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We define a Higgs descendant � to be a particle beyond the standard model whose mass arises

predominantly from the vacuum expectation value of the Higgs boson. Higgs descendants arise naturally

from new physics whose intrinsic mass scale is unrelated to the electroweak scale. The coupling of � to

the Higgs boson is fixed by the mass and spin of �, yielding a highly predictive setup in which there may

be substantial modifications to the properties of the Higgs boson. For example, if the decay of the Higgs

boson to � is kinematically allowed, then this branching ratio is largely determined. Depending on the

stability of �, Higgs decays may result in a variety of possible visible or invisible final states.

Alternatively, loops of � may affect Higgs boson production or its decays to standard model particles.

If � is stable dark matter, then the mandatory coupling between � and the Higgs boson gives a lower

bound on the direct detection cross section as a function of the � mass. We also present a number of

explicit models which are examples of Higgs descendants. Finally, we comment on Higgs descendants in

the context of the excesses near 125 GeV recently observed at ATLAS and CMS.

DOI: 10.1103/PhysRevD.86.015004 PACS numbers: 12.60.�i, 14.80.�j

I. INTRODUCTION

A primary goal of the LHC is to reveal the fundamental
dynamics underlying electroweak symmetry breaking. The
characteristic mass scale of the standard model is the
vacuum expectation value (VEV) of the Higgs field, v ¼
246 GeV, which is radiatively unstable. This fact has been
the central driving force for exploring new theories beyond
the standard model at the TeV scale.

Theories which address the electroweak hierarchy prob-
lem universally introduce dimensionful parameters from
which v originates. For example, in the case of supersym-
metry [1] the � term and soft masses determine the value
of v. Likewise, in theories with a pseudo Nambu-
Goldstone Higgs boson [2], the scale v descends a loop
down from the symmetry breaking decay constant f. In
such instances the proximity of new mass scales to v is
required, and thus not a coincidence.

Conversely, for any new physics unrelated to the origin
of electroweak symmetry breaking, associated dimension-
ful parameters have, a priori, no reason to be nearv. If these
mass scales lie far above the electroweak scale, then the
associated particles are kinematically inaccessible to
experiments like the LHC, and we can integrate them out.
Hence, in this limit our only hope of probing such new
physics is from higher-dimension operators e.g., as in the
case of theWeinberg operator for small neutrinomasses [3].

If, on the other hand, the new mass scales are very tiny
then the associated states will be, naively, quite light. This
naive intuition, however, fails if the new physics is coupled
to the standard model. In this case there will in general be
induced interactions between these new states and the
Higgs field. After electroweak symmetry breaking, such
couplings provide the main contribution to the masses of

these new states, which are necessarily proportional to
some power of v. We will refer to this broad class of
new states as Higgs descendants, and as we will see they
can have a drastic impact on Higgs physics even though
they do little to address the hierarchy problem.
More concretely, let us define a Higgs descendant as an

additional particle beyond the standard model, �, whose
mass obeys the property that

v ! 0 ) m� ! 0: (1)

Note that this condition does not hold typically for new
states associated with the sectors addressing the hierarchy
problem. For instance, in supersymmetry the superpartner
masses arise from soft supersymmetry breaking parame-
ters, so they do not necessarily vanish as v ! 0. Likewise,
any particle with a bare mass is not a Higgs descendant.
Still, Higgs descendants represent large classes of theo-

ries that may appear in varying contexts. Several examples
of Higgs descendants can already be found in the literature.
For instance, a number of authors have considered minimal
singlet dark matter coupled via the so-called Higgs portal
[4,5]. In many cases, the singlet is given an intrinsic mass
scale which may be fixed by other considerations e.g., a
thermal relic abundance [6]. Restricting such theories to
forbid/suppress explicit mass terms for the dark matter
yields a Higgs descendant [7]. Likewise, fourth-generation
Dirac neutrinos [8] and certain hidden sector models [9,10]
are also examples of Higgs descendants.
The condition of Eq. (1) implies that m� can be ex-

panded in powers of v; so for example,

m� ¼ �vn þ . . . ; (2)

for a fermionic Higgs descendant �. Here, n > 0, and �
parametrizes our ignorance of physics coupling the Higgs
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field to the Higgs descendant. For weakly coupled theories,
n is an integer, but in general it need not be [11]. The
ellipses denote higher-order terms in v, which we will
ignore throughout. Higgs descendant theories possess a
highly restricted phenomenology because the interactions
relevant to many physical processes are essentially fixed by
m� alone. In particular, by replacing the Higgs VEV as

v ! vþ h; (3)

where h is the propagating Higgs boson field, Eq. (2) leads
to a Lagrangian of the form

L ¼ �m�

�
1þ nh

v

�
���þ . . . ; (4)

where the ellipses denote terms higher order in the Higgs
field and we have considered a Dirac fermion � for
concreteness.

For a scalar Higgs descendant �, we define the index n
according to

m2
� ¼ �vn þ . . . ; (5)

reflecting the dimension of the � mass term in the
Lagrangian. Eq. (4) then applies equally for a complex
scalar � only by making m� ! m2

�. The generalization is

obvious for other spins and real representations. Note that
throughout, n is defined by Eqs. (2) and (5) for fermionic
and bosonic �, respectively.

The organization of our paper is as follows. In Sec. II,
we discuss how a Higgs descendant can have significant
implications for Higgs phenomenology at the LHC. These
arise either as new decay modes or as modifications of the
standard model production and decay modes of the Higgs
boson. We discuss the case in which the Higgs descendants
are stable or unstable decaying into standard model parti-
cles, leading to distinct signatures for Higgs boson decays.
In Sec. III, we consider the case in which a Higgs descend-
ant is stable and comprises the dark matter of the universe.
In this case, Eq. (4) provides a lower bound, modulo
unnatural cancellations, on the dark matter-nucleon scat-
tering cross section relevant for direct detection experi-
ments, as a function of m�. Correlations between dark

matter and LHC physics would then provide a powerful
probe of the underlying theory. In Sec. IV, we present
simple, explicit models of Higgs descendants. Finally, we
conclude in Sec. V.

II. HIGGS BOSON PROPERTIES

The existence of a Higgs descendant � leads to the
mandatory coupling in Eq. (4). Here we discuss the effect
of this coupling on Higgs physics. Throughout this paper,
we will limit ourselves to the case of a single Higgs
doublet.

A. Light Higgs descendants

Consider a scenario of light Higgs descendants, defined
as m� <mh=2. In this case the Higgs boson has a new

decay channel, h ! ��, with a branching ratio fixed by
mh,m�, and n, which is independent of the gauge quantum

numbers of � (modulo multiplicity factors).1

The partial decay rate of the Higgs boson to standard
model particles can be found in Ref. [12], while the partial
decay rate to � is given by

�f ¼ mh

8�

�
nm�

v

�
2
�
1� 4m2

�

m2
h

�
3=2

; (6)

for a Dirac fermion � and by

�s ¼ mh

16�

�
m�

mh

�
2
�
nm�

v

�
2
�
1� 4m2

�

m2
h

�
1=2

; (7)

for a complex scalar �. For a Majorana fermion or a real
scalar, one makes the replacements �f ! �f=2 and

�s ! �s=2, respectively. The additional factor of m2
�=m

2
h

in Eq. (7) relative to Eq. (6) will produce quantitatively
different physics for fermionic versus scalar �, especially
for small m�.

The branching ratio BRðh ! ��Þ is shown in Fig. 1 for
a Dirac fermion � as a function of m� and mh for n ¼ 1

and 2. One expects that for mh & 2mW , the Higgs branch-
ing ratio into a Higgs descendant becomes important when
nm� is of order mb, the bottom quark mass, and this is

indeed the case. For example, BRðh ! ��Þ * 50% for a
light Higgs boson when m� * 6 GeV (m� * 3 GeV) for

n ¼ 1 (n ¼ 2). For a heavy Higgs boson above the WW
threshold, decays into the Higgs descendant can be non-
negligible only in small regions of parameter space.
If � is a scalar, then the story changes quantitatively. In

this case, � interacts with the Higgs boson with a dimen-
sionful coupling nm2

�=v, rather than nm�=v. This induces

an additional factor of m2
�=m

2
h which suppresses the Higgs

boson decay rate to Higgs descendants, especially for
small m�. This trend is verified in Fig. 2, which depicts

BRðh!��Þ for complex scalar �. We find that
BRðh!��Þ*50% for a light Higgs boson only when
m� * 30 GeV (m� * 20 GeV) for n ¼ 1 (n ¼ 2).

Decays into scalar Higgs descendants never dominate for
a heavy Higgs boson above the WW threshold.
What occurs after the Higgs decays to a pair of �

particles is somewhat more model-dependent. Hence,
the resulting experimental signatures are as well. The
interactions in Eq. (4) preserve a Z2 symmetry which, if
unbroken, ensures the stability of �. Consider first the case
where this Z2 is sufficiently exact that � is stable on

1If n is odd, it might naively be thought that � must carry
standard model charges, but this is not true. The mass of � may
arise from a singlet field s whose VEV is induced by the Higgs
VEV, i.e., hsi / v.
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collider time scales. In this case, the signatures depend
largely on the standard model gauge quantum numbers of
�, which we now consider cases by case.

1. Stable case

If � is colored it will hadronize, yielding highly ioniz-
ing, sometimes intermittent tracks caused by long-lived,
charged hadronic states.2 This possibility, however, is
strongly constrained by direct production of � at the
LHC [14], and is not viable unless the hadronization leads
mostly to neutral bound states.

Next, let us consider the scenario in which the Higgs
descendant is uncolored, but carries electroweak charge.
For example, if the Higgs descendant has the quantum

numbers of a lepton, then � ¼ ð�0; �þÞ. In this case the
Higgs boson may decay into the charged components �þ,
and possibly as the neutral components �0 as well, depend-
ing on the quantum numbers of the �= �� multiplets. The
Higgs descendant then may lead to signatures discussed in
Ref. [15] if the mass splitting �m � m�þ �m�0 is suffi-

ciently small—for �m & m� it leads to stable charged
tracks, while for m� & �m & 200 MeV to short tracks
of �þ together with soft pions from �þ ! �0�þ. If �m
is larger (but not much larger than ’ GeV), then both
h ! �þ�� and h ! �0�0 are recognized only as invisible
Higgs boson decays at the LHC (unless boost factors for
�þ are large due to m� � mh), with the widths larger than

those in Eqs. (6) and (7) due to an appropriate multiplicity
factor. For �m> GeV, decay products of �þ may be
directly tagged.
Finally, if � is not charged under any standard model

gauge interactions, then h ! �� contributes to the invis-
ible Higgs decay width. (For recent discussions on
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FIG. 2 (color online). Branching ratio of h ! �� for a (complex) scalar � with n ¼ 1 (left) and n ¼ 2 (right).
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FIG. 1 (color online). Branching ratio of h ! �� for a (Dirac) fermionic � with n ¼ 1 (left) and n ¼ 2 (right).

2For discussions of such signatures in other contexts, see e.g.,
Ref. [13]. Note also that the Higgs decay widths in this case are
N times those in Eqs. (6) and (7), where N ¼ 3 and 8 for a color
triplet and octet �, respectively.
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invisibly decaying Higgs bosons, see e.g., Ref. [16].) If
exactly stable and neutral, � is a possible dark matter
candidate, which we discuss in depth in Sec. III.

2. Unstable case

In general, the Z2 symmetry preserved by Eq. (4) may be
broken if there are additional couplings of � to standard
model particles. These interactions permit the Higgs de-
scendant to decay visibly inside the collider, as discussed
in a similarly general context in Ref. [17]. For example, for
a singlet fermionic �, consider the interaction �O, where

O ¼ fucdcdc; ‘‘ec; q‘dc; q‘yuc; ucdcyec; ‘hg: (8)

Here, O is constructed from all leading singlet fermionic
standard model composites. Each of these operators affects
the phenomenology in a distinct way.

For O ¼ ucdcdc each Higgs descendant decays to three
jets, yielding a striking six-jet final state from Higgs boson
decays. In this scenario, decays of the Higgs boson may be
buried in soft jets and thus difficult to discern at the LHC.
This operator also induces low-energy mixing between �
and standard model baryons. For O ¼ ‘‘ec, the Higgs
descendant decays via dilepton plus missing energy. For
O ¼ q‘dc; q‘yuc; ucdcyec, each Higgs descendant decays
to dijet plus lepton (or dijet plus missing energy for the first
two operators). For O ¼ ‘h, the Higgs descendant decays
to dijet or dilepton plus missing energy, or dijet plus lepton.
However, this operator is not ideal because it generates a
large Dirac mass between � and neutrinos, which is diffi-
cult to reconcile with neutrino oscillation experiments and
cosmological constraints.

Lastly, consider the case of a singlet scalar �, which can
couple via �O, where

O ¼ fqhuc; qhydc; ‘hyec; F��F
��; G��G

��g: (9)

Depending on the operator, � will decay to dijet, dilepton,
or digamma.

It is straightforward to apply similar arguments to �
which is not a standard model singlet, but we will not do
so here.

B. Heavy Higgs descendants

Let us now consider the case of heavy Higgs descend-
ants, where m� >mh=2. In this case, the Higgs boson is

kinematically forbidden from decaying to Higgs descend-
ants. One might think naively that the properties of the
Higgs boson are very similar to that of the standard model.
However, in certain cases � is charged under the standard
model gauge group, in which case it will typically influ-
ence Higgs boson production via gg ! h as well as the
decay h ! ��. Moreover, as we will see, the contributions
to these processes from Higgs descendants are fixed by the
choice of n and the spin and charges of �.

The coupling of the Higgs boson to the gluon is

L hgg ¼ �s

12�

h

v

�X
i

citiNi

@ logmiðvÞ
logv

�
Ga

��G
a��

¼ �s

12�

h

v
ð1þ c�t�N�nÞGa

��G
a��; (10)

where i labels heavy species which provide threshold
corrections to the beta function of QCD. Here ci ¼ 2 for
Dirac fermions and ci ¼ 1=2 for complex scalars, ti is the
Dynkin index of the multiplet, and Ni is the multiplicity. In
the second line we have plugged in for i ¼ � and the top
quark, where � is colored. We see that the Higgs boson
coupling to the gluon is fixed by a set of discrete quantum
numbers of the � field. For example, the fourth-generation
quarks have fc�; t�; N�; ng ¼ f2; 1=2; 2; 1g, enhancing the

amplitude for Higgs production through gluon fusion
by a factor of 3 and thus the production cross section by
a factor of 9.
A similar formula for the coupling of the Higgs boson to

the photon can be derived from the beta function of QED:

Lh�� ¼ �

12�

h

v

�
� 21

2
þX

i

ciq
2
i Ni

@ logmiðvÞ
logv

�
F��F

��

¼ �

12�

h

v

�
� 21

2
þ 8

3
þ c�q

2
�N�n

�
F��F

��; (11)

where the Dynkin index ti is replaced with the electric
charge q2i , and the term of�21=2 is the contribution to this
coupling from aW boson loop. As before, we have plugged
in for i ¼ � and the top quark in the second line, assuming
an electrically charged Higgs descendant. As is well-
known, the top quark and W loop contributions to the
Higgs coupling to photons destructively interfere [12].
Similarly, loops of Higgs descendants also cancel against
the W loop contribution, since the mass of a Higgs de-
scendant always grows with the Higgs VEV. For example,
this occurs for a fourth-generation lepton, which contrib-
utes fc�; q�; N�; ng ¼ f2; 1; 1; 1g.
The defining relation of our scenario, Eq. (2), implies

that the mass of a Higgs descendant cannot be arbitrarily
large, m� & 1 TeV, so it is subject to direct search limits

from the LHC. We now consider those limits. While there
are no dedicated LHC searches for states with arbitrary
charges, we can get rough estimates for the limits from
similar searches.
If � is long-lived on collider time scales, then LHC

searches for stable colored or electrically charged particles
apply. These mass limits are quite stringent for gluino-like
(*1 TeV) and squark-like (*700 GeV) states, but rela-
tively weak for slepton-like (*200 GeV) states [14]. We
can thus conclude that long-lived Higgs descendants are
substantially constrained if colored, but are quite viable
otherwise.
On the other hand, if � decays promptly then limits

depend sensitively on its charges and decay modes. For
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instance, consider �which is colored and promptly decays.
For � decaying to standard model quarks plus one or more
leptons, the decay topology and thus the LHC limit
are similar to that of top and bottom partner quarks
(*600 GeV) [18]. Meanwhile, for � decaying to standard
model quarks plus missing energy, supersymmetry
searches apply. Using the simplified model analysis of
Ref. [19], one can estimate the LHC limit for a single
squark-like state (*300 GeV), although this bound can
be eliminated altogether if the mass of the missing energy
particle is sufficiently large. If, on the other hand, � decays
entirely to jets with no missing energy, as is the case in
many R-parity-violating models, bounds will be substan-
tially weaker.

Next, let us consider the case of color-neutral, electro-
weak charged � which promptly decays. In this scenario,
limits are far weaker due to the smaller production cross
section. For chargino-like states, one can apply constraints
from LHC supersymmetry searches (*300 GeV) [20]
although these bounds make very specific assumptions
about the cascade decay—in particular, these searches
are driven by the presence of intermediate sleptons which
provide additional leptons. In general, the limits on the
minimal chargino-neutralino system are very weak at
LHC, and the dominant bounds still come from LEP
(*100 GeV).

Let us now determine the effect of Eq. (10) and (11) on
Higgs boson phenomenology. To do so we define a func-
tion r½x� to be the ratio of a quantity x in a particular theory
divided by the value of x in the standard model. In Fig. 3
we have plotted r½BRðh ! ��Þ� for a color singlet � with
electric charge equal to q�. As expected, the branching

ratio to digamma diminishes for small values of q� due to

the destructive interference with the W boson. For suffi-
ciently large q�, however, the contribution from � domi-

nates and the digamma branching ratio begins to increase.

As discussed, a color singlet � is relatively
unconstrained by direct search limits and can be coupled
perturbatively to the Higgs boson. In Fig. 4, we have
plotted r½	ðgg ! hÞBRðh ! ��Þ� for a color triplet �
with electric charge q�. Here the rate of digamma events

from Higgs boson decays is substantially increased at low
q�, but can again cancel at larger values. We emphasize,

however, that because of direct search limits on colored
particles, much of this parameter space is disfavored,
without hiding � by making it decay into multiple jets or
invoking nonperturbative dynamics to sufficiently lift the
mass of �.

III. HIGGS DESCENDANT DARK MATTER

If a Higgs descendant � contains a neutral and stable
component, then this can comprise the dark matter of the
universe. In this section, we consider this possibility,
especially its implications for direct detection experiments.
In what follows, we do not impose any constraints from
demanding a thermal relic abundance of � particles
through freeze-out through the interaction in Eq. (4). As
noted in Ref. [21], for example, there is much leeway in
generating dark matter of this type through nonthermal
methods.
As a consequence of Eq. (4), � has a mandatory cou-

pling to the Higgs boson. Since the Higgs boson couples to
quarks and gluons, one in turn should expect an irreducible
spin-independent scattering cross section of � against a
target nucleus via t-channel Higgs boson exchange. For a
Dirac fermion �, the cross section is

	 ¼ �2

�

�
nm�

v

�
2 1

m4
h

ðZghpp þ ðA� ZÞghnnÞ2; (12)

where� is the dark matter-nucleus reduced mass,mh is the
Higgs boson mass, Z and A are the atomic number and
weight of the target nucleus, and ghNN for N ¼ p, n are the
coupling of the Higgs boson to the proton and neutron:
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FIG. 3 (color online). Ratio of BRðh ! ��Þ versus its stan-
dard model value for a color singlet � of electric charge q�.

Here, {red, orange} correspond to a complex scalar with n ¼
f1; 2g and {yellow, green} correspond to a Dirac fermion with
n ¼ f1; 2g.
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FIG. 4 (color online). Ratio of 	ðgg ! hÞBRðh ! ��Þ versus
its standard model value for a color triplet � of electric charge
q�. The colors are as in Fig. 3.
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ghNN ¼ mN

v

X
q

fNq : (13)

The scattering cross section for complex scalar � is one
quarter that of a Dirac fermion.

To derive the dark matter-nucleon spin-independent
cross section 	SI, we set A ¼ Z ¼ 1 and � ¼ 1 GeV.
Using

P
qf

N
q ’ 0:30� 0:015, compiled in Ref. [6] based

on Ref. [22], we obtain

	SI ’ 2:5� 10�45cm2

�
nm�

10 GeV

�
2
�
114 GeV

mh

�
4
; (14)

for Dirac fermion dark matter. This gives a lower bound on
the dark matter detection cross section: unless there is a
substantial cancellation between the Higgs exchange and
other processes, we expect that the true dark matter-
nucleon cross section is comparable to or larger than the
value given in Eq. (14).

The above result can now be compared with predictions
for the invisible Higgs boson decay rate: h ! ��, where �
is a neutral and stable component of the Higgs descendant.
In Figs. 5 and 6, we present contour plots of BRðh ! ��Þ
in the ðm�;	SIÞ planes for complex scalar and Dirac fer-

mion dark matter, respectively. Assuming that the dark-
matter-nucleon cross section saturates the lower bound in
Eq. (14), each point in the ðm�;	SIÞ plane corresponds to a
fixed value of mh for a given n, and thus to a definite value
of BRðh ! ��Þ. Using this, we have shown shaded bands
corresponding to the Higgs boson mass range 114 GeV<
mh < 145 GeV for n ¼ 1, 2 in each figure. Within these

bands we have also drawn labeled contours, showing
BRðh ! ��Þ. Finally, the dashed black line in each figure
indicates the most recent exclusion curve from the
XENON100 dark matter detection experiment [23]. From
Fig. 5, we see that if an invisible branching ratio of the
Higgs boson greater than �70% is measured, then com-
plex scalar dark matter of this type will be excluded (up to
astrophysical uncertainties associated with the dark matter
detection constraint). On the other hand, from Fig. 6 it is
clear that for Dirac fermion dark matter, a mostly invisibly
decaying Higgs boson can easily be accommodated.

IV. EXPLICIT MODELS

A number of prominent examples of Higgs descendants
have been studied in the existing literature, albeit in vary-
ing contexts. Perhaps the most obvious among these theo-
ries is singlet dark matter coupled via the so-called Higgs
portal [4,6,7]

L ¼ ��

4
jhj2jSj2: (15)

Because this model is rather phenomenological in nature,
naturalness considerations are disregarded and a bare mass
term for the gauge singlet, m2jSj2, is simply not included.3

The analyses of Secs. II and III apply more or less verbatim
to this model, whose properties are correctly characterized
by Figs. 2 and 5.
A less obvious example of a Higgs descendant is a

fourth-generation lepton, consisting of L, Ec and Nc with
the interaction
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FIG. 6 (color online). Same as Fig. 5 except for Dirac fermion
dark matter. The {yellow, green} bands indicate the range
corresponding to 114 GeV<mh < 145 GeV for n ¼ f1; 2g, re-
spectively.
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3Such a model can be made natural by the inclusion of
supersymmetry.
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L ¼ �LhNc þ 
LhyEc; (16)

where L ¼ ðN;EÞ is a left-handed doublet.4 The right-
handed neutrino, Nc, is a gauge singlet, so in general it
can have a Majorana mass term

L ¼ �m

2
NcNc: (17)

However, as discussed earlier, the value ofm has no reason
to be near the electroweak scale, so we expect it not to be
very close to v.

If m is sufficiently larger than v, then Nc should be
integrated out, yielding a higher-dimension Majorana
mass for N given by mN ¼ �2v2=m. Since N acquires a
mass solely from electroweak symmetry breaking, it is an
example of a Higgs descendant, as expected from our
general considerations. Unfortunately, in the limit m � v
one expects mN <mZ=2, so this theory is disfavored from
Z pole measurements.

Alternatively, it may be that m � v, in which case Nc

remains in the spectrum and acquires a Dirac mass with N
such that mN ¼ �v. In this case ðN;NcÞ is a Higgs de-
scendant and Figs. 1 and 6 pertain. For mN >mZ=2 this
theory trivially evades Z pole constraints, but having
ðN;NcÞ dark matter may be difficult. This is because
Fig. 6 implies mh * 175 GeV, in which case there is no
way to avoid the bound from standard model Higgs search
[24], given that BRðh ! WW	Þ cannot be suppressed; see
Fig. 1. The ðN;NcÞ dark matter is possible if the
XENON100 constraint is a factor of 2 weaker than that
depicted in Fig. 6, due e.g., to astrophysical uncertainties.
In this case, the direct detection constraint requires
only mh * 150 GeV, so that significant depletion of
BRðh ! WW	Þ is possible for mN <mh=2.

Let us now consider our final example. Suppose there is
a supersymmetric ‘‘hidden sector’’ which has a Uð1ÞX
gauge field kinetically mixing with the hypercharge
Uð1ÞY of the standard model [25]

L ¼ �

2

Z
d2�W YW X 
 �DYDX: (18)

The mixed D-term then produces a scalar potential of the
form

V ¼ 1

2
fgXðjXj2 � jXcj2Þ þ 
g2; (19)


 ¼ �DY ¼ � �gY
2

jhj2: (20)

Here, X and Xc are hidden sector chiral superfields charged
under Uð1ÞX. For simplicity, we have taken the decoupling
limit where h is really the up-type Higgs boson at
tan� ¼ 1. After electroweak symmetry breaking, 

acquires a VEV, triggering spontaneous symmetry break-
ing in the hidden sector proportional to the order parameter

hXi ¼
ffiffiffiffiffiffi
j
j
gX

s
; (21)

where we have assumed � > 0. Since hXi breaks the Uð1ÞX
gauge symmetry, the real and imaginary components of X
are eaten to become the longitudinal and radial modes of
the massive vector supermultiplet, VX. The mass of this

supermultiplet is given by mVX
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gXj
j
p / v, so that VX

is a Higgs descendant and our arguments apply to all its
components. (These components split in mass after super-
symmetry breaking.)

V. DISCUSSION

In this paper we have analyzed a broad class of theories
in which a new particle beyond the standard model, �,
acquires its mass predominantly from the VEV of the
Higgs field, v, rather than any intrinsic mass scale. Such
a particle, which we called a Higgs descendant, can arise
naturally from any new sector whose intrinsic mass scale
does not coincide with the electroweak scale.5 Because the
couplings of Higgs descendants are highly constrained, as
given in Eq. (4), the physics is dictated essentially by the
mass and spin of �. As we have seen, both for light and
heavy Higgs descendants there can be substantial modifi-
cations of the production and decay of the Higgs boson. In
the case where � is also a dark matter particle, this class of
theories predict a minimum spin-independent direct detec-
tion cross section that could be probed in experiments in
the near future.
While our discussion has been limited to the case of a

single Higgs doublet theory, our analysis can be straight-
forwardly extended to a two Higgs doublet model simply
by expanding m� in a power series in vu and vd. However,

this class of Higgs descendants becomes less predictive,
due to a proliferation of free parameters coming from the
multivariate expansion of m� as well as Higgs boson mass

and VEV mixing angles such as tan� and tan�. Our
analysis, however, applies without modification in the
decoupling regime.
Likewise, our discussion can also be extended to include

supersymmetry. In many such theories, the interaction of
Eq. (4) is accompanied by a supersymmetric analog in

4The standard model gauge anomalies can be canceled by
introducing e.g., a mirror lepton generation ðLc; E; NÞ or a
fourth-generation quark ðQ;Uc;DcÞ.

5The QCD scale is another scale in the standard model, which
is a priori independent of the electroweak symmetry breaking
scale. In principle, one may consider ‘‘QCD descendant’’ by
coupling new physics to a QCD condensate.
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which the Higgs boson is replaced by the Higgsino. Hence,
any given value of m� suggests a minimal coupling of the

Higgsino to � and its superpartner. We leave an investiga-
tion of these possible Higgsino descendants for future
work.

Lastly, let us briefly comment on the recently observed
excesses seen at ATLAS and CMS in the digamma and ZZ

channels [26]. Interpreted as a signal from the decay of the
Higgs boson, this suggests a mass mh ’ 125 GeV,
although these experiments obviously cannot yet make
definite statements about the detailed properties of such a
Higgs particle. As such, it is essential that further experi-
mental analyses are applied to determine more precisely
these properties. Fixing mh ¼ 125 GeV, any Higgs
descendant theory has a parameter space which is even
more restricted than that discussed in previous sections. In
Fig. 7 we have plotted the value of BRðh ! ��Þ for n ¼ 1,
2 and for Dirac fermion and complex scalar �. The solid
(dashed) portions of the curve correspond to regions in
parameter space which are (dis)allowed by XENON100, if
� composes all of the dark matter.
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