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We analyze topological charge contributions from classical SUð2Þ center vortices with shapes of planes
and spheres using different topological charge definitions, namely the center vortex picture of topological

charge, a discrete version of F ~F in the plaquette or hypercube definitions and the lattice index theorem.

For the latter the zero modes of the Dirac operator in the fundamental and adjoint representations using

both the overlap and asqtad staggered fermion formulations are investigated. We find several problems for

the individual definitions and discuss the discrepancies between the different topological charge defini-

tions. Our results show that the interpretation of topological charge in the background of center vortices is

rather subtle.
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I. INTRODUCTION

Since Savvidy [1] we know that the QCD vacuum is
nontrivial and has magnetic properties. In lattice QCD it
was shown [2] that vortices (quantized magnetic fluxes)
condense in the vacuum and compress the electric flux
between quark and antiquark to a string leading to con-
finement. This center vortex model [3–8] seems to be a
very promising candidate to explain the phenomena that
dominate the infrared regime. Numerical simulations have
indicated that vortices could also account for phenomena
related to chiral symmetry, such as causing topological
charge fluctuations and spontaneous chiral symmetry
breaking (SCSB) [9–12]. In particular, [13] states that the
topological charge of a vortex gauge field can be deter-
mined from the shape and orientation of P vortices, i.e.
from vortex intersections and writhing points.

Center vortices are based on a discrete gauge symmetry
of the action. A nontrivial center transformation of all link
variables in one time (or space) slice [2]

U0ð ~x; t0Þ ) zU0ð ~x; t0Þ; z 2 ZN (1.1)

leaves the action invariant. More generally, this transfor-
mation can be expressed in terms of gauge transformations
on a periodic lattice

U0ð ~x; t0Þ ) gðx; tÞU0ð ~x; t0Þgyðx; tþ 1Þ (1.2)

which are periodic in the time direction only up to a ZN

transformation:

gð ~x; t0 þ LtÞ ¼ zgð ~x; t0Þ; z 2 ZN: (1.3)

This ‘‘singular’’ gauge transformation is not really a gauge
transformation, since it affects of course the Polyakov
loop, a gauge-invariant observable. Restricting such a
transformation to a finite volume of a slice, the three
dimensional Dirac volume, increases the action by a surface
contribution, the vortex action. However, center vortices

also increase the entropy, compensating the rise of the
action and giving essential contributions to the vacuum
configurations [14]. The appearance of link variables close
to nontrivial center elements survives the continuum limit
and leads to singular gauge fields. This implies the question
of whether center vortices are lattice artifacts. One could
give a positive answer, if removing such lattice artifacts
would not influence QCD. But it is just the opposite:
removing center vortices destroys confinement and the
topological charge vanishes [9]. This means center vortices
are an essential ingredient of the QCD vacuum.

II. TOPOLOGY ON THE LATTICE

In lattice calculations there is a common method to
determine the topological charge QU from the integral

QU ¼ � 1

16�2

Z
d4xTr½ ~F��F���; (2.1)

where F�� is expressed in terms of the plaquette field

P�� ¼ U�ðxÞU�ðxþ�ÞUy
�ðxþ �ÞUy

� ðxÞ: (2.2)

This expression is derived in the continuum from the
transition between vacua with different winding numbers
[15,16]

Q ¼
Z
S3

J�d��;

J� ¼ � 1

8�2
����� TrðA�@�A� þ 2=3A�A�A�Þ:

(2.3)

Since F��
~F�� ¼ @�J�, Q can be re-expressed as the

above volume integral (2.1). On the lattice, continuity in
space is lost and it seems that one should be able to view
any lattice field configuration as being a discrete copy
of a smooth continuum configuration. This would always
be topologically trivial, since F ~F is a total derivative.
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Nonzero QU may come from field configurations contain-
ing gauge singularities [17–19].

Another possibility to analyze the topology of a gauge
field is given by the Atiyah-Singer index theorem [20–23].
It states that the topological charge of a gauge field
configuration is proportional to the index of the Dirac
operator in this gauge field background. For the overlap
Dirac operator [23–25] in the fundamental representation
the index is given by ind D½A� ¼ n� � nþ ¼ QD, where
n� and nþ are the number of left- and right-handed zero
modes. The adjoint version of the index theorem reads ind
D½A� ¼ n� � nþ ¼ 2NQD ¼ 4QD, where N ¼ 2 is the
number of colors and the additional factor 2 is due to the
fact that the fermion is in a real representation; hence
the spectrum of the adjoint Dirac operator iD is doubly
degenerate. As described in [26] the improved staggered
operator also produces eigenmodes which can clearly be
identified as zero modes and all results in this paper
show perfect agreement between the two fermion realiza-
tions, considering that the eigenvalues of the staggered
fermion operator have a twofold degeneracy due to a
global charge conjugation symmetry in SUð2Þ. We there-
fore have ind D½A� ¼ n� � nþ ¼ 2QD for fundamental
and ind D½A� ¼ n� � nþ ¼ 8QD for adjoint (asqtad) stag-
gered fermions. The lattice version of the index theorem is
only valid as long as the gauge field is smooth enough and
satisfies a so-called ‘‘admissibility’’ condition. It requires that
the plaquette valuesU�� are bounded close to 1, the value for
very smooth gaugefields. Sufficient, but not necessarybounds
for the admissibility of the gauge field are k1�U��k<
1=30 [17], or k1�U��k< ½6ð2þ ffiffiðp 2ÞÞ� ¼ 0:04882 [27].

In this paper we discuss smooth lattice field configura-
tions, which fulfill the admissibility condition and show
clearly a discrepancy between the integral of F ~F and the
topological charge derived from the lattice index theorem.
These configurations are thick, spherical vortices in SUð2Þ
lattice gauge theory. We analyze their topological charge
and their zero modes. The problem seems to be related to
the singular nature of vortex configurations; in fact, it is
incorporated to the SUð2Þ nature of our spherical vortex
configuration. Here we analyze this problem in more detail
and start with the discussion of plane vortices in different
Uð1Þ subgroups of SUð2Þ.

III. PLANE CENTER VORTICES AND
TOPOLOGICAL CHARGE CONTRIBUTIONS

For planar vortices parallel to two of the coordinate axes
in SUð2Þ lattice gauge theory we analyzed the location of
Dirac zero modes in [28]. The vortices were defined by
links varying in a Uð1Þ subgroup of SUð2Þ, defined by the
Pauli matrices �i,

U� ¼ expði��iÞ: (3.1)

The direction of the flux and the orientation of the vortices
were determined by the gradient of the angle �, which we

choose as a piecewise linear function of the coordinate
perpendicular to the vortex. The explicit functions for �
are given in Eq. (2.1) of [28]. For later use we plot in Fig. 1
the profile function � and the corresponding t links
rotating in z direction for a parallel xy vortex.
Upon traversing a vortex sheet, the angle � increases or

decreases by � within a finite thickness of the vortex.
Center projection leads to a (thin) P vortex at half the
thickness [29]. If we consider these thick, planar vortices
intersecting orthogonally, each intersection carries a
topological charge with modulus jQj ¼ 1=2, whose sign
depends on the relative orientation of the vortex fluxes [30].
The plaquette definition simply discretizes the continuum
(Minkowski) expression of the Pontryagin index to a lattice
(Euclidean) version of the topological charge definition:

QU ¼ � 1

16�2

Z
d4x tr½ ~F��F���

¼ � 1

32�2

Z
d4x����� tr½F��F���

¼ 1

4�2

Z
d4x ~E � ~B: (3.2)

We build xy vortices where only zt plaquettes are nontrivial,
i.e. with an electric fieldEz, and zt vortices bearing nontrivial
xy plaquettes corresponding to a magnetic field Bz. The
topological charge is then proportional to EzBz. If the angle
� for different vortex sheets rotates in the same Uð1Þ
subgroup of SUð2Þ, then parallel crossings give Q ¼ 1=2
and antiparallel crossings give Q ¼ �1=2.
In distinction from the above described discussion in

Ref. [28] we now change the Uð1Þ subgroup of SUð2Þ in
Eq. (3.1) for the two crossing vortices. The profile function
� remains the same as shown in Fig. 1. The explicit
formula is again given by Eq. (2.1) in [28]. For an orthogo-
nal choice of�i for Ez plaquettes (Pzt) by nontrivialUt and

1 12

0
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2π

2d

2d

z1 z2z

φ

FIG. 1 (color online). The link angle � of a parallel xy-vortex
pair. The arrows (t links) rotate clockwise with increasing � in
z direction. The vertical dashed lines indicate the positions of the
P vortices. In the shaded areas the links have positive (otherwise
negative) trace.

R. HÖLLWIESER, M. FABER, AND U.M. HELLER PHYSICAL REVIEW D 86, 014513 (2012)

014513-2



�jði � jÞ for Bz plaquettes (Pxy) by nontrivial Uy the

crossings do not contribute to the topological charge due
to the orthogonality of the Uð1Þ subgroups. We note that,
because the Ut and Uy links are now noncommuting,

nontrivial Pyt plaquettes also appear in the intersection

region, but nontrivial Pxz plaquettes are absent, since the
Ux and Uz links are trivial everywhere, and so no contri-
bution to F ~F occurs. Maximal center gauge still identifies
an intersecting vortex pair. But the intersection points do
not carry topological charge QU in the F ~F definition (3.2).
For two intersecting vortex pairs we are able to construct
configurations with topological charge QU ¼ 0, �1, and
even �1=2. The topological charge density in the inter-
section plane of three such configurations is shown in
Figs. 2(a)–2(c). For comparison see the plots in Fig. 2
in [28]. If � rotates in the �1 subgroup for the xy vortex
and in �2 for the zt vortex then F ~F gives no contribution to
the topological charge. If we choose the first vortex sheet
of the zt vortex to rotate � from zero to � in �1 and on to
2� in�2 for the second vortex sheet, whereas the xy vortex
only rotates in �1, we get topological charge QU ¼ 1 with
a distribution shown in Fig. 2(a). If we rotate � for the xy
vortex with the exchanged Uð1Þ subgroups as for the zt
vortex from above, i.e. starting with a �2 rotation and
rotating the second vortex sheet in �1 we still get QU ¼ 1
but now distributed as shown in Fig. 2(b). Finally, if we
take the zt vortex from above, i.e. �1 and �2 vortex sheets,
and for the xy vortex �2 and �3 vortex sheets, we find
QU ¼ 1=2 distributed as shown in Fig. 2(c) with an action
density in the intersection plane shown in Fig. 2(d).

The action density in Fig. 2(d) already shows that such
orthogonal color vector intersections might be suppressed

due to higher action and in fact, at the intersection points
we find maximally nontrivial (yt) plaquettes

Pyt � ð�i�kÞð�i�lÞi�ki�l

¼ ð�k�lÞð�k�lÞ ¼ i�mi�m ¼ �1: (3.3)

These rough configurations also seem to trouble the Dirac
operators, which do not find any zero modes. During
cooling the QU ¼ 1 and QU ¼ 1=2 configurations of
Fig. 2 are only metastable and soon turn to antiparallel
vortex pairs with vanishing topological charge (see Fig. 3),
whereas an original QU ¼ 0 configuration from two par-
allel vortex pairs in different Uð1Þ subgroups prefers the
S ¼ 2Sinst action minimum and ends up with parallel color
vectors yieldingQU ¼ 2 (see Fig. 4). For admissible gauge
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FIG. 2 (color online). Topological charge density via F ~F for
two parallel vortices intersecting in four points (same geometry
as in Fig. 1 of [28]) in the intersection plane. In all diagrams the
first sheet of the zt vortex rotates � in x direction from front to
back from zero to � in �1 and on to 2� in �2 for the second
vortex sheet, whereas in (a) the xy vortex rotates along z from
left to right in �1 only. In (b) the xy vortex starts with �2 in the
first sheet and continues with �1. In (a) and (b) we get QU ¼ 1.
In (c) the xy vortex starts with �2 in the first sheet and continues
with �3 leading to QU ¼ 1=2. In (d) the action density in the
intersection plane is shown for configuration (c).
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FIG. 3 (color online). Topological charge during cooling the
(metastable) Q ¼ 1 and Q ¼ 1=2 configurations of Fig. 2. The
intersecting vortex sheets end up with antiparallel orientation
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FIG. 4 (color online). During cooling the Q ¼ 0 configuration,
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vortex pairs end up with parallel color vectors equivalent to the
Q ¼ 2 configuration.
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fields (after some cooling) we also find the corresponding
numbers of zero modes, i.e. the different definitions of
topological charge agree with each other (QU ¼ QD).

Nevertheless, in the next section we discuss a lattice
configuration which immediately guarantees the admissi-
bility condition but gives a discrepancy (QU � QD).

IV. THE ‘‘SPHERICALVORTEX PROBLEM’’

The spherical vortex of radius R and thickness � was
introduced in [31] and analyzed in more detail in [26]. It is
constructed with the following links:

U�ðx�Þ ¼
�
expði�ðj ~r� ~r0jÞ ~n � ~�Þ t ¼ 1; � ¼ 4

1 elsewhere
(4.1)

with ~nð ~r; tÞ ¼ ~r� ~r0
j~r� ~r0j ; (4.2)

where ~r is the spatial part of x� and the profile function � is
either one of �þ, ��, which are defined by

�þðrÞ ¼

8>>>><
>>>>:

0 r < R� �
2

�
2

�
1þ r�R

�
2

�
R� �

2 < r < Rþ �
2

� Rþ �
2 < r;

(4.3)

��ðrÞ ¼

8>>>><
>>>>:

� r < R� �
2

�
2

�
1� r�R

�
2

�
R� �

2 < r < Rþ �
2

0 Rþ �
2 < r:

(4.4)

This means that all links are equal to 1 except for the t links
in a single time slice at fixed t ¼ 1. The phase changes
from 0 to � from inside to outside for �þðrÞ [or vice versa
for ��ðrÞ]. The graph of ��ðrÞ is plotted in Fig. 2 in [31],
giving a hedgehoglike configuration, since the color vector
~n points in the ‘‘radial’’ direction ~r=r at the vortex radius R.
The hedgehoglike structure is crucial for our analysis,
leading to the mentioned discrepancy. In maximal center
gauge and after center projection, this configuration shows
a single, spherical vortex without any intersection or writh-
ing points and hence no topological charge. It is of course
possible to construct the same thin spherical vortex after
center projection without the hedgehog structure, simply
by replacing ~n ~� by e.g. �3. Such a vortex has a smooth
transition, i.e., it is homotopic, to a trivial gauge field. But
as in the previous section we are interested in the analysis
of topological charge behavior for colorful vortices.

We would like to underline that for the spherical vortex
with the hedgehog structure there is nowhere a disconti-
nuity in the link variables, not in the center of the three-
dimensional spherical vortex nor at the lattice boundary. In
both regions the link variables are center elements as
necessary for a center vortex. In spite of the hedgehog

structure at the two-dimensional center projected vortex
sphere there is no singularity due to the full covering of S3

by the link variables. In other words one can explain the
configuration with t links of one time slice rotating from
the ‘‘south pole’’�1 to the ‘‘north pole’’þ1 of S3 in radial
direction from the center to the boundary, via color vectors
~n ~� given by the spatial components ~n ¼ ~r=r of the radius
vector. Hence, at the center of the vortex sphere the links
belong to the south pole of S3, at the two-dimensional
vortex surface to the ‘‘equator’’ and at the boundary of the
time slice to the north pole of S3. In other words, the links
Utðx; y; zÞ define a smooth nontrivial mapping of S3 ffi
SUð2Þ to R3 [1 ffi S3 which does not contain any singu-
larity. The only singularity that remains in this configuration
is the singular gauge transformation leading to the vortex,
but such singular gauge transformations are crucial for any
vortex structure, as discussed in the introduction.
Now, since only links in the time direction are different

from 1 for this spherical vortex configuration, the topo-
logical charge QU determined from any lattice version of
F ~F vanishes for this spherical vortex configuration. The
index of the considered Dirac operators however is non-
zero, resulting inQD ¼ �1, for��. On a 1363 � Nt lattice
the plaquettes for the spherical vortex, Eq. (4.1), satisfy the
admissibility condition. In fact, the plaquettes get smaller
and smaller the bigger the lattice, if we choose R and � to
be proportional to the lattice size. We can even get rid of
negative links with proper gauges (Landau gauge), ending
up in a lattice gauge field with no sign of hiding a singu-
larity at all.
In order to understand the discrepancy we apply stan-

dard cooling to the spherical vortex configuration. For
many cooling steps, the index of the Dirac operator does
not change, but the topological charge quickly rises close
toQU ¼ �1 for �� while the action S reaches a (nonzero)
plateau. So, the index of the overlap Dirac operator agrees
with the topological charge via F ~F (QU ¼ QD) after some
cooling. In Fig. 5 we plot the cooling history for a spherical
vortex on a 404 lattice. For comparison we also plot the
topological charge of an instanton during cooling, which
looks pretty much the same as for the spherical vortex.
In fact, the action and topological charge densities
spread over more and more time-slices, developing a
hyper-spherical distribution like standard instantons. We
conclude that our spherical vortex develops an instanton-
like structure during cooling, in agreement with [32], stat-
ing that the Hausdorff dimension of regions where the
topological charge is localized tends towards the total
space dimensions.
However, the vortex structure of our initial configuration

is removed after a few cooling steps, i.e. the spherical
vortex shrinks very quickly. This is in agreement with the
fact that the vortex content of a single instanton is shrunk to
a point at the center of the instanton [33,34], but it clearly
shows that cooling significantly changes the content of the
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initial gauge configuration. In Fig. 5 of [26] we showed
plots of the shrinking spherical vortex and the correspond-
ing monopole loop in Fig. 6, as well as the distribution of
the scalar density of the zero modes (Fig. 3), with maxima
at the inside (for �þ) or the outside (for ��) of the vortex.
In [28] we concluded that Dirac modes are sensitive to
Polyakov lines, avoiding negative Polyakov lines (corre-
sponding to negative links in the construction in [28]). Here,
we add some plots of the development of topological charge
density viaF ~F during cooling in Fig. 6, in order to show that
there are no contributions from any hidden singularities.
The topological charge clearly develops from the vortex
surface [ring structure in Fig. 6(b)] shrinking to the center
and developing an instantonlike distribution.

Further we apply some Monte Carlo steps to the spheri-
cal vortex configuration using the Metropolis algorithm
with a small spread, i.e. adding small quantum fluctuations,
and analyze the vortex structure and topological charge.
Figure 7 shows the action and topological charge during
100 Metropolis and another 100 cooling steps. The action
rises during the Monte Carlo update and the spherical
vortex percolates over the whole lattice while the topologi-
cal charge fluctuates around 0. The index of the lattice
Dirac operator however indicates topological charge
QD ¼ �1 for ��. Cooling after the Monte Carlo update
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FIG. 6 (color online). Topological charge density via F ~F at the
xy plane through the center of the spherical vortex during cooling.
Before cooling the topological chargeQU ¼ 0 (a), evolving a ring
(spherical) distribution along the vortex structure after two cooling
steps (b) and developing into an instantonlike (hyperspherical)
distribution after 5 (c) and 10 (d) cooling steps.
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still reveals the same result for QU ¼ QD via F ~F, showing
the same behavior as in Fig. 5.

We also want to emphasize the difference to the spheri-
cal vortex on an asymmetric lattice with time extent
Nt ¼ 2, which we analyzed in the second part of [26].
The vortex structure in one of the two time slices survives
much longer during cooling and leads to a static, singular
Dirac monopole before falling through the lattice. For
completeness we also plot the cooling history of a spherical
vortex on a 1363 � 2 lattice in Fig. 8. The configuration
initially satisfies the admissibility condition, but still shows
the discrepancy between F ~F and the index of the Dirac
operator. The second plateau around 900 cooling steps
indicates the fractional topological charge of the Dirac
monopole, appearing only on the asymmetric lattice. On
a symmetric lattice, we find a continuous transition to an
instantonlike structure, and the vortex structure is lost. The
singular gauge transformation is smoothed out in time
direction at the cost of losing the center vortex.

V. DISCUSSION

We finally want to resolve the problem of topological
charge determination via F ~F for the above discussed
spherical vortex configuration. The usual expression of
topological charge QU (2.1) does not take into account
the periodic boundary conditions of the lattice, which lead
to a different topological classification, even in the large
volume limit [35]. The full expression for Q must contain
possible twists in the boundary conditions allowed in the
adjoint representation [36–38]. However, such boundary
twists may also be hidden in gauge singularities, especially
in singular gauge transformations defining center vortices
on the lattice. Usually one tries to evaluate the integrals for
gauge invariant quantities like (2.1) in the axial gauge
A0 ¼ 0, where the singularities are transformed away
[39]. However, in our particular case of the spherical vortex
there is no way to gauge-transform the singularity away,
except by applying the inverse of the initial singular gauge
transformation, which then would define the boundary
twist, giving the only contribution to the topological charge
of our trivial gauge field in A0 ¼ 0 gauge.

An easy way of thinking about how to determine the
topological charge of a gauge field configuration is given in
[18]. Woit suggests locating the gauge singularities, locally
gauge-transforming them away using different gauges, and
measuring the degrees of the maps relating the different
gauges. The sum of these degrees will be a topological
invariant, the topological charge. For our configuration we
easily may follow the instructions in the above reference by
splitting the lattice into time slices.Wenowcan only consider
the time slice containing our spherical vortex, where the
singular gauge transformation nowdefines the corresponding
mapping and its degree the correct topological charge.

To state the solution of our problem in a mathematical
manner, we consider the homotopy of the above spherical

vortex configuration, Eq. (4.1). The t links of these spherical
vortices fix the holonomy of the timelike loops, defining amap
Utð ~x; t ¼ 1Þ from the xyz hyperplane at t ¼ 1 to SUð2Þ.
Because of the periodic boundary conditions, the time slice
has the topology of a 3-torus. But, actually, we can identify all
points in the exterior of the three-dimensional sphere since the
links there are trivial. Thus the topology of the time slice is
R3 [ f1g which is homeomorphic to S3. A map S3 ! SUð2Þ
is characterized by a winding number

N ¼ � 1

24�2

Z
d3x�ijk Tr½ðUy@iUÞðUy@jUÞðUy@kUÞ�;

resulting in N ¼ �1 for positive and N ¼ þ1 for negative
spherical vortices. With this assignment the index of the Dirac
operator and the topological charge after cooling coincidewith
this winding number N. Obviously such windings, given by
the holonomy of the timelike loops of the spherical vortex,
influence the index theorem [40,41], which gives the correct
definition of topological charge.
Other, topologically motivated lattice constructions ofQ

from the gauge field are given in [17,42], where one
compares the gauge rotations necessary in contiguous cells
(hypercubes) to put each cell into the same (e.g. axial)
gauge. This enables one to construct transition matrices
vn;� at the lattice sites n common to neighboring cells cðnÞ
and cðnþ �̂Þ which can be used to derive a geometric
definition of topological charge

Q ¼ � 1

24�2

X
n2�

X
�;�;	;�

���	�

�
�
3
Z
pðn;�;�Þ

d2xTr½ðvn;�@	v
�1
n�Þðv�1

n��̂;�@�vn��̂;�Þ�

þ
Z
fðn;�Þ

d3xTr½ðv�1
n;�@�vn;�Þðv�1

n;�@	vn;�Þ

� ðv�1
n;�@�vn;�Þ�

�
;

where � denotes the lattice, pðn;�; �Þ the plaquettes and
fðn;�Þ the faces (cubes) of a cell cðnÞ. Evaluating this
expression for our spherical vortex, the only nontrivial
contribution is given by the second term for fðn;� ¼ 4Þ
in the time slice of our vortex, resulting in the expression
for the winding number given above. All other terms
vanish because of trivial transition functions or the vanish-
ing of F ~F for our configuration.

VI. CONCLUSIONS

We reported on problems defining topological charge in
the background of classical center vortices on the lattice.
First, planar vortex sheets are constructed byUð1Þ rotations
in a way that they intersect orthogonally. If the gauge
rotations are defined in different Uð1Þ subgroups of
SUð2Þ, thus defining a genuinely non-Abelian configura-
tion, topological charge contributions at intersection points
can occur which are different from the Q ¼ �1=2 known
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to arise in Abelian vortex configurations. The use of
the Dirac operator is not safe in this case because of
maximally nontrivial plaquettes, which seem to suppress
such configurations in the functional integral. However,
for admissible gauge configurations of classical, spherical
center vortices we find a discrepancy between F ~F and the
lattice index theorem, for both overlap and asqtad stag-
gered fermions in the fundamental and adjoint representa-
tions. Numerically, the discrepancy equals the winding
number of the spheres when they are regarded as maps
S3 ! SUð2Þ. The problem arises due to the periodic
boundary conditions on the lattice and the fact that the
center vortex configuration under consideration is based on
a singular gauge transformation. In our case we can regard
the singular gauge transformation resulting in our spherical
vortex as a boundary twist, leading to an extra contribution
to F ~F, resolving the discrepancy. However, this result
shows that the interpretation of topological charge via

F ~F is rather subtle in the background of center vortices.
The mentioned admissibility conditions do not guarantee
that a naive plaquette or hypercube definition of topologi-
cal charge gives a result which accords with a counting of
Dirac zero modes. This is only guaranteed in the contin-
uum limit, where vortex configurations may become sin-
gular and validate the derivation of topological charge via
F ~F. On lattice configurations the F ~F definition of topo-
logical charge should only be used after cooling, which
however may change the gauge field content significantly.
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