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The two Higgs bidoublet left-right symmetric model (2HBDM) as a simple extension of the minimal left-

right symmetric model with a single Higgs bidoublet is motivated to realize both spontaneous parity (P)

violation and charge conjugation and parity (CP) violation while consistent with the low-energy phenome-

nology without significant fine-tuning. By carefully investigating the Higgs potential of the model, we find

that sizable CP-violating phases are allowed after the spontaneous symmetry breaking. The mass spectra of

the extra scalars in the 2HBDM are significantly different from the ones in the minimal left-right symmetric

model. In particular, we demonstrate in the decoupling limit when the right-handed gauge-symmetry-

breaking scale is much higher than the electroweak scale, the 2HBDM decouples into the general two Higgs

doublet model with spontaneousCP violation and has rich induced sources ofCP violation. We show that in

the decoupling limit, it contains extra light Higgs bosons with masses around electroweak scale, which can

be directly searched at the ongoing LHC and future International Linear Collider experiments.
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I. INTRODUCTION

The left-right symmetric models [1–3] based on the
gauge group SUð2ÞL � SUð2ÞR �Uð1ÞB�L are extensions
of the standard model (SM) motivated by explaining the
origin of parity (P) violation and the smallness of neutrino
masses. In general, it is expected that charge conjugation
and parity (CP) violation can also be realized as a conse-
quence of spontaneous symmetry breaking [4] in this type
of model [5–9]. One of the extensively studied left-right
symmetric models is the minimal left-right symmetric
model which contains two SUð2Þ triplets and one bidoublet
in the Higgs sector. Despite its simplicity and success in
generating the tiny neutrino masses, it suffers from a series
of constraints in the Higgs and fermion sector from low-
energy phenomenology. It has been shown that in this
model the lightest extra Higgs boson has to be heavier
than �10 TeV in order to suppress the tree-level flavor-
changing neutral current (FCNC) in neutral kaon meson
mixing [9–11]. The conditions for minimizing the Higgs
potential lead to the observation that without significant
fine-tuning in the potential parameters, the CP phases in
the vacuum expectation values (VEVs) of the Higgs fields
are nearly vanishing [12–14]. In the minimal left-right
symmetric model, the Yukawa couplings for both neutral
and charged Higgs bosons are fixed by the quark masses
and Cabibbo-Kobayashi-Maskawa (CKM) matrix, so that
all the CP-violating phases are calculable quantities in
terms of quark masses and the ratios of the vacuum expec-
tation values (VEVs) of the bidoublet. It has been shown
that in the decoupling limit in which the vacuum expecta-
tion of the right-handed triplet approaches infinity, the
model fails to reproduce the precisely measured weak
phase angle sin2� from B factories [9]. Furthermore,

from the VEV seesaw mechanism, the � parameters in
the Higgs potential have to be fine-tuned to be six to seven
orders of magnitude smaller than other model parameters
in order to meet the experimental bound on both light and
heavy neutrino masses [14], if the right-handed scale re-
mains in the TeV range, which is accessible by the current
LHC. Given the above-mentioned difficulties in the mini-
mal left-right symmetric model, one may simply give up
the spontaneous CP violation in the minimal left-right
symmetric model by considering explicit CP violation in
the Higgs potential and/or the Yukawa sector [15–19].
However, a detailed analysis showed that little improvement
can be achieved in phenomenology. An alternative treat-
ment for spontaneous P and CP violation was to introduce
mirror particles in a model based on ½SUð2Þ �Uð1Þ�2 gauge
symmetry [20,21].
Motivated by the success of generating spontaneous

CP violation from the general two Higgs doublet model
(2HDM) [22–25], an extension of the minimal left-right
symmetric model with two Higgs bidoublets (2HBDM),
which can break the CP symmetry spontaneously, has been
proposed [26,27]. In this paper we show how the 2HBDM
can relax the stringent constraints mentioned above for the
minimal left-right symmetric model, and in which case it
can decouple to the 2HDM. It has been shown in [26,27]
that such a simply extended model can be consistent with
the low-energy phenomenology in flavor physics. In this
work, we shall concentrate on the details of the generalized
Higgs potential and the vacuum minimal conditions, and
demonstrate how such a model can avoid the fine-tuning
problem in generating sizable CP-violating phases, so that
the left-right symmetric 2HBDM with spontaneous P and
CP violation could become more realistic at the TeV scale.
We focus on the mass spectrum of Higgs bosons in the
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2HBDM. Different from the minimal model with only one
light neutral Higgs boson similar to the standard model, we
shall show that there exist in general three light neutral
Higgs bosons and one pair of light charged Higgs bosons
in the decoupling limit of 2HBDM, which means that
the 2HBDM decouples to 2HDM when vR ! 1. Such a
feature differs completely from the minimal left-right
symmetric model.

The paper is organized as follows: In Sec. II, we give an
overview of the problems appearing in the minimal left-right
symmetric model. In Sec. III, we present the most general
Higgs potential with two Higgs bidoublets and demonstrate
in an explicit way why such a generalization can save the
left-right symmetric model from the above-mentioned
problems arising in the minimal left-right symmetric model,
and the possible new physics at TeV scale. In Sec. IV, we
show that the 2HBDM can decouple to 2HDM in the
decoupling limit and then extend the result to general cases.
The conclusions and remarks are given in the last section.

II. OVERVIEW OF THE MINIMAL LEFT-RIGHT
SYMMETRIC MODEL

The Higgs sector in the minimal model consists of one
Higgs bidoublet and two Higgs triplets:
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where the numbers in the brackets denote the quantum
number of Higgs multiplets under the gauge group
SUð2ÞL � SUð2ÞR �Uð1ÞB�L. The neutral parts of Higgs
fields obtain VEV in such pattern:
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And the most general Higgs potential is given by [14]:
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There are three independent vacuum minimal conditions, after eliminating �1;2;3 parameters:

ð2�1 � �3ÞvLvR ¼ �1k1k2 cosð�L � �2Þ þ �2k
2
1 cos�L þ �3k

2
2 cosð�L � 2�2Þ; (6a)

0 ¼ �1k1k2 sinð�L � �2Þ þ �2k
2
1 sin�L þ �3k

2
2 sinð�L � 2�2Þ; (6b)

0 ¼ k1k2½�3ðv2
R þ v2

LÞ þ ð4�3 � 8�2Þðk21 � k22Þ� sin�2 þ vRvL � �k2 terms; (6c)

where k2 ¼ k21 þ k22 represents electroweak (EW) scale.
From Eq. (6a) one can obtain the so-called VEV seesaw
relation,

	 � �

�
¼ vLvR

k2
; (7)

which indicates a big gap between vL and vR to produce a
correct small neutrino mass. If � and � parameters are

within their normal range, i.e., there is no fine-tuning in
Higgs sector, vR has to go up to 107 GeV, as shown in the
literature [14]. On the contrary, if vR is set to several TeV to
obtain TeV phenomenology, � parameters have to be fine-
tuned to 10�7. The third equation would lead to a severe
fine-tuning problem and contradict to phenomenological
bounds on neutral Higgs mass. By diagonalizing the Higgs
mass matrix, one finds the FCNC-violating Higgs mass is
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The lower bound of MFCNC constrained by low-energy
phenomenology is 10 TeV. Thus it is obvious that the third
equation is hardly satisfied unless vacuum phases �2 and �L
are fine-tuned to very small values and the model fails to
produce a right normal-sized vacuum CP phase. Combining
the constraints from the neutral Higgs mass and the FCNC
Higgs mass, one finds immediately that the fine-tuning
problem is inevitable in the minimal model: one has to
fine-tune �3 when vR goes up to 107 GeV while keeping
M2

FCNC around 10 TeV; or else one has to fine-tune � when
�3 remains at a normal size.

From the above analysis, one sees clearly that in the
minimal model there is severe inconsistence in the Higgs
potential for yielding correct phenomenology. The vacuum
minimal condition, neutrinomass, and FCNC bounds contra-
dict eachother, so that one has tomake abigconcessionon the
naturalness of the parameters in the Higgs sector, including
the fine-tuned nearly zero vacuumCP phase, losing elegance
and failing in spontaneous CP violation. The fundamental
reason of this self-inconsistence results from the fact that the
fermion-Higgs couplings are too strongly constrained by the
left-right symmetry. This is exactly why we want to add an
extra Higgs bidoublet to relax the Yukawa sector.

III. THE TWO HIGGS BI-DOUBLET LEFT-RIGHT
SYMMETRIC MODEL

We simply add an extra Higgs bidoublet 
 into the Higgs
sector:
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which has the same gauge property as � in the minimal
model. The overall neutral parts of Higgs fields obtain
VEV in such pattern:
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(10b)

Note now there are in total six CP phases in the vacuum
parameters, two of which can be rotated away by gauge

group action. We define here the other four gauge-invariant
CP phases,

�p¼�p1 þ�p2 ; �c¼�c1þ�c2;

�pc¼ð�c1��c2Þ�ð�p1 ��p2 Þ; �LR¼�L��R (11)

In our following discussion, we take �p1 ¼ �R ¼ 0 un-

less otherwise noted. Next we will comment shortly on the
new features of model structures.

A. New features of 2HBDM

With the extra bidoublet 
, the resulting Lagrangian
of 2HBDM has new features in its structure at tree level,
which leads to remarkable differences in phenomeno-
logical descriptions. To facilitate further discussion,
we assume that the VEVs satisfy the hierarchy structure
vL � �1;2, !1;2 � vR. Also, the P and CP symmetry are

assumed.
Gauge sector.— There is no change on the Fermion-

gauge part. The Higgs-gauge sector is altered with more
complicated Higgs-gauge interactions. As a result, the
gauge boson mass after spontaneous symmetry breaking
(SSB) is slightly changed. The mass matrices for charged
gauge bosons under basis fWþ

L ;W
þ
R g and for neutral ones

under basis fW3
L;W

3
R; Bg are
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where v ’ 246 GeV is the electroweak scale. Following
the same procedure in [28,29], one can obtain the physical
gauge boson mass and the mixing angles, where for
Z1;2 gauge bosons nothing changed except for the defini-

tion of v.
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where A is the photon, and ZL;R are neutral gauge bosons

with mixing
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The physical Z1;2 gauge bosons are defined by
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and the physical masses are found to be
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with the mixing angle  given by
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For the physical gauge bosons W1;2, they are defined as
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with masses
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cos2

�
: (20)

It is noted that the difference here is the mixing angle
between W1 and W2, which is replaced as

 � tan2
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��p
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��c
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where r ¼ 2j�1�2 þ!1!2e
i�pc j=v2.

One may see from Eqs. (12a) and (13b) that the
imaginary part of W1;2 mixing is

�Imð ~MW
12Þ¼2w1w2 cosð�p2 ��p1 Þsin�pc

þ2ð�1�2þ!1!2 cos�
pcÞsinð�p2 ��p1 Þ (22)

and the complex phase � is

sin� ¼ Imð ~MW
12Þ

tan2ðv2
R � v2

LÞ
: (23)

The second term in Eq. (22) vanishes when �p2 � �p1 is

rotated away by gauge symmetry, whereas the first term
always remains nonzero since �pc is gauge invariant. This
distinguishes 2HBDM from the minimal left-right sym-
metric model in which the phase of W1;2 mixing can be

rotated away entirely.
The physical Higgs-gauge interaction depends on the

mixings of the Higgs sector. The SM-like Higgs coupling
to gauge bosons in the minimal left-right symmetric model
resembles those in the SM in the limit �2 � �1 and �1 �
vR, whereas in 2HBDM the couplings might differ from
the SM ones, which is due to its 2HDM nature in the
decoupling limit. We will further discuss it in following
sections.

Yukawa sector.—The general form of quark Yukawa
couplings is

LY ¼�X
i;j

�QiLððyqÞij�þð~yqÞij ~�þðhqÞij
þð~hqÞij ~
ÞQjR;

(24)

which induces the quark mass term after SSB,

Mu ¼ 1ffiffiffi
2

p ðyq�1 þ ~yq�2e
i�p

2 þ hq!1e
i�c

1 þ ~hq!2e
i�c

2Þ;

Md ¼ 1ffiffiffi
2

p ðyq�2e
�i�p

2 þ ~yq�1 þ hq!2e
�i�c2 þ ~hq!1e

�i�c1Þ:

(25)

P symmetry requires

yq¼yyq ; ~yq¼ ~yyq ; hq¼hyq ; ~hq¼ ~hyq : (26)

When both P and CP are required to be broken down
spontaneously, all the Yukawa coupling matrices are real
and symmetric. As there are in total 6� 4 free parameters

in yq; ~yq and hq; ~hq, two significant consequences follow:

(1) The very stringent bound on the minimal model
largely results from the fact that the CKM phases
are all calculable quantities given quark masses, mix-
ing angles and ratio of VEVs; while in 2HBDM,
although the relation VCKM

L ¼ ðVCKM
R Þ� still holds

(pseudomanifest), there are more freedoms in the
Yukawa couplings and no direct connection exists
between CKM phases and other input parameters.

(2) The general form of Eq. (25) generates large FCNC
at tree level. The situation gets worse when the mass
of FCNCHiggs is brought down to the EW scale. As
shown in our previous works [26,27], the tree level
FCNC could be suppressed following the similar
treatment in the general 2HDM by considering the
mechanism of approximate globalUð1Þ family sym-
metry [23–25],

ðui; diÞ ! e�i�iðui; diÞ; (27)

which is motivated by the approximate unity of the

CKM matrix. As a consequence, y, ~y, h, and ~h are
nearly diagonal matrices.

Higgs sector.—Based on the general form of the Higgs
potential in the minimal left-right symmetric model, we
carefully write down the most general form of Higgs
potential for the 2HBDM, which is listed in Eq. (A1).
From that potential, we can obtain the vacuum minimal
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conditions and find that the tension between spontaneous
CP violation and scale hierarchy is largely relaxed; hence,
the new model can generate sizable vacuum phases as the
source of CP violation, whereas the VEV seesaw problem
still leads to the fine-tuning on the � parameters. We shall
postpone the details to the next section.

The extended model contains in total 28 freedoms in
the Higgs sector, including 4þ 4þ 2þ 2 neutral ones,
2þ 2þ 1þ 1 pairs of charged ones, and two pair of
doubly charged ones. After spontaneous symmetry break-
ing, two neutral and two pairs of charged freedoms would
become Goldstone bosons absorbed into the longitudinal
part of gauge vectors, leaving 10 neutral, four pairs of
charged, and two pairs of doubly charged physical Higgs
bosons. After carefully studying the Higgs mass spectrum,
we find that in the 2HBDM there exist more than one light
Higgs boson at the electroweak scale.

From the above analysis, it is seen that the 2HBDM
improves the minimal one by introducing more flexible
Yukawa couplings, hence allowing for free CKM phases,
as well as by enlarging the Higgs sector to avoid the

inconsistence in the vacuum minimal conditions. As a
consequence, the 2HBDM can be the realistic model
with spontaneous CP violation.

B. Generalized vacuum minimal conditions
and spontaneous CP violation

In the 2HBDM, there are 10 independent vacuum pa-
rameters which correspond to 10 independent vacuum
minimal conditions, i.e.,

0¼ @V

@�1

¼ @V

@�2

¼ @V

@!1

¼ @V

@!2

¼ @V

@vL

¼ @V

@vR

¼ @V

@�p2
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@�c1
¼ @V

@�c2
¼ @V

@�L
:

(28)

Based on the most general form of Higgs potential
given in Eq. (A1), we can write down the general form
of all 10 vacuum minimal conditions following the same
procedure in the minimal model. By eliminating seven
mass dimensional parameters �2s, we obtain three inde-
pendent equations:
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where � in the third equation stands for a group of � parameters. From Eqs. (29a) and (29b), it is noticed that the �
parameters still need to be fine-tuned to satisfy the neutrino mass bound for fulfilling a phenomenological model with vR at
TeV scale. The possible explanation for the smallness of � parameters could be a softly breaking Z2 or the approximate
Uð1ÞP�Q symmetry imposed on a Higgs field; however, these arguments inevitably lead to difficulty in generating correct
quark mass hierarchy and quark mixings [14] or may violate the MW2

�MN relation obtained from experimental
constraints such as 0��� [30] or from the K/B meson mixings [9]. In this note we ignore the fine-tuned �’s and focus
on the spontaneous CP violation. Eq. (29c) has the following hierarchy structure:

� 
 �O

�
v2

v2
R

�

 �

vL

vR

ðscale hierarchyÞ: (30)

In the minimal model, the terms proportional to �c
3, �

pc
3 , and �pc

4 are vanishing. Only one term �1�2 sin�
p
2�

p
3 exists, which

leads to an extremely small CP phase angle �p2 in order to satisfy Eq. (29c). However, in the 2HBDM, as there are many
more free parameters, the � terms can cancel among themselves such that the sum of them is of the order � terms (Oðv2

v2
R

Þ),

�O

�ðv2Þ2
v2
R

�
’ �1�2 sin�

p
2�

p
3 þ!1!2 sinð�c1 þ �c2Þ�c

3 þ ½�2!1 sinð�p2 þ �c1Þ

þ �1!2 sin�
c
2��pc

3 þ ½�1!1 sin�
c
1 � �2!2 sinð�p2 þ �c2Þ��pc

4 ; (31)
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the sum of all the � terms may cancel with the � terms, and
the final result is of the order of � terms (OðvL

vR
Þ). Thus

in the 2HBDM, Eqs. (29c) and (30) can both be satisfied
with sizable CP-violating phases. The condition can natu-
rally be satisfied provided�p

3 � �c
3 � �pc

3 � �pc
4 and �1 �

�2 �!1 �!2. Hence, it is seen that the 2HBDM potential
allows sizable vacuum phases �p2 , �

c
1, �

c
2, which generate

spontaneous CP violation after spontaneous symmetry
breaking in the gauge, Higgs and Yukawa sectors through
gauge boson mixings, Higgs mixings, and quark mixings.

IV. DECOUPLING LIMIT TO 2HDM

In this section we give the explicit form of the Higgs
mass matrix and separate contributions from different
symmetry-breaking scales, i.e., vL;R and electroweak scale

k. We first study the Higgs sector in the so-called special
decoupling limit to 2HDM and then extend it to a general
decoupling limit to 2HDM.

The special decoupling limit to 2HDM.— Let us first
consider a special case of Eq. (31) with the following limit:

vL � �2; !2 � �1; !1 � vR; (32)

The reasons to apply Eq. (32) include (1) the electroweak
precision test and neutrino mass require vL � v;
(2) v=vR � 100 GeV=1 TeV � 1 for TeV new physics;
(3) �2; !2 � �1; !1 ensures W1;2 mixing around 10�3

[29,30] or smaller. Combining Eq. (31), an immediate
consequence of Eq. (32) is

j�pc
4 j � 1: (33)

Note that in the above limit the gauge-invariant
phases defined in Eq. (11) reduce to (with current choice
�p1 ¼ �R ¼ 0)

�pc � �c1; �LR � �L; (34)

and the other two phases �p and �c become physically
negligible, as �p2 and �c2 compared to �pc hardly affect

physical processes.

From the Higgs potential Eq. (A1c), it is not difficult to
check that there is mass splitting of bidoublets. The sym-
metry in the Higgs potential is firstly broken down to
SUð2ÞL due to large vR. The Higgs bidoublets acquire
masses around vR scale through the �-type couplings.
The�p;c;pc

1;2 terms do not break the global SUð2ÞR symmetry

for bidoublets in the Higgs potential; thus, they do
not contribute the masses at vR scale to bidoublets. The
remaining �p;c;pc

3 terms (�pc
4 is omitted) contribute to

bidoublet mass in the following way:

hTr½ðXþ XyÞ�R�
y
R�i ¼ Tr½ðX þ XyÞ � PR�v2

R; (35)

with

PR ¼ 1

2

0

1

 !
: (36)

Here the left-right asymmetric operator PR brings the
residual effect of SUð2ÞR symmetry breaking into the
electroweak sector, resulting in mass splitting among com-
ponents of bidoublets and the scale hierarchy in the vac-
uumminimal conditions. Thus, the inconsistence inside the
minimal model is clearly seen as the left-right asymmetric
�3 term is simultaneously linked with both spontaneous
CP violation and FCNC; i.e., the spontaneousCP violation
requires a fine-tuned �3 of order k

2=v2
R to generate sizable

CP asymmetry, while the FCNC bound requires a large
mass splitting of order 10 TeV. In the 2HBDM, such a
tension is moderated through more flexible vacuum struc-
ture and Yukawa couplings. To be more precise, let us
define the following structure

� � ð�1; �2Þ; 
 � ð
1; 
2Þ; (37)

where�1,�2, 
1, and 
2 are four doublets. When omitting
the mixing between electroweak scale and �R scale, we
obtain the following Higgs potential after SUð2ÞR symme-
try breaking:

V�;
;h�Ri ¼ �ð�p
1 Þ2 Tr½�y�� � ð�c

1Þ2 Tr½
y
� � ð�pc
1 Þ2 Tr½�y
þ H:c:�

þ �p
1v

2
R

2
Tr½�y�� þ �c

1v
2
R

2
Tr½
y
� þ �pc

1 v2
R

2
Tr½�y
þ H:c:�

� ð�p
2 Þ2 Tr½ ~�y�� � ð�c

2Þ2 Tr½~
y
� � ð�pc
2 Þ2 Tr½ ~�y
þ H:c:�

þ �p
2v

2
R

2
Tr½ ~�y�� þ �c

2v
2
R

2
Tr½~
y
� þ �pc

2 v2
R

2
Tr½ ~�y
þ H:c:�

þ �p
3v

2
R

2
Tr½�y�PR� þ �c

3v
2
R

2
Tr½
y
PR� þ �pc

3 v2
R

2
Tr½ð�y
þ H:c:ÞPR�

þ ð�� termsÞ þ ð�� termsÞ: (38)

In the limit of Eqs. (32) and (33), all seven �2s parameters can be solved from the vacuum minimal conditions in the
form
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ð�p
1 Þ2
v2
R

’�p
1

2
;

ð�c
1Þ2

v2
R

’�c
1

2
;

ð�pc
1 Þ2
v2
R

’�pc
1

2
;

ð�3Þ2
v2
R

’�1

2
;

ð�p
2 Þ2
v2
R

’�p
2

2
;

ð�c
2Þ2

v2
R

’�c
2

2
;

ð�pc
2 Þ2
v2
R

’�pc
2

2
; (39)

where approximation is made by omitting all electroweak scale contributions from � terms shown in Eq. (A1d).
With the definition of Eq. (37), we arrive at the corresponding quadratic terms for the four doublets ð�1; 
1; �2; 
2Þ,

Vð2Þ
�;
;h�Ri ¼�ð ~�p

1 Þ2�y
1�1�ð ~�c

1Þ2
y
1
1�ð ~�pc

1 Þ2ð�y
1
1þ
y

1�1Þ
�½2ð ~�p

2 Þ2�T
1"�2þ2ð ~�c

2Þ2
T
1"
2þð ~�pc

2 Þ2ð�T
1"
2��T

2"
1Þ�þH:c:

þð�p
3v

2
R=2�ð ~�p

1 Þ2Þ�y
2�2þð�c

3v
2
R=2�ð ~�c

1Þ2Þ
y
2
2

þð�pc
3 v2

R=2�ð ~�pc
1 Þ2Þð�y

2
2þH:c:Þ
þð�� termsÞþð�� termsÞ; (40)

with

" ¼ 0 1
�1 0

� �
; (41)

where we have redefined the electroweak scale parameters

~� 2
i ¼ �2

i � �iv
2
R=2; (42)

which are reasonably small when applying the vacuum
minimal conditions Eq. (39) resulted from the limit case
in Eqs. (32) and (33). It is manifest that �1 and 
1 will

acquire small masses at the electroweak scale after
SUð2ÞL symmetry breaking from � terms in Eq. (A1d),
while �2 and 
2 have masses at the vR scale from �p;c;pc

3

terms. Note that approximate mass degeneration of Higgs
fields �0

2, �
�
2 in doublet �2 and 
0

2, 

�
2 in doublet 
2

reveals the fact that they are not involved in SUð2ÞL
symmetry breaking.
When omitting the terms concerning the heavy Higgs

fields�2, 
2 and �L;R, we yield the Higgs potential for the

electroweak symmetry,

V�1;
1;h�Ri ¼ �ð ~�p
1 Þ2�y

1�1 � ð ~�c
1Þ2
y

1
1 � ð ~�pc
1 Þ2ð�y

1
1 þ 
y
1�1Þ

þ �p
1 ð�y

1�1Þ2 þ �c
1ð
y

1
1Þ2 þ �pc
1 ½ð�y

1
1Þ2 þ ð
y
1�1Þ2� þ �pc

2 ð�y
1
1Þð
y

1�1Þ
þ �pc

3 ð�y
1�1Þð�y

1
1 þ 
y
1�1Þ þ �pc

4 ð
y
1
1Þð
y

1�1 þ�y
1
1Þ þ �pc

7 ð�y
1�1Þð
y

1
1Þ; (43)

which is exactly in the same form (with 10 independent
terms—three� terms and seven � terms) as the potential in
the general 2HDM model with spontaneous CP violation
[22,23].

It is easy to check that in this limit the electroweak part
of the gauge and Yukawa sectors is 2HDM-like. For the
SUð2ÞL gauge-Higgs interactions, it reads

Tr½ðDL�ÞyDL��¼ðDL�1ÞyðDL�1ÞþðDL�2ÞyðDL�2Þ;
Tr½ðDL
ÞyDL
�¼ðDL
1ÞyðDL
1ÞþðDL
2ÞyðDL
2Þ;

(44)

and for the Yukawa interactions, the quark-Higgs cou-
plings can be written as

LY ¼ �QLðyq�þ ~yq ~�þhq
þ ~hq ~
ÞQR

¼ �QLðyq�1þhq
1ÞQu
Rþ �QLð~yq ~�1þ ~hq ~
1ÞQd

R

þ �QLðyq�2þhq
2ÞQu
Rþ �QLð~yq ~�2þ ~hq ~
2ÞQd

R:

(45)

This is why the limit in Eqs. (32) and (33) is called the
2HDM limit. The decoupling rule of 2HBDM to 2HDM is
the basic reason why the 2HBDM can be a realistic model
with spontaneous P and CP violation.
Let us now check the Higgs mass matrix. In the limit of

Eqs. (32) and (33), the mixings between Higgs bidoublets
and triplets vanish, and also the mixings between left-
hand triplet �L and right-hand �R become negligibly
small. As a consequence, the 12� 12 mass matrix
of the neutral Higgs bosons splits into ð8� 8Þpc�
ð2� 2ÞL � ð2� 2ÞR on the f�0

1;2; 

0
1;2; �

0
L; �

0
Rg basis, and

the 6� 6 mass matrix of the charged Higgs bosons splits
into ð4� 4Þpc � 1L � 1R in the f�þ

1;2; 

þ
1;2; �

þ
L ; �

þ
R g basis.

Substituting Eq. (39) into the mass matrix, we find that
there is a big mass splitting inside the bidoublets; thus,
half of the eight freedoms obtain masses at the vR scale,
while the remaining four freedoms remain at the electro-
weak scale, one of which becomes the Goldstone boson
of SUð2ÞL symmetry breaking. The same reasoning ap-
plies to the charged Higgs sector. The imaginary part of
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�0
R and �þ

R becomes the Goldstone bosons of SUð2ÞR
symmetry breaking and the real parts of �0

R and �0
L

become physical Higgs bosons at vR scale. To conclude,
there are three neutral and one pair of charged Higgs
bosons at the electroweak scale in the limit of Eqs. (32)
and (33). At the vR scale, there are seven neutral Higgs
bosons, and three pairs of charged Higgs bosons, among
which two come from Higgs bidoublets and one from ��

L ,
as well as two pairs of doubly charged Higgs bosons ���

L;R .

The specific form of Higgs mass spectrum is listed in
Appendix B.

General decoupling limit to 2HDM.— In the general
case, the form of Higgs mass matrix is rather compli-
cated. All six VEVs and four phases enter the expres-
sion. However, the above analysis on bidoublet mass
splitting still holds, which means that the heavy free-
doms at the vR scale in two Higgs bidoublets are all
dominated by the explicit SUð2ÞR symmetry-breaking
terms �p;c;pc

3 .

It is rather tedious to write down the general form for
the mass matrix, but we have carefully checked and
confirmed that in the general case without imposing the
special limit given in Eqs. (32) and (33), there are still
three neutral and one pair of charged Higgs bosons at the
electroweak scale as long as the SUð2ÞR symmetry-
breaking scale vR is taken to be much higher than the
electroweak scale, i.e.,

vR 
 �1; �2; w1; w2; vL; (46)

which may be regarded as the general decoupling limit
for 2HBDM approaching a 2HDM-like state. It is also
found that the mixings of the Higgs sector have the same
pattern as that described in Appendix B.

From the above analysis, we arrive at the conclusion that
the 2HBDM will degenerate to the 2HDM in a general

decoupling limit [Eq. (46)]. The main difference is that in
the general decoupling limit the electroweak sector is
separated from the right-hand sector associated with vR

scale in a much more complicated way.
The explicit structures of the mass matrices for

physical Higgs bosons are given as follows with different
scales:

M0 ¼

M0
h v2 vvR vvL

v2 M0
H vvR vvL

vRv vRv M0
R vRvL

vLv vLv vLvR M0
L

0
BBBBB@

1
CCCCCA;

M� ¼
M�

h v2 vvL

v2 M�
H vvL

vLv vLv M�
L

0
BB@

1
CCA;

(47)

withM0
h a 3� 3mass matrix,M0

H a 4� 4mass matrix, and

M�
H a 2� 2 mass matrix, and

M0
H ¼ M0R

H v2

v2 M0I
H

 !
; M0

L ¼ ð�3 � 2�1Þv2
R

2

1

1

 !
;

M0
R ¼ 2�1v

2
R; M�

L ¼ ð�3 � 2�1Þv2
R

2
þ �v2: (48)

Thus the neutral Higgs mass matrix M0 in Eq. (47) is
a 10� 10 matrix, and h0ðh�Þ and H0ðH�Þ stand for
the (nearly physical) Higgs bosons from the combina-
tion of bidoublets with mass scales k and vR, respec-
tively. M0

h is a 3� 3 matrix with elements of order

k2, and M�
h is also of order k2, while M0R

H (real part),

M0I
H (imaginary part), and M�

H matrix elements are all
of order v2

R.
The Goldstone bosons are defined as

~G 0
L ¼ Imð�1�

0�
1 þ ��

2�
0
2 þ!1


0�
1 þ!�

2

0
2 þ 2v�L�

0
LÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4v2

L

q
;

~G0
R ¼ Imð��

1�
0
1 þ �2�

0�
2 þ!�

1

0
1 þ!2


0�
2 þ 2v�R�

0
RÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4v2

R

q
;

~Gþ
L ¼ ð��1�

þ
1 þ ��

2�
þ
2 �!1


þ
1 þ!�

2

þ
2 þ ffiffiffi

2
p

v�L�
þ
L Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 2v2

L

q
;

~Gþ
R ¼ ð���

1�
þ
2 þ �2�

þ
1 �!�

1

þ
2 þ!2


þ
1 þ ffiffiffi

2
p

v�R�þ
R Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 2v2

R

q
;

(49)

which have been extracted from the mass matrix. Note that
the real directions of the neutral and charged Goldstone
bosons in the general case correspond to the combination
of ~G0

L;R and ~G�
L;R, respectively.

Low-energy phenomenology.— In our previous works
[26,27], we have shown the low-energy phenomenologi-
cal constraints and demonstrated that the mentioned
stringent phenomenological constraints on the minimal
model from neutral meson mixings can be significantly

relaxed. In particular, it has been shown that the right-
handed gauge boson mass can be as low as 600 GeV,
with the charged Higgs mass around 200 GeV. The
FCNC will not impose severe constraints on the neural
Higgs mass, provided small off-diagonal Yukawa cou-
plings via the mechanism of approximate global Uð1Þ
family symmetry [22,23,25]. We have also analyzed the
mass difference �mK and indirect CP violation �K in
the neutral K system and observed that the right-handed
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gauge boson contributions to the mass difference �mK

can be the opposite of that from the charged Higgs
boson, and a cancelation between the two contributions
is possible in a large parameter space. The suppression
of right-handed gauge boson contributions to the indi-
rect CP violation �K has been found to occur naturally.
As a consequence, a light right-handed gauge boson
around the current experimental low bound is allowed.
For the neutral B meson system, the mass difference
�mB and the time-dependent CP asymmetry in B0 !
J=�KS decay have been found to be consistently char-
acterized in the 2HBDM with spontaneous P and CP
violation, which is unlike the minimal model with only
one Higgs bidoublet.

V. CONCLUSION

We have discussed the 2HBDM with spontaneous
P and CP violation as a simple extension of the minimal
left-right symmetric model by adding an extra bidoublet.
It has been shown that such an extended 2HBDM can
solve the inconsistency between the vacuum minimal
conditions on spontaneous CP violation and the low-
energy phenomenological bounds on the FCNC Higgs
mass. It has been found that the 2HBDM can relax the
quark Yukawa sector, which is strictly constrained by left-
right symmetry in the minimal one.

In particular, we have demonstrated the existence of a
general decoupling limit in the 2HBDM, which states
that as long as the SUð2ÞR symmetry-breaking scale
caused by the SUð2ÞR triplet Higgs is much higher
than the electroweak symmetry-breaking scale. The
2HBDM will degenerate to the 2HDM-like state, which
apparently differs from the minimal model with or with-
out spontaneous CP violation. As a consequence, the
Higgs mass spectra in the 2HBDM have been obtained
with reasonable approximation, where the three neutral
and one pair of charged Higgs become naturally light
Higgs bosons with masses at the electroweak scale and
may be explored at LHC and International Linear
Collider (ILC) [31,32], and the sources of CP violation
in the 2HBDM also get much richer and may show up in
low-energy processes such as rare B decays [33–36].

As the 2HBDM decouples to the 2HDM in the
decoupling limit, it can evade the stringent constraints
from the neutral meson mixing and make the allowed
mass of right-handed gauge boson to be closing to the
current direct experimental search bound. It is expected
that the new physics particles in the 2HBDM can
directly be searched in upcoming LHC and future ILC
experiments.
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APPENDIX A: THE MOST GENERAL HIGGS
POTENTIAL IN 2HBDM

By simply adding a Higgs bidoublet 
, the Higgs po-
tential becomes much more complicated than the minimal
model with a single Higgs bidoublet. Except including an
identical copy of 
 coupling to triplets �L;R, there are also

the mixing terms between two Higgs bidoublets � and 
.
The general form of Higgs potential may be written as
follows:

V�;
;�L;�R
¼ V� þ V� þ V� þ V� þ V�; (A1a)

with

V� ¼ �ð�p
1 Þ2 Tr½�y�� � ð�c

1Þ2 Tr½
y
�
� ð�pc

1 Þ2 Tr½�þ
þ 
þ��
� ð�p

2 Þ2 Tr½ ~��y þ ~�y�� � ð�c
2Þ2 Tr½~

y þ ~
y
�

� ð�pc
2 Þ2 Tr½ ~�
þ þ ~�þ
�

��2
3 Tr½�L�

y
L þ �R�

y
R�; (A1b)

V� ¼ �p
1 Tr½��y�Tr½�L�

y
L þ�R�

y
R� þ �c

1 Tr½

y�Tr½�L�
y
L þ�R�

y
R�

þ �pc
1 Tr½�y
þ 
y��Tr½�L�

y
L þ �R�

y
R�

þ �p
2 Tr½�y ~�þ� ~�y�Tr½�L�

y
L þ �R�

y
R� þ �c

2 Tr½
y ~
þ 
~
y�Tr½�L�
y
L þ �R�

y
R�

þ �pc
2 Trð ~�
y þ ~�y
ÞTrð�L�

y
L þ �R�

y
RÞ

þ �p
3 Tr½��yð�L�

y
L þ�R�

y
RÞ� þ �c

3 Tr½

yð�L�
y
L þ �R�

y
RÞ�

þ �pc
3 Tr½ð�
y þ 
�yÞ�L�

y
L þ ð�y
þ 
y�Þ�R�

y
R�

þ �pc
4 Tr½ð ~�
y þ 
 ~�yÞ�L�

y
L þ ð
y ~�þ ~�y
Þ�R�

y
R�; (A1c)
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V� ¼ �p
1 Tr

2½��y� þ �p
2 ðTr2½ ~��y� þ Tr2½ ~�y��Þ þ �p

3 Tr½ ~��y�Tr½ ~�y��
þ �p

4 Tr½��y� ðTr½ ~��y� þ Tr½ ~�y��Þ
þ �c

1 Tr
2½

y� þ �c

2 ðTr2½~

y� þ Tr2½~
y
�Þ þ �c
3 Tr½~

y�Tr½~
y
�

þ �c
4 Tr½

y� ðTr½~

y� þ Tr½~
y
�Þ

þ �pc
1 ðTr2½�y
� þ Tr2½
y��Þ þ �pc

2 Tr½�y
�Tr½
y��
þ �pc

3 Tr½��y�Tr½�y
þ 
y�� þ �pc
4 Tr½

y�Tr½�y
þ 
y��

þ �pc
5 ðTr2½ ~�
y� þ Tr2½ ~�y
�Þ þ �pc

6 Tr½ ~�
y�Tr½ ~�y
�
þ �pc

7 Tr½��y�Tr½

y�
þ �pc

8 Tr½��y�Tr½~

y þ ~
y
� þ �pc
9 Tr½��y�Tr½ ~�
y þ ~�y
�

þ �pc
10 Tr½

y�Tr½ ~��y þ ~�y�� þ �pc

11 Tr½

y�Tr½~
�y þ ~
y��
þ �pc

12;13 Tr½ ~��y � ~�y��Tr½ ~�y
� ~�
y� þ �pc
14;15 Tr½~

y � ~
y
�Tr½ ~�y
� ~�
y�

þ �pc
16;17 Tr½�
y � 
�y�Tr½ ~�y�� ~��y� þ �pc

18;19 Tr½�
y � 
�y�Tr½~
y
� ~

y�
þ �pc

20;21 Tr½�
y � 
�y�Tr½ ~�y
� ~�
y�
þ �pc

22;23 Tr½ ~�y�� ~��y�Tr½~

y � ~
y
�; (A1d)

V� ¼ �p
1 Tr½��R�

y�y
L þ�y�L��y

R� þ �c
1 Tr½
�R


y�y
L þ 
y�L
�

y
R�

þ �pc
1 Tr½��R


y�y
L þ�þ�L
�

y
R�

þ �p
2 Tr½ ~��R�

y�y
L þ ~�y�L��y

R� þ �c
2 Tr½~
�R


y�y
L þ ~
y�L
�

y
R�

þ �pc
2 Tr½
�R�

y�y
L þ 
y�L��y

R�
þ �p

3 Tr½��R
~�y�y

L þ�y�L
~��y

R� þ �c
3 Tr½
�R ~


y�y
L þ 
y�L ~
�

y
R�

þ �pc
3 Tr½ ~��R


y�y
L þ ~�y�L
�

y
R� þ �pc

4 Tr½��R ~

y�y

L þ�y�L ~
�
y
R�; (A1e)

V� ¼ �1 ðTr2½�L�
y
L� þ Tr2½�R�

y
R�Þ

þ �2 ðTr½�L�L�Tr½�y
L�

y
L� þ Tr½�R�R�Tr½�y

R�
y
R�Þ

þ �3 Tr½�L�
y
L�Tr½�R�

y
R�

þ �4 ðTr½�L�L�Tr½�y
R�

y
R� þ Tr½�y

L�
y
L�Tr½�R�R�Þ; (A1f)

where upper indices p’s denote the terms relevant to �, c’s denote those relevant to 
 and pc’s denote those relevant to
both � and 
.

APPENDIX B: HIGGS MASS SPECTRA IN THE DECOUPLING LIMIT

Here we explicitly list the Higgs mass spectra in the 2HBDM with approximation by omitting the terms OðvL

k Þ, Oð kvR
Þ,

Oð�2;!2

�1;!1
Þ, and their higher orders.

(i) Light neutral Higgs ðh01; h02; h03Þ at the electroweak scale:

ðM11
h0
Þ2 ’ 2�p

1�
2 þ 2�pc

1 !2cos2�c1 þ 2�pc
3 �! cos�;

ðM12
h0
Þ2 ’ �2�pc

1 �!sin2�c1 þ �pc
2 �!þ �pc

3 �! cosþ�pc
4 !2 cos�þ �pc

7 �!;

ðM22
h0
Þ2 ’ 2�c

1!
2 þ 2�pc

1 �2cos2�c1 þ 2�pc
4 �! cos�;

ðM13
h0
Þ2 ’ �vð2�pc

1 ! cos�þ �pc
3 �Þ;

ðM23
h0
Þ2 ’ �vð2�pc

1 � cos�þ �pc
4 !Þ;

ðM33
h0
Þ2 ’ 2�pc

1 v2sin2�c1; (B1)
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with

�0
1 ¼ h01 � i sin�h02 þ i cos� ~G0

1;

�0
2 ¼ ei�h03 � e�i� sin�h02 � e�i� cos� ~G0

1;
(B2)

where � � �c1, � � �1, ! � !1, v2 ¼ �2 þ!2, and
tan� ¼ !=�. ~G0

1 absorbed by Z1 is the neutral Goldstone
of SUð2ÞL symmetry breaking.

(ii) Light charged Higgs (h�) at the electroweak scale:

ðMh�Þ2 ¼ 1

2
ð2�pc

1 � �pc
2 Þv2; (B3)

with

�þ
1 ¼ � sin�e�i�hþ þ cos�Gþ

L ;


þ
1 ¼ cos�hþ þ sin�ei�Gþ

L ;
(B4)

whereGþ
L absorbed byWL is the charged Goldstone

of SUð2ÞL symmetry breaking.
(iii) Heavy doublets ðH1; H2Þ on the basis of f�2; 
2g at

the vR scale:

ðMH
1;2Þ2¼

1

2
ð�p

3 þ�c
3	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p

3 ��c
3Þ2þ4ð�pc

3 Þ2
q

Þv2
R;

(B5)

with

�2¼ cos�H1�sin�H2; 
2¼ sin�H1þcos�H2;

tan2�¼ð�p
3 ��c

3Þ=�pc
3 : (B6)

Mixings inside doublets H1 or H2 are generally
Oðk2=v2

RÞ.
(iv) Heavy right-handed triplet Higgs (neutral) from

Reð�0
RÞ at the vR scale:

ðM0
RÞ2 ’ 2�1v

2
R: (B7)

(v) Heavy doubly charged right-handed triplet
Higgs(���

R ):

ðM��
R Þ2 ’ 2�2v

2
R: (B8)

(vi) Heavy left-handed triplet �L (neutral, charged, and
doubly charged):

ðM�LÞ2 ’ 1

2
ð�3 � 2�1Þv2

R: (B9)

(vii) Higgs mixing among different components: The
light Higgs h01;2;3 mixings with heavy Higgs

Reð�0
RÞ are of order Oð kvR

Þ. The light Higgs h01;2;3
mixings with heavy Higgs H0

1;2 are of order Oðk2
v2
R

Þ.
The light Higgs h� mixings with H�

1;2 are of order

Oðk2
v2
R

Þ. The heavy Higgs H0
1;2 mixings with Reð�0

RÞ
are of order Oðk2

v2
R

Þ. �L mixings with others ap-

proach to vanishing when vL ! 0.
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