (49)].

It remains at this fixed point values until �d becomes
sizable. The conformal sector then proceeds to fixed point
ðIIÞ. Once �u becomes large, the theory moves onto the
stable fixed point ðIÞ. Because �u is rather large at fixed
point ðIÞ, the top Yukawa coupling is driven to zero in the
low energy. At the scale MH, the conformal sector is
integrated out, and running of top Yukawa coupling be-
comes like it is in the MSSM.
An interesting property of this renormalization group

running is the altered quasifixed point of the top Yukawa

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

Log10 R GeV

g3'
u d

yt

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

Log10 R GeV

g3'

u d yt

FIG. 7 (color online). Renormalization group running of the coupling constants in the conformal sector and the top Yukawa coupling
constant. (Left) The running for �u ¼ 3� 10�4, �d ¼ 3� 10�2, g30 ¼ 2:2, and yt ¼ 3 at the GUT scale and MH ¼ 5 TeV. (Right)
The running for �u ¼ �d ¼ 1� 10�3, g30 ¼ 1:5, and yt ¼ 3 at the GUT scale and MH ¼ 5 TeV.

13Because the anomalous dimensions of the Q’s are large, there
two-loop order effect on the SM gauge couplings can be non-
trivial. However, because of the quasifixed point nature of the
running, this effect will be smaller than the order one ambigu-
ities we have already neglected.
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coupling [42]. In the MSSM, the top Yukawa coupling
has an infrared quasifixed point value which predicts a
top quark mass which is too heavy [43]. With the presence
of the conformal sector, on the other hand, the quasifixed
point value of the top Yukawa coupling is shifted to a much
lower value. Interestingly, we find that the quasifixed point
of the top Yukawa coupling is strongly correlated with
the coupling constant �u at MH, if g30 has already run
to the fixed point ðIIIÞ at some higher energy scale as in
Fig. 7.

In Fig. 8, we show the correlation between �uðMHÞ and
ytðmtopÞ for various boundary conditions at the GUT scale.

In the figure, we have taken yt ¼ 0:5–10 and �u ¼
10�7–10 at the GUT scale. We have also taken �u ¼ �d

and g30 ¼ 1:5 at the GUT scale and MH ¼ 5 TeV; how-
ever, the quasifixed point is less sensitive to these choices
as long as g30 reaches the fixed point ðIIIÞ at some energy
scale much higher than MH.

Figure 8 shows that a wide range of GUT scale top
Yukawa coupling constants [i.e. ytðMGUTÞ ¼ 0:5–10] are
focused into a quasifixed point for a given value of
�uðMHÞ. As a result, the top Yukawa coupling constant
determined from the observed top quark mass mtop ¼
173:2� 0:2 GeV [44],

ytðmtopÞ ’ 0:94�
�
mtop

173:2

�
; (54)

predicts

�uðMHÞ ’ 3: (55)

This value is quite favorable for realizing a sufficiently
large quartic coupling as well as natural values for the �
and B terms (see Fig. 5).

Finally, we comment of the stability of the baryons in
this model. Because the anomalous dimensions of the

hidden sector fields are quite large and relatively unchang-
ing, the Planck suppressed operators like

W ¼ 1

MP

5Q5Q5Q10; (56)

with 5Q ¼ ð �Q �D; �QLÞ, are enhanced as the theory is run

down from the Planck scale. This enhancement sufficiently
destabilizes the baryons and this model is safe from big
bang nucleosynthesis constraints.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a new mechanism for
increasing the mass of the lightest Higgs boson. The
Higgs bosons mass is increased by coupling the Higgs
boson to a strongly interacting conformal sector. The
Higgs doublets are neutral under this additional gauge
group but feel its effects via (semi)perturbative Yukawa
couplings. As we have shown, the lightest Higgs boson
mass suggested by the ATLAS and CMS experiments can
easily be realized from this mechanism. We have also
constructed a model where the � term is successfully
generated from the same dynamics. Furthermore, we pro-
posed a model in the conformal window with appropriate
values of the couplings at the fixed point for generating a
quasinatural Higgs boson mass of 125 GeV. This model
portrays an interesting correlation between the top
Yukawa coupling constant and the Yukawa couplings of
the conformal sector.
Finally, let us comment on other phenomenological

studies which we have left for future work. First of all,
enhancing the Higgs boson mass by coupling the MSSM
Higgs to the conformal sector, as discussed in the text,
works even for large tan�. Therefore, it is quite tempting to
investigate whether the observed deviation of the muon g-2
of about 3:3
 [45] can be explained by coupling the
MSSM with the conformal sector while still having a
lightest Higgs boson mass around 125 GeV.14

Another interesting phenomenological feature of our
model is the top squark masses. As we have discussed,
the top Yukawa coupling will be larger than in the MSSM
for�>�H. Thus, the top squark soft squared masses tend
to receive larger negative contributions from the renormal-
ization group running, altering the typical MSSM top
squark spectrum. This suppression of the top squark mass
could alleviate some of the fine-tuning of the MSSM. The
soft squared masses of the Higgs doublets are also affected
by the superconformal feature of the spectator fields it is
coupled to.15 These discussions are also left for future
work.

0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

u MH

y t
m

to
p

FIG. 8 (color online). The correlation between �uðMHÞ and
ytðmtopÞ. Each line corresponds to GUT scale values of yt ¼
0:5; 1; 1:5 . . . 10 from bottom to top, respectively, but the lines for
ytðMGUTÞ 	 2 are almost degenerate with each other and cannot
be resolved. A value of �uðMHÞ ’ 4 corresponds to the infrared
fixed point ðIÞ.

14For recent model building which achieves g-2 within 1
 and
has a 125 GeV Higgs boson mass, see Refs. [19,46,47].
15The conformal nature of the spectator sector could lead to a
suppression of m2

Hu
[48–54] which could also mitigate some of

the fine-tuning of the MSSM.
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Note added in proof.—While completing this paper, an
interesting article by Heckman, Kumar, and Wecht [55]
was posted on arxiv which also discussed the effects of
coupling a strongly interacting sector to the Higgs; how-
ever, their model and effects of the strongly coupled sector
are different from ours.

APPENDIX A: S AND T PARAMETERS

Here we give the full one-loop expressions for the S and
T parameters. The superpotential we consider here is

W ¼ ZðQL
�QL þ �Q0Q0Þ þ �uHuQL

�Q0 þ �dHd
�QLQ0;

(A1)

where Z ¼ MH þ FH�
2. We further define the quark fields

as

QL ¼ Q	

Qe

 !
; �QL ¼

�Q	

�Qe

 !
: (A2)

The mass matrix for the fermions is

M~	 ¼ MH �dvd

�uvu MH

 !
: (A3)

This matrix is diagonalized by

Q	2

Q	1

 !
¼ sin� � cos�

cos� sin�

 !
Q	

Q0

 !
;

�Q	2

�Q	1

 !
¼ cos� � sin�

sin� cos�

 !
�Q	

�Q0

 !
;

(A4)

where

m2
	1; �	1

¼ 1

2
ð2M2

H þ v2
u þ v2

d

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2

u � v2
dÞ2 þ 4M2

Hðvu þ vdÞ2
q

Þ;

m2
	2; �	2

¼ 1

2
ð2M2

H þ v2
u þ v2

d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2

u � v2
dÞ2 þ 4M2

Hðvu þ vdÞ2
q

Þ;

(A5)

and

cos� ¼ m2
	1
� ðM2

H þ v2
dÞ

m2
	1
�m2

	2

 !
1=2

;

sin� ¼ ðM2
H þ v2

dÞ �m2
	2

m2
	1
�m2

	2

 !
1=2

:

(A6)

The mass matrix for the charges sleptons and its diago-
nalization matrix are

M2
L ¼ MH FH

FH MH

 !
; RL ¼ 1ffiffiffi

2
p 1 �1

1 1

 !
; (A7)

with mass eigenstates

m2
e1 ¼ M2

H þ FH; (A8)

m2
e2 ¼ M2

H � FH: (A9)

The mass matrix for the neutral sleptons is

M2
0 ¼

j�uvuj2 þM2
H MHð�uvu þ �dvdÞ 0 FH

MHð�uvu þ �dvdÞ j�dvdj2 þM2
H FH 0

0 FH j�uvuj2 þM2
H MHð�uvu þ �dvdÞ

FH 0 MHð�uvu þ �dvdÞ j�dvdj2 þM2
H

0
BBBBB@

1
CCCCCA; (A10)

in the basis ½Q0; Q	; �Q
y
	; �Q

y
0 �. The diagonalization matrix for this matrix is

R0 ¼ 1ffiffiffi
2

p

cos� � sin� cos �� � sin ��

sin� cos� � sin �� � cos ��

cos� � sin� � cos �� sin ��

sin� cos� sin �� cos ��

0
BBBBB@

1
CCCCCA; (A11)

where
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sin� ¼ 1

2

�
M2

1 �M2
2 þ ðj�uvuj2 � j�dvdj2Þ

M2
1 �M2

2

�
1=2

; cos� ¼ 1

2

�
M2

1 �M2
2 � ðj�uvuj2 � j�dvdj2Þ

M2
1 �M2

2

�
1=2

;

sin �� ¼ 1

2

�
M2

3 �M2
4 þ ðj�uvuj2 � j�dvdj2Þ

M2
3 �M2

4

�
1=2

; cos �� ¼ 1

2

�
M2

3 �M2
4 � ðj�uvuj2 � j�dvdj2Þ

M2
3 �M2

4

�
1=2

;

(A12)

and the mass eigenstates are

m2
01
¼ M2

H þ 1

2
ðj�uvuj þ j�uvuj2Þ2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�uvuj2 � j�uvuj2Þ2 þ 4jFH þMHð�uvu þ �dvdÞj2

q
;

m2
02
¼ M2

H þ 1

2
ðj�uvuj þ j�uvuj2Þ2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�uvuj2 � j�uvuj2Þ2 þ 4jFH þMHð�uvu þ �dvdÞj2

q
;

m2
03
¼ M2

H þ 1

2
ðj�uvuj þ j�uvuj2Þ2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�uvuj2 � j�uvuj2Þ2 þ 4jFH �MHð�uvu þ �dvdÞj2

q
;

m2
04
¼ M2

H þ 1

2
ðj�uvuj þ j�uvuj2Þ2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�uvuj2 � j�uvuj2Þ2 þ 4jFH þMHð�uvu � �dvdÞj2

q
:

(A13)

We now define some useful functions. The fermion vacuum polarizations are defined as

��	
LLðM1;M2; q

2Þ ¼ ��	
LLðM1;M2; 0Þ þ�0�	

LL ðM1;M2; 0Þq2;
�

�	
LRðM1;M2; q

2Þ ¼ �
�	
LRðM1;M2; 0Þ þ�

0�	
LR ðM1;M2; 0Þq2;

(A14)

where the prime indicated a derivative with respect to q2 and

��	
LLðM1;M2; 0Þ ¼ �2g�	

�
1

16�2

M4
1ð1� 2 lnðM2

1ÞÞ �M4
2ð1� 2 lnðM2

2ÞÞ
4ðM2

1 �M2
2Þ

�
;

��	
LRðM1;M2Þ ¼ 2M1M2g

�	

�
1

16�2

M2
1ð1� lnðM2

1ÞÞ �M2
2ð1� lnðM2

2ÞÞ
M2

1 �M2
2

� (A15)

and

�0�	
LL ðM1;M2; 0Þ ¼ g�	

8�2

�ð9M4
1M

2
2 � 3M6

1Þ lnðM2
1Þ � 9M2

2M
4
1 þM6

1

9ðM2
1 �M2

2Þ3
þ ð1 $ 2Þ

�
;

�
0�	
LR ðM1;M2; 0Þ ¼ 2M1M2

�
1

16�2

M4
1 �M4

2 þ 2M2
1M

2
2 lnðM

2
2

M2
1

Þ
2ðM2

1 �M2
2Þ3

�
;

(A16)

and we have neglected the infinite parts. We also define

�
�	
VVðM1;M2; q

2Þ ¼ 2ð��	
LLðM1;M2; q

2Þ þ�
�	
LRðM1;M2; q

2ÞÞ: (A17)

The scalar vacuum polarizations depend on

��	ðq2; m1; m2Þ ¼ 1

16�2

�
1

2
ðm2

1 þm2
2Þ �

m2
1m

2
2

m2
1 �m2

2

ln

�
m2

1

m2
2

��
þ Fðm1; m2Þq2 þ � � � ; (A18)

where

Fðm1; m2Þ ¼ 1

3

1

16�2

�ð6m6
1 � 18m4

1m
2
2Þ lnðm2

1Þ þ 5m6
2 þ 27m4

1m
2
2

ðm2
1 �m2

2Þ3
þ ð1 $ 2Þ

�
: (A19)

The contributions to the vacuum polarizations from the fermions are then
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�
�	
WWðq2Þ ¼ Nc0

g2

2
ð��	

LLðMH;m	1 ; q
2Þ þ 2�

�	
LRðMH;m	1

; q2Þ cos� sin�þ ð1 $ 2ÞÞ;

��	
ZZ ðq2Þ ¼

g2Nc0

4cos2�W

X2
i¼1

½cos2�sin2���	
VVðm	i

;m	i ; q
2Þ;þðsin4�þ cos4�Þ��	

LLðm	i
; m	i

; q2Þ

þ 2sin2�cos2���	
LRðm	i

; m	i
; q2Þ�; ��	

�� ¼ ðgswÞ2��	
LLðMH;MH; q

2Þ;
��	

�Z ¼ g2sw

�
� 1

2
þ s2w

�
��	

VVðMH;MH; q
2Þ:

The contributions from the scalars are

�
�	
WWðq2Þ ¼

g22
2
jR


Li1
R0j2 � R


Li2
R0j3 j2��	ðq2; m0j ; meiÞ;

�
�	
ZZ ðq2Þ ¼

g22
4cos2�W

ðjR

0i2
R0j2 þ R


0i3
R0j3 j2��	ðq2; m0i ; m0jÞ þ j1þ 2sin2�W j2��	ðq2; mej ; mejÞÞ;

��	
��ðq2Þ ¼ g22sin

2�W�
�	ðq2; mei ; meiÞ; ��	

�Z ¼ g22
2

tan�Wð1þ 2sin2�Þ��	ðq2; mei ; meiÞ:

(A20)

Using these expressions for the vacuum polarizations we
can find the S and T parameters from

�T ¼ �WWð0Þ
M2

W

��ZZð0Þ
M2

Z

¼ 1

M2
Zcos

2�W
ð�WWð0Þ � cos2�W�ZZð0ÞÞ

(A21)

and

�S ¼ 4s2Wc
2
W

�
�0

ZZ �
c2W � s2W
cWsW

�0
Z� ��0

��

�
: (A22)

The expansions for the S and T parameters can be found in
the text.

APPENDIX B: DETERMINING ANOMALOUS
DIMENSIONS BY a MAXIMIZATION

In this appendixwe determine the anomalous dimensions
of the strongly interacting sector by using the so-called
a-maximization method [41] instead of the Banks-Zaks
approximation presented in Sec. IV. The a-maximization
method states that the conformal R current appearing in the
superconformal algebra maximizes a particular ’t Hooft
anomaly

a ¼ Trð3R3 � RÞ: (B1)

In the model of Sec. IV, the prescription for conformal R
symmetry is given by

Ri ¼ 2

3
ð1þ �iÞ ði ¼ 0� 5; HuÞ; (B2)

which satisfies two conditions:

R0 þ RL þ RHu
¼ 2 (B3)

and

3þ 3ðR �D � 1Þ þ 2ðRL � 1Þ þ ðR0 � 1Þ ¼ 0: (B4)

Here, we have a priori used Ri ¼ R�i and RHu
¼ RHd

.

Using these constraints, the anomalous dimensions are
found by maximizing the a function. The anomalous di-
mensions found from this procedure are given in Sec. IV:

�0 ’ �0:18; �L ’ �0:23; � �D ’ �0:29;

�Hu
’ 0:41: (B5)

APPENDIX C: RENORMALIZATION GROUP
EQUATION WITH MSSM COUPLINGS

In this appendix, we list the renormalization group
equations used in the analysis in Sec. IVB:

d

dln�
g30 ¼ �1

16�2

g3
30

1�3g230=8�
2

�
�
3� g21

8�2
� 3g22
8�2

� g23
�2

�2g230

�2
þ �2

d

4�2
þ �2

u

4�2

�
;

d

dln�
�u¼ �u

16�2

�
6�2

uþ3y2t �3

5
g21�3g22�

16

3
g230

�
;

d

dln�
�d¼ �d

16�2

�
6�2

d�
3

5
g21�3g22�

16

3
g230

�
;

d

dln�
yt¼ �d

16�2

�
6y2t þ3�2

u�13

15
g21�3g22�

16

3
g23

�
: (C1)

In our analysis, we have neglected the bottom Yukawa
coupling constant.
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